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Model checking, narrowly interpreted:

Decision procedures for checking if   
a given Kripke structure is a model 
for a given formula of a modal logic.
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Why is this of interest to us?

Because the dynamics of a discrete system can 
be captured by a Kripke structure. 

Because some dynamic properties of a discrete 
system can be stated in modal logics. 

⇓

Model checking = System verification
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Model checking, generously interpreted:

Algorithms for system verification            
which operate on a system model (semantics) 
rather than a system description (syntax).



5

There are many different model-checking problems:

for different (classes of) system models

for different (classes of) system properties
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A specific model-checking problem is defined by 

I |= S

“implementation”
(system model)

“specification”
(system property)

“satisfies”, “implements”, “refines”
(satisfaction relation)

more detailed more abstract
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Characteristics of system models which favor 
model checking over other verification techniques

ongoing input/output behavior
(not: single input, single result)

concurrency
(not: single control flow)

control intensive
(not: lots of data manipulation)
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Examples

-control logic of hardware designs

-communication protocols

-device drivers !
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Paradigmatic example:

mutual-exclusion protocol

loop

out: x1 := 1; last := 1

req: await  x2 = 0  or  last = 2

in: x1 := 0

end loop.

loop

out: x2 := 1; last := 2

req: await  x1 = 0  or  last = 1

in: x2 := 0

end loop.

||

P1 P2
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Model-checking problem

I |= S

system model system property

satisfaction relation
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Model-checking problem

I |= S

system model system property

satisfaction relation
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Important decisions when choosing a system model 

-variable-based vs. event-based

-interleaving vs. true concurrency

-synchronous vs. asynchronous interaction

-clocked vs. speed-independent progress 

-etc.
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Particular combinations of choices yield

CSP 

Petri nets

I/O automata

Reactive modules

etc.
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While the choice of system model is important for 
ease of modeling in a given situation,

the only thing that is important for model checking 
is that the system model can be translated into 
some form of state-transition graph.
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a

a,b b

q1

q3q2
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State-Transition Graphs 
Kripke Structures (KS)

Q      set of states {q1,q2,q3}

A set of observations {a,b}

→ ⊆ Q × Q     transition relation          q1 → q2

[ ]: Q → 2A observation function       [q1] = {a}

K = (Q, A, , [ ])
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Kripke Structure of Programs

¬p p
repeat

p := true;
p := false;

end
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Mutual Exclusion KS
N1,N2
turn=0

T1,N2
turn=1

T1,T2
turn=1

C1,N2
turn=1

C1,T2
turn=1

N1,T2
turn=2

T1,T2
turn=2

N1,C2
turn=2

T1,C2
turn=2

N = noncritical,  T = trying,  C = critical
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The translation from a system description 
to a state-transition graph usually involves 
an exponential blow-up !!!

e.g.,  n boolean variables  ⇒ 2n states

This is called the “state-explosion problem.”
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State-transition graphs are not necessarily finite-
state, but they don’t handle well:

-recursion (need push-down models)

-environment interaction (need game models)

-process creation 
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Labeled Transition Systems 
(LTS)

Q      set of states {q1,q2,q3}

Act set of actions {a,b}

→ ⊆ Q × Act × Q     transition relation          q1 → q2

L = (Q, Act, )
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Vending Machine LTS
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Kripke Transition Systems
KTS = KS + LTS
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Model-checking problem

I |= S

system model system property

satisfaction relation
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Three important decisions when choosing system 
properties

1 operational vs. declarative:
automata vs. logic

2 may vs. must:
branching vs. linear time

3 prohibiting bad vs. desiring good behavior:     
safety vs. liveness

The three decisions are orthogonal, and they lead 
to substantially different model-checking problems.
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Safety vs. liveness

Safety:    something “bad” will never happen

Liveness:  something “good” will happen 
(but we don’t know when)
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Safety vs. liveness for sequential programs

Safety:    the program will never produce a  
wrong result (“partial correctness”)

Liveness:  the program will produce a result  
(“termination”)
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Safety vs. liveness for sequential programs

