
1

Computer Aided Verification
計算機輔助驗證

Introduction to Model Checking
模型檢驗

Pao-Ann Hsiung
Department of Computer Science and Information Engineering

National Chung Cheng University, Taiwan
熊博安

國立中正大學 資訊工程研究所

These slide contents are adapted from the slides of Professor Edmund Clarke.

2

Contents

♦What is Model Checking?
♦Formal System Modeling
♦Formal Specification

3

What is Model Checking?

Cindy Crawford

Unfortunately, not that kind of model!!

4

Temporal Logic Model Checking

♦ Model checking is an automatic verification technique
for finite state concurrent systems.

♦ Developed independently by Clarke and Emerson and
by Queille and Sifakis in early 1980’s.

♦ Specifications are written in propositional temporal
logic.

♦ Verification procedure is an exhaustive search of the
state space of the design.

5

Some Advantages of Model Checking

♦ No proofs!!!
♦ Fast
♦ Counterexamples
♦ No problem with partial specifications
♦ Logics can easily express many

concurrency properties

6

Main Disadvantage

State Explosion Problem:
♦ Too many processes
♦ Data Paths

Much progress has been made on this problem
recently!

7

Basic Temporal Operators

♦ Fp - p holds sometime in the future.
♦ Gp - p holds globally in the future.
♦ Xp - p holds next time.
♦ pUq - p holds until q holds.

The symbol “p” is an atomic proposition,
e.g. DeviceEnabled.

8

Model of computation

~ Start
~ Close
~ Heat
~ Error

Start
~ Close
~ Heat
Error

~ Start
Close
~ Heat
~ Error

~ Start
Close
Heat
~ Error

Start
Close
Heat
~ Error

Start
Close
~ Heat
~ Error

Start
Close
~ Heat
Error

Microwave Oven Example

9

Temporal LogicTemporal Logic

The oven doesn’t heat up until the door is closed.

Not heat_up holds until door_closed

(~ heat_up) U door_closed

10

Model Checking ProblemModel Checking Problem

Let M be a state-transition graph.

Let ƒ be the specification in temporal logic.

Find all states s of M such that M, s |= ƒ.

Efficient Algorithms: CE81, CES83

11

The EMC SystemThe EMC System

PreprocessorPreprocessor Model Checker
(EMC)

Model Checker
(EMC)

State Transition Graph
104 to 105 states

State Transition Graph
104 to 105 states

SpecificationSpecification

True or CounterexamplesTrue or Counterexamples

12

Breakthrough!Breakthrough!

Ken McMillan implemented our model checking
algorithm using Binary Decision Diagrams in 1987.

Now able to handle much larger examples!!

13

An Alternative Approach to Model Checking

♦ Both the system and its specification are modeled as
automata.

♦ These automata are compared to determine if the
system behavior conforms to the specification.

♦ Different notions of conformance have been explored:
– Language Inclusion
– Refinement orderings
– Observational equivalence

14

Implementation and SpecificationImplementation and Specification

•Mimp corresponds to the implementation:

•Mspec corresponds to the specification:
“event C must happen at least once”:

a
a

c

b

a, b

c

a, b, c

b

15

The Behavior Conformance ProblemThe Behavior Conformance Problem

Given two automata Mimp and Mspec , check if

L(Mimp) ⊆ L(Mspec).

♦ If a sequence is accepted by Mimp, then it is also accepted
by Mspec.

♦ This can be determined algorithmically.)

L

16

♦ Binary Decision Diagrams can be used to represent
state transition systems more efficiently.

♦ The partial order reduction can be used to reduce the
number of states that must be enumerated.

♦ Other techniques for alleviating state explosion include:
– Abstraction.
– Compositional reasoning.
– Symmetry.
– Cone of influence reduction.
– Semantic minimization.

Combating the State Explosion Problem

17

Model Checker Performance

♦ Model checkers today can routinely handle systems
with between 100 and 300 state variables.

♦ Systems with 10120 reachable states have been
checked.

♦ By using appropriate abstraction techniques, systems
with an essentially unlimited number of states can be
checked.

18

Notable Examples- IEEE Futurebus+

♦ In 1992 Clarke and his students at CMU used SMV to
verify the IEEE Future+ cache coherence protocol.

♦ They found a number of previously undetected
errors in the design of the protocol.

♦ This was the first time that formal methods have been
used to find errors in an IEEE standard.

♦ Although the development of the protocol began in
1988, all previous attempts to validate it were based
entirely on informal techniques.

