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Therac-25

1985 ~ 1987



AECL Development History

• Therac-6: 6 MeV device, 
– Produced in early 1970’s
– Designed with substantial hardware safety systems and 

minimal software control
– Long history of safe use in radiation therapy

• Therac-20: 20 MeV dual-mode device
– Derived from Therac-6 with minimal hardware changes, 

enhanced software control
• Therac-25: 25 MeV dual-mode device

– Redesigned hardware to incorporate significant 
software control, extended Therac-6 software



Therac-25

• Medical linear accelerator
– Used to zap tumors with high energy beams.

• Electron beams for shallow tissue or x-ray photons  
for deeper tissue.

• Eleven Therac-25s were installed:
– Six in Canada
– Five in the United States

• Developed by Atomic Energy Commission 
Limited (AECL).



Therac-25

• Improvements over Therac-20:
– Uses new “double pass” technique to accelerate 

electrons.
– Machine itself takes up less space.

• Other differences from the Therac-20:
– Software now coupled to the rest of the system 

and responsible for safety checks.
• Hardware safety interlocks removed.

– “Easier to use.”



Therac-25 Turntable

Counterweight

Field Light Mirror

Beam Flattener 
(X-ray Mode)

Scan Magnet 
(Electron Mode)
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Accident History

• June 1985, Overdose (shoulder, arm damaged)
– Technician informed overdose is impossible

• July 1985, Overdose (hip destroyed)
– AECL identifies possible position sensor fault

• Dec 1985, Overdose (burns)
• March 1986, Overdose (fatality)

– “Malfunction 54”
– Sensor reads underdosage
– AECL finds no electrical faults, claims no previous 

incidents



Accident History (cont.)

• April 1986, Overdose (fatality)
– Hospital staff identify race condition
– FDA, CHPB begin inquiries

• January 1987, Overdose (burns)
– FDA, CHPB recall device

• July 1987, Equipment repairs Approved
• November 1988, Final Safety Report



What Happened?

• Six patients were delivered severe 
overdoses of radiation between 1985 and 
1987.
– Four of these patients died.

• Why?
– The turntable was in the wrong position.
– Patients were receiving x-rays without beam-

scattering (光散射).



What would cause that to happen?

• Race conditions.
– Several different race condition bugs.

• Overflow error.
– The turntable position was not checked every 256th 

time the “Class3” variable is incremented.
• No hardware safety interlocks.
• Wrong information on the console.
• Non-descriptive error messages.

– “Malfunction 54”
– “H-tilt”

• User-override-able error modes.



Cost of the Bug

• To users (patients):
– Four deaths, two other serious injuries.

• To developers (AECL):
– One lawsuit 

• Settled out of court

– Time/money to investigate and fix the bugs
• To product owners (11 hospitals):

– System downtime



Source of the Bug

• Incompetent engineering.
– Design
– Troubleshooting

• Virtually no testing of the software.
– The safety analysis excluded the software!
– No usability testing.



Bug Classifications

• Classification(s)
– Race Condition (System Level bug)
– Overflow error
– User Interface

• Were the bugs related?
– No.



Testing That Would Have Found 
These Bugs…

• Design Review
• System level testing
• Usability Testing

• Cost of testing… worth it?
– Yes.  It was irresponsible and unethical to not 

thoroughly test this system.



Sources
• Leveson, N., Turner, C. S., An Investigation of the Therac-25 

Accidents. IEEE Computer, Vol. 26, No. 7, July 1993, pp. 18-41. 
http://courses.cs.vt.edu/~cs3604/lib/Therac_25/Therac_1.html
– Information for this article was largely obtained from primary sources 

including official FDA documents and internal memos, lawsuit 
depositions, letters, and various other sources that are not publicly 
available. 

Nancy Leveson Clark S. Turner

The authors:



Ariane 501

1996



Ariane 501

• On 4 June 1996, the maiden flight of the Ariane 5 
launcher ended in a failure. 

• Only about 40 seconds after initiation of the flight 
sequence, at an altitude of about 3700 m, the 
launcher veered off its flight path, broke up and 
exploded. 

