
1

Computer Aided Verification
計算機輔助驗證

Model Checking (Part I)
模型檢驗 (一)

Pao-Ann Hsiung
Department of Computer Science and Information Engineering

National Chung Cheng University, Taiwan
熊博安

國立中正大學 資訊工程研究所

These slide contents are adapted from the slides of Professor Thomas Henzinger.

2

Model checking, narrowly interpreted:

Decision procedures for checking if
a given Kripke structure is a model
for a given formula of a modal logic.

3

Why is this of interest to us?

Because the dynamics of a discrete system can
be captured by a Kripke structure.

Because some dynamic properties of a discrete
system can be stated in modal logics.

⇓

Model checking = System verification

4

Model checking, generously interpreted:

Algorithms for system verification
which operate on a system model (semantics)
rather than a system description (syntax).

5

There are many different model-checking problems:

for different (classes of) system models

for different (classes of) system properties

6

A specific model-checking problem is defined by

I |= S

“implementation”
(system model)

“specification”
(system property)

“satisfies”, “implements”, “refines”
(satisfaction relation)

more detailed more abstract

7

Characteristics of system models which favor
model checking over other verification techniques

ongoing input/output behavior
(not: single input, single result)

concurrency
(not: single control flow)

control intensive
(not: lots of data manipulation)

8

Examples

-control logic of hardware designs

-communication protocols

-device drivers !

9

Paradigmatic example:

mutual-exclusion protocol

loop

out: x1 := 1; last := 1

req: await x2 = 0 or last = 2

in: x1 := 0

end loop.

loop

out: x2 := 1; last := 2

req: await x1 = 0 or last = 1

in: x2 := 0

end loop.

||

P1 P2

10

Model-checking problem

I |= S

system model system property

satisfaction relation

11

Model-checking problem

I |= S

system model system property

satisfaction relation

12

Important decisions when choosing a system model

-variable-based vs. event-based

-interleaving vs. true concurrency

-synchronous vs. asynchronous interaction

-clocked vs. speed-independent progress

-etc.

13

Particular combinations of choices yield

CSP

Petri nets

I/O automata

Reactive modules

etc.

14

While the choice of system model is important for
ease of modeling in a given situation,

the only thing that is important for model checking
is that the system model can be translated into
some form of state-transition graph.

15

a

a,b b

q1

q3q2

16

State-Transition Graphs
Kripke Structures (KS)

Q set of states {q1,q2,q3}

A set of observations {a,b}

→ ⊆ Q × Q transition relation q1 → q2

[]: Q → 2A observation function [q1] = {a}

K = (Q, A, , [])

17

Kripke Structure of Programs

¬p p
repeat

p := true;
p := false;

end

18

Mutual Exclusion KS
N1,N2
turn=0

T1,N2
turn=1

T1,T2
turn=1

C1,N2
turn=1

C1,T2
turn=1

N1,T2
turn=2

T1,T2
turn=2

N1,C2
turn=2

T1,C2
turn=2

N = noncritical, T = trying, C = critical

19

The translation from a system description
to a state-transition graph usually involves
an exponential blow-up !!!

e.g., n boolean variables ⇒ 2n states

This is called the “state-explosion problem.”

20

State-transition graphs are not necessarily finite-
state, but they don’t handle well:

-recursion (need push-down models)

-environment interaction (need game models)

-process creation

21

Labeled Transition Systems
(LTS)

Q set of states {q1,q2,q3}

Act set of actions {a,b}

→ ⊆ Q × Act × Q transition relation q1 → q2

L = (Q, Act,)

22

Vending Machine LTS

23

Kripke Transition Systems
KTS = KS + LTS

24

Model-checking problem

I |= S

system model system property

satisfaction relation

25

Three important decisions when choosing system
properties

1 operational vs. declarative:
automata vs. logic

2 may vs. must:
branching vs. linear time

3 prohibiting bad vs. desiring good behavior:
safety vs. liveness

The three decisions are orthogonal, and they lead
to substantially different model-checking problems.