19

Notable ExamplesNotable Examples--IEEE SCIIEEE SCI

♦ In 1992 Dill and his students at Stanford used Murphi
to verify the cache coherence protocol of the IEEE
Scalable Coherent Interface.

♦ They found several errors, ranging from uninitialized
variables to subtle logical errors.

♦ The errors also existed in the complete protocol,
although it had been extensively discussed, simulated,
and even implemented.

20

Notable Examples-PowerScale

♦ In 1995 researchers from Bull and Verimag used LOTOS
to describe the processors, memory controller, and bus
arbiter of the PowerScale multiprocessor architecture.

♦ They identified four correctness requirements for proper
functioning of the arbiter.

♦ The properties were formalized using bisimulation
relations between finite labeled transition systems.

♦ Correctness was established automatically in a few
minutes using the CÆSAR/ ALDÉBARAN toolbox.

21

Notable Examples - HDLC

♦ A High-level Data Link Controller was being designed
at AT&T in Madrid in 1996.

♦ Researchers at Bell Labs offered to check some properties
of the design using the FormalCheck verifier.

♦ Within five hours, six properties were specified and five
were verified.

♦ The sixth property failed, uncovering a bug that would

have reduced throughput or caused lost transmissions!

22

Notable Examples
PowerPC 620 Microprocessor

♦ Richard Raimi used Motorola’s Verdict model
checker to debug a hardware laboratory failure.

♦ Initial silicon of the PowerPC 620 microprocessor
crashed during boot of an operating system.

♦ In a matter of seconds, Verdict found a BIU
deadlock causing the failure.

23

Notable Examples-Analog Circuits

♦ In 1994, Bosscher, Polak, and Vaandrager won a best-
paper award for proving manually the correctness of a
control protocol used in Philips stereo components.

♦ In 1995, Ho and Wong-Toi verified an abstraction of
this protocol automatically using HyTech.

♦ Later in 1995, Daws and Yovine used Kronos to
check all the properties stated and hand proved by
Bosscher, et al.

24

Notable Examples - ISDN/ISUP

♦ The NewCoRe Project (89-92) was the first application of
formal verification in a software project within AT&T.

♦ A special purpose model checker was used in the
development of the CCITT ISDN User Part Protocol.

♦ Five “verification engineers” analyzed 145 requirements.

♦ A total of 7,500 lines of SDL source code was verified.

♦ 112 errors were found; about 55% of the original design
requirements were logically inconsistent.

25

Notable Examples - Building

♦ In 1995 the Concurrency Workbench was used to
analyze an active structural control system to make
buildings more resistant to earthquakes.

♦ The control system sampled the forces being applied
to the structure and used hydraulic actuators to exert
countervailing forces.

♦ A timing error was discovered that could have
caused the controller to worsen, rather than dampen,
the vibration experienced during earthquakes.

26

Model Checking Systems

♦ There are many other successful examples of the use of
model checking in hardware and protocol verification.

♦ The fact that industry (INTEL, IBM, MOTOROLA) is
starting to use model checking is encouraging.

♦ Below are some well-known model checkers, categorized
by whether the specification is a formula or an automaton.

27

Temporal Logic Model CheckersTemporal Logic Model Checkers

♦ The first two model checkers were EMC and Caesar.

♦ SMV is the first model checker to use BDDs.

♦ Spin uses the partial order reduction to reduce the state
explosion problem for software systems.

♦ Verus, Kronos, and UPPAAL check properties of real-
time systems.

♦ HyTech is designed for reasoning about hybrid systems.

28

Behavior Conformance Checkers

♦ The Cospan/FormatCheck system is based on showing
inclusion between w-automata.

♦ FDR checks refinement between CSP programs; recently,
used to debug security protocols.

♦ The Concurrency Workbench can be used to determine if
two systems are observationally equivalent.

29

Combination Checkers

♦ Berkeley’s HSIS combines model checking with language
inclusion.

♦ Stanford’s STeP system combines model checking with
deductive methods.

♦ VIS integrates model checking with logic synthesis and
simulation.

♦ The PVS theorem prover has a model checker for model
mu-calculus.

30

Directions for Future Research

♦ Investigate the use of abstraction, compositional reasoning,
and symmetry to reduce the state explosion problem.

♦ Develop methods for verifying parameterized designs.

♦ Develop practical tools for real-time and hybrid systems.

♦ Combine with deductive verification.

♦ Develop tool interfaces suitable for system designers.