• Investigation report by Mr Jean-Marie Luton, ESA 
Director General and Mr Alain Bensoussan, 
CNES Chairman 
– ESA-CNES Press Release of 10 June 1996



Ariane 501 Failure Report

• Nominal behavior of the launcher up to H0 + 36
seconds; 

• Simultaneous failure of the two inertial reference 
systems; 

• Swivelling into the extreme position of the nozzles 
(尾噴管) of the two solid boosters (助推器) and, 
slightly later, of the Vulcain engine, causing the 
launcher to veer abruptly; 

• Self-destruction of the launcher correctly triggered 
by rupture of the electrical links between the solid 
boosters and the core stage. 





Sequence of Events on Ariane 501

• At 36.7 seconds after H0 (approx. 30 seconds after lift-off) the computer 
within the back-up inertial reference system, which was working on stand-
by for guidance and attitude control, became inoperative. This was caused 
by an internal variable related to the horizontal velocity of the launcher 
exceeding a limit which existed in the software of this computer. 

• Approx. 0.05 seconds later the active inertial reference system, identical to 
the back-up system in hardware and software, failed for the same reason. 
Since the back-up inertial system was already inoperative, correct 
guidance and attitude information could no longer be obtained and loss of 
the mission was inevitable. 

• As a result of its failure, the active inertial reference system transmitted 
essentially diagnostic information to the launcher's main computer, where 
it was interpreted as flight data and used for flight control calculations. 



Sequence of Events on Ariane 501

• On the basis of those calculations the main computer 
commanded the booster nozzles, and somewhat later the 
main engine nozzle also, to make a large correction for an 
attitude deviation (偏航) that had not occurred. 

• A rapid change of attitude occurred which caused the 
launcher to disintegrate at 39 seconds after H0 due to 
aerodynamic forces (空氣動力). 

• Destruction was automatically initiated upon disintegration, 
as designed, at an altitude of 4 km and a distance of 1 km 
from the launch pad. 



Post-Flight Analysis (1/4)

• Inertial reference system of Ariane 5 is same as in Ariane 4
• In Ariane 4

– Used before launch
– For realignment of system in case of late hold in countdown

• In Ariane 5
– No use!!!
– Retained for commonality reasons
– Operates for 40 seconds after lift-off

• Horizontal velocity variable
– Decided not to prevent overflow of values
– Did not analyze which values would the variable have after lift-off



Post-Flight Analysis (2/4)

• In Ariane 4
– During first 40 seconds of flight

• No value overflow possible for the horizontal 
velocity variable

• In Ariane 5
– High initial acceleration
– Horizontal velocity is FIVE times more rapid 

than Ariane 4
• Horizontal velocity variable value overflow

occurred within 40 seconds!!!



Post-Flight Analysis (3/4)

• In the review process
– Limitations of alignment software not fully 

analyzed
– Possible implications of allowing it to continue 

to function during flight were not realized
• In the specification and test plans

– Ariane 5 trajectory data were not included
• Not tested under simulated Ariane 5 flight 

conditions
• Design error was not discovered



Post-Flight Analysis (4/4)

• In overall system simulation
– Decided to use simulated output of inertial 

reference system, not the system itself or its 
detailed simulation

– Could have included entire inertial reference 
system in overall system simulation

• In post-flight simulations
– Software in inertial reference system +

actual trajectory of Ariane 501 flight
– Faithfully reproduced the chain of events leading 

to the failure of inertial reference systems



Mars Climate Orbiter

1998 ~ 1999



Mars Climate Orbiter

• Launched December 
1998

• Arrived at Mars 10 
months later

• Slowing to enter a 
polar orbit in 
September 1999

• Flew to close to the 
planet’s surface and 
was lost



Mars Climate Orbiter

• “The prime contractor for the mission, 
Lockheed Martin, measured the thruster (推
沖器) firings in pounds even though NASA 
had requested metric measurements. That 
sent the Climate Orbiter in too low, where 
the $125-million spacecraft burned up or 
broke apart in Mars' atmosphere.”

http://www4.cnn.com/TECH/space/9911/10/orbiter.03/#3



Mars Climate Orbiter
• Wow!