Safety:    the program will never produce a  
wrong result (“partial correctness”)

Liveness:  the program will produce a result  
(“termination”)

induction on control flow

well-founded induction on data
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Safety vs. liveness for state-transition graphs

Safety: those properties whose violation always 
has a finite witness

(“if something bad happens on an infinite run, then 
it happens already on some finite prefix”)

Liveness:  those properties whose violation never  
has a finite witness 

(“no matter what happens along a finite run, 
something good could still happen later”)
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a

a,b b

q1

q3q2

Run:      q1 → q3 → q1 → q3 → q1 → q2 → q2 →

Trace:   a  → b  → a → b  → a  → a,b → a,b →
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State-transition graph  S = ( Q, A, →, [] )

Finite runs: finRuns(S) ⊆ Q*

Infinite runs:         infRuns(S) ⊆ Qω

Finite traces: finTraces(S) ⊆ (2A)*

Infinite traces:      infTraces(S) ⊆ (2A)ω
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Safety:   the properties that can be 
checked on finRuns

Liveness:   the properties that cannot be 
checked on finRuns

(they need to be checked on   
infRuns)

This is much easier.
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Example:  Mutual exclusion

It cannot happen that both processes are in 
their critical sections simultaneously.

Safety



34

Example:  Bounded overtaking

Whenever process P1 wants to enter the critical 
section, then process P2 gets to enter at most 
once before process P1 gets to enter.

Safety
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Example:  Starvation freedom

Whenever process P1 wants to enter the critical 
section, provided process P2 never stays in the 
critical section forever, P1 gets to enter eventually.

Liveness
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a

a,b b

q1

q3q2

infRuns ⇒ finRuns

⇐
closure    
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For state-transition graphs,             
all properties are safety properties !
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Example:  Starvation freedom

Whenever process P1 wants to enter the critical 
section, provided process P2 never stays in the 
critical section forever, P1 gets to enter eventually.

Liveness
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a

a,b b

q1

q3q2

Fairness constraint:

the green transition cannot be ignored forever
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a

a,b b

q1

q3q2

Without fairness:   infRuns = q1 (q3 q1)* (q2)ω ∪ (q1 q3)ω

With fairness:        infRuns = q1 (q3 q1)* (q2)ω
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Two important types of fairness

1   Weak (Buchi) fairness: 
a specified set of transitions cannot be 
enabled forever without being taken 

2  Strong (Streett) fairness:
a specified set of transitions cannot be 
enabled infinitely often without being taken 
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a

a,b b

q1

q3q2

Strong fairness
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a

a,b

q1

q2

Weak fairness
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Weak fairness is sufficient for 
asynchronous models 
(“no process waits forever if it can move”). 

Strong fairness is necessary for modeling 
synchronous interaction (rendezvous).

Strong fairness makes model checking 
more difficult.
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Fair state-transition graph  S = ( Q, A, →, [], WF, SF)

WF     set of weakly fair actions

SF       set of strongly fair actions

where each action is a subset of  →
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Fairness changes only infRuns, not finRuns.

⇓

Fairness can be ignored for checking safety 
properties.
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The vast majority of properties to be 
verified are safety.

While nobody will ever observe the violation 
of a true liveness property, fairness is a 
useful abstraction that turns complicated 
safety into simple liveness.

Two remarks
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Three important decisions when choosing system 
properties

1 operational vs. declarative:
automata vs. logic

2 may vs. must:
branching vs. linear time

3 prohibiting bad vs. desiring good behavior:     
safety vs. liveness

The three decisions are orthogonal, and they lead to 
substantially different model-checking problems.
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Branching vs. linear time

Branching time:   something may (or may not) happen
(e.g., every req may be followed by grant) 

Linear time:         something must (or must not) happen
(e.g., every req must be followed by grant) 
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One is rarely interested in may properties,

but certain may properties are easy to 
model check, and they imply interesting 
must properties.