26

Safety vs. liveness

Safety: something “bad” will never happen

Liveness: something “good” will happen
(but we don’t know when)

27

Safety vs. liveness for sequential programs

Safety: the program will never produce a
wrong result (“partial correctness”)

Liveness: the program will produce a result
(“termination”)

28

Safety vs. liveness for sequential programs

Safety: the program will never produce a
wrong result (“partial correctness”)

Liveness: the program will produce a result
(“termination”)

induction on control flow

well-founded induction on data

29

Safety vs. liveness for state-transition graphs

Safety: those properties whose violation always
has a finite witness

(“if something bad happens on an infinite run, then
it happens already on some finite prefix”)

Liveness: those properties whose violation never
has a finite witness

(“no matter what happens along a finite run,
something good could still happen later”)

30

a

a,b b

q1

q3q2

Run: q1 → q3 → q1 → q3 → q1 → q2 → q2 →

Trace: a → b → a → b → a → a,b → a,b →

31

State-transition graph S = (Q, A, →, [])

Finite runs: finRuns(S) ⊆ Q*

Infinite runs: infRuns(S) ⊆ Qω

Finite traces: finTraces(S) ⊆ (2A)*

Infinite traces: infTraces(S) ⊆ (2A)ω

32

Safety: the properties that can be
checked on finRuns

Liveness: the properties that cannot be
checked on finRuns

(they need to be checked on
infRuns)

This is much easier.

33

Example: Mutual exclusion

It cannot happen that both processes are in
their critical sections simultaneously.

Safety

34

Example: Bounded overtaking

Whenever process P1 wants to enter the critical
section, then process P2 gets to enter at most
once before process P1 gets to enter.

Safety

35

Example: Starvation freedom

Whenever process P1 wants to enter the critical
section, provided process P2 never stays in the
critical section forever, P1 gets to enter eventually.

Liveness

36

a

a,b b

q1

q3q2

infRuns ⇒ finRuns

⇐
closure

37

For state-transition graphs,
all properties are safety properties !

38

Example: Starvation freedom

Whenever process P1 wants to enter the critical
section, provided process P2 never stays in the
critical section forever, P1 gets to enter eventually.

Liveness

39

a

a,b b

q1

q3q2

Fairness constraint:

the green transition cannot be ignored forever

40

a

a,b b

q1

q3q2

Without fairness: infRuns = q1 (q3 q1)* (q2)ω ∪ (q1 q3)ω

With fairness: infRuns = q1 (q3 q1)* (q2)ω

41

Two important types of fairness

1 Weak (Buchi) fairness:
a specified set of transitions cannot be
enabled forever without being taken

2 Strong (Streett) fairness:
a specified set of transitions cannot be
enabled infinitely often without being taken

42

a

a,b b

q1

q3q2

Strong fairness

43

a

a,b

q1

q2

Weak fairness

44

Weak fairness is sufficient for
asynchronous models
(“no process waits forever if it can move”).

Strong fairness is necessary for modeling
synchronous interaction (rendezvous).

Strong fairness makes model checking
more difficult.

45

Fair state-transition graph S = (Q, A, →, [], WF, SF)

WF set of weakly fair actions

SF set of strongly fair actions

where each action is a subset of →

46

Fairness changes only infRuns, not finRuns.

⇓

Fairness can be ignored for checking safety
properties.

47

The vast majority of properties to be
verified are safety.

While nobody will ever observe the violation
of a true liveness property, fairness is a
useful abstraction that turns complicated
safety into simple liveness.

Two remarks

48

Three important decisions when choosing system
properties

1 operational vs. declarative:
automata vs. logic

2 may vs. must:
branching vs. linear time

3 prohibiting bad vs. desiring good behavior:
safety vs. liveness

The three decisions are orthogonal, and they lead to
substantially different model-checking problems.

49

Branching vs. linear time

Branching time: something may (or may not) happen
(e.g., every req may be followed by grant)

Linear time: something must (or must not) happen
(e.g., every req must be followed by grant)

50

One is rarely interested in may properties,

but certain may properties are easy to
model check, and they imply interesting
must properties.