• And whilst all this was occurring the Mars Polar Lander
was on its way to the red planet 

• “That incident has prompted some 11th hour 
considerations about how to safely fly the Polar Lander.  
“Everybody really wants to make sure that all the issues 
have been looked at”, says Karen McBride, a member of 
the UCLA Mars Polar Lander science team.”

http://www4.cnn.com/TECH/space/9911/10/orbiter.03/#3



Mars Polar Lander

1999



Mars Polar Lander
• Launched January 3, 1999 
• Two hours prior to 

reaching its Mars orbit 
insertion point on 
December 3, 1999, the 
spacecraft reported that all 
systems were good to go 
for orbit insertion

• There was no further 
contact

• US120,000,000



Mars Polar Lander

• “The most likely cause of the lander’s failure, 
investigators decided, was that a spurious sensor 
signal associated with the craft’s legs falsely 
indicated that the craft had touched down when in 
fact it was some 130-feet (40 meters) above the 
surface. This caused the descent engines to shut 
down prematurely and the lander to free fall out of 
the Martian sky.”

http://www.space.com/businesstechnology/technology/mpl_software_crash_000331.html



Mars Polar Lander

• Spurious signals – hard to test
– By the way – this is an example of the type of 

requirement that might be covered in the 
external interfaces section (range of allowable 
input etc)

• But surely there had to be a better way to 
test for touch-down than vibrations in the 
legs



The Sleipner A Oil Platform

1991



The Sleipner A Oil Platform
• Norwegian Oil company’s 

platform in the North Sea
• “When [it] sank in August 

1991, the crash caused a 
seismic event registering 
3.0 on the Richter scale, 
and left nothing but a pile 
of debris at 220m of 
depth.”

• The failure involved a 
total economic loss of 
about $700 million.”

http://www.ima.umn.edu/~arnold/disasters/sleipner.html



The Sleipner A Oil Platform

• Long accident investigation
• Traced the problem back to an incorrect entry in 

the Nastran finite element model used to design 
the concrete base.  The concrete walls had been 
made too thin.

• When the model was corrected and rerun on the 
actual structure it predicted failure at 65m

• Failure had occurred at 62 m



The Pentium FDIV Bug

1994



The Pentium FDIV Bug

• A programming error in a for loop led to 5 
of the cells of a look-up table being not 
downloaded to the chip

• Chip was burned with the error
• Sometimes (4195835 / 3145727) * 

3145727 – 4195835 =-192.00 and similar 
errors

• On older c1994 chips (Pentium 90)
http://www.mathworks.com/company/pentium/index.shtml



The Pentium FDIV Bug

• 4195833.0 <= x <= 4195836.4 
• 3145725.7 <= y <= 3145728.4 

The correct values all 
would round to 1.3338 
and the incorrect values 
all would round to 1.3337, 
an error in the 5th 
significant digit. 



Look-up Table



USS Yorktown

1998



USS Yorktown
• The Yorktown lost control 

of its propulsion system 
because its computers 
were unable to divide by 
the number zero, the 
memo said. The 
Yorktown’s Standard 
Monitoring Control 
System administrator 
entered zero into the data 
field for the Remote Data 
Base Manager program.

• The ship was completely 
disabled for several hours



USS Yorktown

• This is such a dumb bug there is little need to 
comment!

• All input data should be checked for validity
• If you have a zero divide risk then trap it
• Particularly if it might bring down an entire 

warship
• And, even if a zero divide gets through, how 

robust is a system where a single user input out of 
range error can crash an entire ship?



Patriot

1991



Patriot

• On February 25, 1991, 
during the Gulf War, an 
American Patriot Missile 
battery in Dharan, Saudi 
Arabia, failed to intercept 
an incoming Iraqi Scud 
missile. The Scud struck 
an American Army 
barracks and killed 28 
soldiers. 



Patriot
“The range gate's prediction of where the Scud will next appear is a function 
of the Scud's known velocity and the time of the last radar detection. Velocity 
is a real number that can be expressed as a whole number and a decimal (e.g., 
3750.2563...miles per hour). Time is kept continuously by the system's internal 
clock in tenths of seconds but is expressed as an integer or whole number (e.g., 
32, 33, 34...). The longer the system has been running, the larger the number 
representing time. To predict where the Scud will next appear, both time and 
velocity must be expressed as real numbers. Because of the way the Patriot 
computer performs its calculations and the fact that its registers are only 24 
bits long, the conversion of time from an integer to a real number cannot be 
any more precise than 24 bits. This conversion results in a loss of precision 
causing a less accurate time calculation. The effect of this inaccuracy on the 
range gate's calculation is directly proportional to the target's velocity and 
the length of the system has been running. Consequently, performing the 
conversion after the Patriot has been running continuously for extended 
periods causes the range gate to shift away from the center of the target, 
making it less likely that the target, in this case a Scud, will be successfully 
intercepted.”