(This is because unlike must properties, 
which refer only to observations, may 
properties can refer to states.)
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Fair state-transition graph  S = ( Q, A, →, [], WF, SF )

Finite runs: finRuns(S) ⊆ Q*

Infinite runs:         infRuns(S) ⊆ Qω

Finite traces: finTraces(S) ⊆ (2A)*

Infinite traces:      infTraces(S) ⊆ (2A)ω
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Linear time:   the properties that can be 
checked on infTraces

Branching time:   the properties that cannot  
be checked on infTraces
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Linear Branching

Safety         finTraces finRuns

Liveness infTraces infRuns
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a

aaa

a

b bc c

Same traces, different runs
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Observation a may occur.

||

It is not the case that  a must not  occur. 

Linear
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We may reach an  a from which we 
must not reach a  b .

Branching
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a

aaa

a

b bc c

Same traces, different runs (different trace trees)
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Linear time is conceptually simpler than 
branching time (words vs. trees).

Branching time is often computationally 
more efficient.

(Because branching-time algorithms can 
work with given states, 
whereas linear-time algorithms often 
need to “guess” sets of possible states.)
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Three important decisions when choosing system 
properties

1 operational vs. declarative:
automata vs. logic

2 may vs. must:
branching vs. linear time

3 prohibiting bad vs. desiring good behavior:     
safety vs. liveness

The three decisions are orthogonal, and they lead to 
substantially different model-checking problems.
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Linear Branching

Safety         SafeTL

Liveness LTL CTL

Logics
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Automata

Safety: finite automata

Liveness: omega automata

Linear: language containment 

Branching: simulation
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Automata

Safety: finite automata

Liveness: omega automata

Linear: language containment for word automata

Branching: language containment for tree automata
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-safety (finite runs) vs. liveness (infinite runs) 

-linear time (traces) vs. branching time (runs)

-logic (declarative) vs. automata (executable)

System property:   2x2x2 choices
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Defining a logic

1. Syntax:  

What are the formulas?

2.  Semantics:

What are the models?

Does model M satisfy formula ϕ ? M |= ϕ



65

Propositional logics:

1.  boolean variables  (a,b)  &  boolean operators  (∧,¬)

2.  model = truth-value assignment for variables

Propositional modal (e.g. temporal) logics: 

1.   ...  &  modal operators ( , )

2.  model = set of (e.g. temporally) related prop. 
models

observations
state-transition graph 
(“Kripke structure”)
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CTL (Computation Tree Logic)

-safety & liveness

-branching time

-logic

[Clarke & Emerson; Queille & Sifakis 1981]
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CTL Syntax

ϕ ::=   a  |  ϕ ∧ ϕ |  ¬ ϕ |  ∃ ϕ |  ϕ ∃U ϕ |  ∃ ϕ

boolean variable 
(atomic observation)

boolean operators

modal operators
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CTL Model

( K, q )

fair state-transition graph state of K
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CTL Semantics

(K,q)  |=  a iff a ∈ [q]

(K,q)  |=  ϕ ∧ ψ iff (K,q) |= ϕ and  (K,q) |= ψ

(K,q)  |=  ¬ϕ iff not  (K,q) |= ϕ

(K,q)  |=  ∃ ϕ iff exists  q’ s.t.  
q → q’ and  (K,q’) |= ϕ

(K,q)  |=  ϕ ∃U ψ iff exist q0, ..., qn s.t.           
1.  q = q0 → q1 → ... → qn
2.  for all 0 ≤ i < n,  (K,qi) |= ϕ
3.  (K,qn) |= ψ
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CTL Semantics

(K,q)  |=  ∃ ϕ iff exist  q0, q1, ...  s.t.