(This is because unlike must properties,
which refer only to observations, may
properties can refer to states.)

51

Fair state-transition graph S = (Q, A, →, [], WF, SF)

Finite runs: finRuns(S) ⊆ Q*

Infinite runs: infRuns(S) ⊆ Qω

Finite traces: finTraces(S) ⊆ (2A)*

Infinite traces: infTraces(S) ⊆ (2A)ω

52

Linear time: the properties that can be
checked on infTraces

Branching time: the properties that cannot
be checked on infTraces

53

Linear Branching

Safety finTraces finRuns

Liveness infTraces infRuns

54

a

aaa

a

b bc c

Same traces, different runs

55

Observation a may occur.

||

It is not the case that a must not occur.

Linear

56

We may reach an a from which we
must not reach a b .

Branching

57

a

aaa

a

b bc c

Same traces, different runs (different trace trees)

58

Linear time is conceptually simpler than
branching time (words vs. trees).

Branching time is often computationally
more efficient.

(Because branching-time algorithms can
work with given states,
whereas linear-time algorithms often
need to “guess” sets of possible states.)

59

Three important decisions when choosing system
properties

1 operational vs. declarative:
automata vs. logic

2 may vs. must:
branching vs. linear time

3 prohibiting bad vs. desiring good behavior:
safety vs. liveness

The three decisions are orthogonal, and they lead to
substantially different model-checking problems.

60

Linear Branching

Safety SafeTL

Liveness LTL CTL

Logics

61

Automata

Safety: finite automata

Liveness: omega automata

Linear: language containment

Branching: simulation

62

Automata

Safety: finite automata

Liveness: omega automata

Linear: language containment for word automata

Branching: language containment for tree automata

63

-safety (finite runs) vs. liveness (infinite runs)

-linear time (traces) vs. branching time (runs)

-logic (declarative) vs. automata (executable)

System property: 2x2x2 choices

64

Defining a logic

1. Syntax:

What are the formulas?

2. Semantics:

What are the models?

Does model M satisfy formula ϕ ? M |= ϕ

65

Propositional logics:

1. boolean variables (a,b) & boolean operators (∧,¬)

2. model = truth-value assignment for variables

Propositional modal (e.g. temporal) logics:

1. ... & modal operators (,)

2. model = set of (e.g. temporally) related prop.
models

observations
state-transition graph
(“Kripke structure”)

66

CTL (Computation Tree Logic)

-safety & liveness

-branching time

-logic

[Clarke & Emerson; Queille & Sifakis 1981]

67

CTL Syntax

ϕ ::= a | ϕ ∧ ϕ | ¬ ϕ | ∃ ϕ | ϕ ∃U ϕ | ∃ ϕ

boolean variable
(atomic observation)

boolean operators

modal operators

68

CTL Model

(K, q)

fair state-transition graph state of K

69

CTL Semantics

(K,q) |= a iff a ∈ [q]

(K,q) |= ϕ ∧ ψ iff (K,q) |= ϕ and (K,q) |= ψ

(K,q) |= ¬ϕ iff not (K,q) |= ϕ

(K,q) |= ∃ ϕ iff exists q’ s.t.
q → q’ and (K,q’) |= ϕ

(K,q) |= ϕ ∃U ψ iff exist q0, ..., qn s.t.
1. q = q0 → q1 → ... → qn
2. for all 0 ≤ i < n, (K,qi) |= ϕ
3. (K,qn) |= ψ

70

CTL Semantics

(K,q) |= ∃ ϕ iff exist q0, q1, ... s.t.