Government Accounting Office Report http://www.fas.org/spp/starwars/gao/im92026.htm



Patriot

• This bug is typical of a requirements deficiency 
caused by reuse

• Patriot was originally an anti-aircraft (防空) 
system designed to remain “up” for short periods
of time and to track slow (~mach 1-2) targets

• It was moved into a missile defence (反飛彈) role 
where it now had to be on station for many days
and to track much faster targets



Design Productivity Crisis
Hardware



Design Productivity Crisis
Software



Design Productivity Crisis
Internet Security

• Microsoft's Passport bug leaves 200 million 
users vulnerable
– Passport accounts are central repositories for a 

person's online data as well as acting as the single 
key for the customer's online accounts. 

– The flaw, in Passport's password recovery 
mechanism, could have allowed an attacker to 
change the password on any account to which the 
username is known.

– BBC, CNET news May 8, 2003



Conclusions

• According to Dept of Commerce's National Inst. 
of Standards and Technology (NIST), 2002
– Software errors cost US economy $59.5 billion 

annually
– An estimated $22.2 billion could be saved by improved 

testing infrastructures
– Half of the errors are not found until “downstream” in 

the software design process

http://www.nist.gov/public_affairs/releases/n02-10.htm
http://www.nist.gov/director/prog-ofc/report02-3.pdf



Reality in System Design

• Computer systems are getting more complex 
and pervasive
– Testing takes more time than designing
– Automation is key to improve time-to-market

• In safety-critical applications, bugs are 
unacceptable
– Mission control, medical devices

• Bugs are expensive
– FDIV in Pentium: 4195835/3145727 



Reality in System Verification
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Why Study Computer-Aided 
Verification?

• A general approach with applications to
– Hardware/software designs
– Network protocols
– Embedded control systems

• Rapidly increasing industrial interest
• Interesting mathematical foundations

– Modeling, semantics, concurrency theory
– Logic and automata theory
– Algorithms analysis, data structures



White Box Testing
1. Validate the implementation details with a knowledge of 

how the unit is put together. 
2. Check all the basic components work and that they are 

connected properly. 
3. Give us more confidence that the adder will work under all 

circumstances.
Example: Focus on validating an adder unit inside the controller. 

Traditional Methods



Black Box Testing
1. Focus on the external inputs and outputs of the unit under test,

with no knowledge of the internal implementation details. 
2. Apply stimulus to primary inputs and the results of the primary 

outputs are observed. 
3. Validate the specified functions of the unit were implemented 

without any interest in how they were implemented. 
4. This will exercise the adder but will not check to make sure 

that the adder works for all possible inputs 

Example: Check to see if the controller can count from 1 to 10. 

Traditional Methods



Static Testing
1. Examine the construction of the design
2. Looks to see if the design structure conforms to some 

set of rules
3. Need to be told what to look for

Dynamic Testing
1. Apply a set of stimuli
2. Easy to test complex behavior
3. Difficult to exhaustively test
4. It does not show that the design works under all 

conditions

Traditional Methods



Random Testing
1. Generate random patterns for the inputs
2. The problems come from not what you know but what 

you don't know 
3. You might be able to do this for data inputs, but 

control inputs require specific data or data sequences 
to make the device perform any useful operation at all 

Traditional Methods



Formal Verification

• Goal: provide tools and techniques as 
design aids to improve reliability

• Formal: correctness claim is a precise 
mathematical statement

• Verification: analysis either proves or 
disproves the correctness claim 



Formal Verification Approach

• Build a model of the system
– What are possible behaviors? 

• Write correctness requirement in a 
specification language
– What are desirable behaviors?

• Analysis: check that model satisfies 
specification



Why Formal Verification? 
• Testing/simulation of 

designs/implementations may not reveal error 
(e.g., no errors revealed after 2 days)

• Formal verification (=exhaustive testing) of 
design provides 100% coverage 
(e.g., error revealed within 5 min).