1.  q = q0 → q1 → ...  is an infinite fair run

2.  for all i ≥ 0,  (K,qi) |= ϕ
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∃ EX         exists next

∀ ϕ =  ¬∃ ¬ϕ AX         forall next

∃U EU exists until

∃ ϕ =  true ∃U ϕ EF exists eventually

∀ ϕ =  ¬ ∃ ¬ϕ AG forall always

ϕ∀Wψ =  ¬ ( (¬ψ) ∃U (¬ϕ ∧ ¬ψ)) 

AW         forall waiting-for
(forall weak-until)

Defined modalities 
(safety)
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∃ EG         exists always

∀ ϕ =  ¬∃ ¬ϕ AF         forall eventually

ϕ ∃Wψ =  (ϕ ∃U ψ) ∨ (∃ ϕ)

ϕ ∀U ψ =  (ϕ ∀W ψ) ∧ (∀ ψ)

Defined modalities 
(liveness)
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Important safety properties

Invariance ∀ a

Sequencing            a ∀W b ∀W c ∀W d

= a ∀W (b ∀W (c ∀W d))
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Important safety properties:  mutex protocol

Invariance       ∀ ¬ (in_cs1 ∧ in_cs2)

Sequencing      ∀ ( req_cs1   ⇒

¬in_cs2 ∀W in_cs2 ∀W ¬in_cs2 ∀W in_cs1 )
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Branching properties

Deadlock freedom      ∀ ∃ true

Possibility ∀ (a  ⇒ ∃ b)

∀ (req_cs1  ⇒ ∃ in_cs1)
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Important liveness property

Response ∀ (a  ⇒ ∀ b)

∀ (req_cs1  ⇒ ∀ in_cs1)



77

If only universal properties are of interest,

why not omit the path quantifiers?
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LTL (Linear Temporal Logic)

-safety & liveness

-linear time

-logic

[Pnueli 1977;  Lichtenstein & Pnueli 1982]
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LTL Syntax

ϕ ::=   a  |  ϕ ∧ ϕ |  ¬ ϕ |  ϕ |  ϕ U ϕ
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LTL Model

infinite trace  t = t0 t1 t2 ...
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(K,q) |= ∀ϕ iff for all  t ∈ L(K,q),  t |= ϕ

(K,q) |= ∃ϕ iff exists  t ∈ L(K,q),  t |= ϕ

Language of deadlock-free state-transition graph K 
at state q :

L(K,q)  ...  set of infinite traces of K starting at q
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LTL Semantics

t  |=  a iff a ∈ t0

t  |=  ϕ ∧ ψ iff t |= ϕ and  t |= ψ

t  |=  ¬ϕ iff not  t |= ϕ

t  |= ϕ iff t1 t2 ... |= ϕ

t  |=  ϕ U ψ iff exists  n ≥ 0  s.t.
1.  for all 0 ≤ i < n,  ti ti+1 ... |= ϕ
2.  tn tn+1 ... |= ψ



83

X        next

U U        until

ϕ =  true U ϕ F eventually

ϕ =  ¬ ¬ϕ G        always

ϕ Wψ =  (ϕ U ψ) ∨ ϕ W       waiting-for (weak-until)

Defined modalities
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Important properties

Invariance a

¬ (in_cs1 ∧ in_cs2)

Sequencing   a W b W c W d

( req_cs1   ⇒

¬in_cs2 W in_cs2 W ¬in_cs2 W in_cs1 )

Response (a  ⇒ b)

(req_cs1  ⇒ in_cs1)
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Composed modalities

a infinitely often  a

a almost always  a
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Where did fairness go ?
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Unlike in CTL, fairness can be expressed in LTL !

So there is no need for fairness in the model.

Weak (Buchi) fairness :

¬ (enabled ∧ ¬ taken )

(enabled  ⇒ taken)

Strong (Streett) fairness :

( enabled )  ⇒ ( taken )
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Starvation freedom, corrected

(in_cs2  ⇒ out_cs2) ⇒
(req_cs1  ⇒ in_cs1)
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CTL cannot express fairness

∀ a    ≠ ∀ ∀ a

∃ b    ≠ ∃ ∃ b

ba a
q0

q1 q2
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LTL cannot express branching

Possibility ∀ (a  ⇒ ∃ b)

So,  LTL  and  CTL  are incomparable.

(There are branching logics that can express 
fairness, e.g. CTL* = CTL + LTL, but they lose the 
computational attractiveness of CTL.) 