1. q = q0 → q1 → ... is an infinite fair run

2. for all i ≥ 0, (K,qi) |= ϕ

71

∃ EX exists next

∀ ϕ = ¬∃ ¬ϕ AX forall next

∃U EU exists until

∃ ϕ = true ∃U ϕ EF exists eventually

∀ ϕ = ¬ ∃ ¬ϕ AG forall always

ϕ∀Wψ = ¬ ((¬ψ) ∃U (¬ϕ ∧ ¬ψ))

AW forall waiting-for
(forall weak-until)

Defined modalities
(safety)

72

∃ EG exists always

∀ ϕ = ¬∃ ¬ϕ AF forall eventually

ϕ ∃Wψ = (ϕ ∃U ψ) ∨ (∃ ϕ)

ϕ ∀U ψ = (ϕ ∀W ψ) ∧ (∀ ψ)

Defined modalities
(liveness)

73

Important safety properties

Invariance ∀ a

Sequencing a ∀W b ∀W c ∀W d

= a ∀W (b ∀W (c ∀W d))

74

Important safety properties: mutex protocol

Invariance ∀ ¬ (in_cs1 ∧ in_cs2)

Sequencing ∀ (req_cs1 ⇒

¬in_cs2 ∀W in_cs2 ∀W ¬in_cs2 ∀W in_cs1)

75

Branching properties

Deadlock freedom ∀ ∃ true

Possibility ∀ (a ⇒ ∃ b)

∀ (req_cs1 ⇒ ∃ in_cs1)

76

Important liveness property

Response ∀ (a ⇒ ∀ b)

∀ (req_cs1 ⇒ ∀ in_cs1)

77

If only universal properties are of interest,

why not omit the path quantifiers?

78

LTL (Linear Temporal Logic)

-safety & liveness

-linear time

-logic

[Pnueli 1977; Lichtenstein & Pnueli 1982]

79

LTL Syntax

ϕ ::= a | ϕ ∧ ϕ | ¬ ϕ | ϕ | ϕ U ϕ

80

LTL Model

infinite trace t = t0 t1 t2 ...

81

(K,q) |= ∀ϕ iff for all t ∈ L(K,q), t |= ϕ

(K,q) |= ∃ϕ iff exists t ∈ L(K,q), t |= ϕ

Language of deadlock-free state-transition graph K
at state q :

L(K,q) ... set of infinite traces of K starting at q

82

LTL Semantics

t |= a iff a ∈ t0

t |= ϕ ∧ ψ iff t |= ϕ and t |= ψ

t |= ¬ϕ iff not t |= ϕ

t |= ϕ iff t1 t2 ... |= ϕ

t |= ϕ U ψ iff exists n ≥ 0 s.t.
1. for all 0 ≤ i < n, ti ti+1 ... |= ϕ
2. tn tn+1 ... |= ψ

83

X next

U U until

ϕ = true U ϕ F eventually

ϕ = ¬ ¬ϕ G always

ϕ Wψ = (ϕ U ψ) ∨ ϕ W waiting-for (weak-until)

Defined modalities

84

Important properties

Invariance a

¬ (in_cs1 ∧ in_cs2)

Sequencing a W b W c W d

(req_cs1 ⇒

¬in_cs2 W in_cs2 W ¬in_cs2 W in_cs1)

Response (a ⇒ b)

(req_cs1 ⇒ in_cs1)

85

Composed modalities

a infinitely often a

a almost always a

86

Where did fairness go ?

87

Unlike in CTL, fairness can be expressed in LTL !

So there is no need for fairness in the model.

Weak (Buchi) fairness :

¬ (enabled ∧ ¬ taken)

(enabled ⇒ taken)

Strong (Streett) fairness :

(enabled) ⇒ (taken)

88

Starvation freedom, corrected

(in_cs2 ⇒ out_cs2) ⇒
(req_cs1 ⇒ in_cs1)

89

CTL cannot express fairness

∀ a ≠ ∀ ∀ a

∃ b ≠ ∃ ∃ b

ba a
q0

q1 q2

90

LTL cannot express branching

Possibility ∀ (a ⇒ ∃ b)

So, LTL and CTL are incomparable.

(There are branching logics that can express
fairness, e.g. CTL* = CTL + LTL, but they lose the
computational attractiveness of CTL.)