• TOOL support.
• No need of testbench, test vectors



Interactive versus Algorithmic 
Verification

• Interactive analysis
– Analysis reduces to proving a theorem in a 

logic
– Uses interactive theorem prover
– Requires more expertise
– E.g. Theorem Proving



Interactive versus Algorithmic 
Verification

• Algorithmic analysis
– Analysis is performed by an algorithm (tool)
– Analysis gives counterexamples for 

debugging
– Typically requires exhaustive search of 

state space
– Limited by high computational complexity
– E.g. Model Checking, Equivalence Checking



Theorem Proving
Prove that an implementation satisfies a specification 
by mathematical reasoning.
Implementation and specification expressed as 
formulas in a formal logic .
Relationship (logical equivalence/ logical implication) 
described as a theorem to be proven.
A proof system:
A set of axioms(facts) and inference(deduction) rules 
(simplification, rewriting, induction, etc.)



Some known theorem proving systems:
HOL PVS Lambda
Advantages:
High abstraction and powerful logic expressiveness
Unrestricted applications
Useful for verifying datapath- dominated circuits
Limitations:
Interactive (under user guidance)
Requires expertise for efficient use
Automated for narrow classes of designs

Theorem Proving



Model Checking

• Term coined by Clarke and Emerson in 1981 
to mean checking a finite-state model with 
respect to a temporal logic

• Applies generally to automated verification
– Model need not be finite
– Requirements in many different languages

• Provides diagnostic information to debug the 
model



Verification Methodology
ABSTRACT MODEL SPECIFICATION

COUNTER-EXAMPLE

VERIFIER

YES

DONE

REFINE MODIFY CHECK ANOTEHR 
PROPERTY



Equivalence Checking
• Checks if two circuits are equivalent

– Register-Transfer Level (RTL)
– Gate Level

• Reports differences between the two
• Used after: 

– clock tree synthesis
– scan chain insertion
– manual modifications 



Equivalence Checking
• Two circuits are functionally equivalent if 

they exhibit the same behavior

• Combinational Circuits
– For all possible input values

• Sequential Circuits
– For all possible input 

sequences

CL

Pi

CL

R

Po

Ps Ns



Formal Verification Tools

• Protocol: UPPAAL, SGM, Kronos, …
• System Design (UML, …): visualSTATE
• Software: SPIN
• Hardware: 

– EC: Formality, Tornado
– MC: SMV, FormalCheck, RuleBase, SGM, …
– TP: PVS, ACL2



U
PPA

A
L



visualSTATE

• Hierarchical state 
systems

• Flat state systems
• Multiple and inter-

related state 
machines

• Supports UML 
notation

• Device driver access

VVS
w Baan Visualstate, DTU (CIT project)



SPIN



Train Simulator
1421 machines
11102 transitions
2981 inputs
2667 outputs
3204 local states
Declare state sp.: 10^476

BUGS ?

VVS
visualSTATE

Our techniuqes has reduced verific
ation

time  with several orders of magnitude

(ex 14 days to 6 sec)



HW Verification Tools



Hardware Verification

• Fits well in design flow
– Designs in VHDL, Verilog
– Simulation, synthesis, and verification
– Used as a debugging tool

• Who is using it?
– Design teams: Lucent, Intel, IBM, …
– CAD tool vendors: Cadence, Synopsis
– Commercial model checkers: FormalCheck



Software Verification

• Software
– High-level modeling not common
– Applications: protocols, telecommunications
– Languages: ESTEREL, UML

• Recent trend: integrate model checking in 
programming analysis tools
– Applied directly to source code
– Main challenge: extracting model from code
– Sample projects: SLAM (Microsoft), Feaver (Bell 

Labs)



Limitations

• Appropriate for control-intensive 
applications

• Decidability and complexity remains an 
obstacle

• Falsification rather than verification 
– Model, and not system, is verified
– Only stated requirements are checked

• Finding suitable abstraction requires 
expertise



‘State Explosion’ Problem
a

cb

1 2

43

1,a 4,a

3,a 4,a

1,b 2,b

3,b 4,b

1,c 2,c

3,c 4,c

All combinations = exponential in no. of components

M1 M2

M1 x M2

Provably theoretical 

intractable



Model Checking

MC

p
q

yes

no + counterexample

outputs

G(p -> F q)

p

q

temporal logic spec

finite-state 
model

inputs



Linear temporal logic (LTL)
• A logical notation that allows to:

– specify relations in time
– conveniently express finite control properties

• Temporal operators
– G p “henceforth p”
– F p “eventually p”
– X p “p at the next time”
– p U q “p until q”



Types of Temporal Properties

• Safety (nothing bad happens)
G ~(ack1 & ack2) “mutual exclusion”
G (req (req W ack)) “req must hold until ack”

• Liveness (something good happens)
G (req F ack) “if req, eventually ack”

• Fairness (something good keeps happening)

GF req GF ack “if infinitely often req, 
infinitely often ack”



Example: Traffic Light Controller

• Guarantee no collisions
• Guarantee eventual service

E

S

N



Controller Program
module main(N_SENSE,S_SENSE,E_SENSE,

N_GO,S_GO,E_GO);
input  N_SENSE, S_SENSE, E_SENSE;
output N_GO, S_GO, E_GO;
reg NS_LOCK, EW_LOCK, N_REQ, S_REQ, E_REQ;

/* set request bits when sense is high */

always begin if (!N_REQ & N_SENSE) N_REQ = 1; end
always begin if (!S_REQ & S_SENSE) S_REQ = 1; end
always begin if (!E_REQ & E_SENSE) E_REQ = 1; end



Example continued...
/* controller for North light */
always begin

if (N_REQ)
begin
wait (!EW_LOCK);
NS_LOCK = 1; N_GO = 1;
wait (!N_SENSE);

if (!S_GO) NS_LOCK = 0;
N_GO = 0; N_REQ = 0;

end
end

/* South light is similar . . . */



Example code, cont…

/* Controller for East light */
always begin

if (E_REQ) 
begin
EW_LOCK = 1;
wait (!NS_LOCK);
E_GO = 1;
wait (!E_SENSE);
EW_LOCK = 0; E_GO = 0; E_REQ = 0;

end
end 



Specifications in temporal logic
• Safety (no collisions)

G ~(E_Go & (N_Go | S_Go));
• Liveness

G (~N_Go & N_Sense -> F N_Go);
G (~S_Go & S_Sense -> F S_Go);
G (~E_Go & E_Sense -> F E_Go);

• Fairness constraints
GF ~(N_Go & N_Sense);
GF ~(S_Go & S_Sense);
GF ~(E_Go & E_Sense);

/* assume each sensor off infinitely often */



Counterexample
• East and North lights on at same time...

E_Go

E_Sense
NS_Lock
N_Go
N_Req
N_Sense
S_Go
S_Req
S_Sense

E_Req
N light goes on at
same time S light goes
off.

S takes priority and
resets NS_Lock

N light goes on at
same time S light goes
off.

S takes priority and
resets NS_Lock



Fixing the error

• Don’t allow N light to go on while 
south light is going off.

always begin
if (N_REQ)

begin
wait (!EW_LOCK & !(S_GO & !S_SENSE));
NS_LOCK = 1; N_GO = 1;
wait (!N_SENSE);
if (!S_GO) NS_LOCK = 0;

N_GO = 0; N_REQ = 0;
end

end



Another counterexample
• North traffic is never served... 
E_Go

E_Sense
NS_Lock
N_Go
N_Req
N_Sense
S_Go
S_Req
S_Sense

E_Req N and S lights go
off at same time

Neither resets lock

Last state repeats
forever



Fixing the liveness error
• When N light goes off, test whether S light 

is also going off, and if so reset lock.
always begin

if (N_REQ)
begin

wait (!EW_LOCK & !(S_GO & !S_SENSE));
NS_LOCK = 1; N_GO = 1;
wait (!N_SENSE);
if (!S_GO | !S_SENSE) NS_LOCK = 0;

N_GO = 0; N_REQ = 0;
end

end



All properties verified
• Guarantee no collisions
• Guarantee service assuming fairness
• Computational resources used:

– 57 states searched
– 0.1 CPU seconds



Computation tree logic (CTL)
• Branching time model
• Path quantifiers

– A = “for all future paths”
– E =  “for some future path”

• Example: AF p = “inevitably p”
AF p

p

p

p

• Every operator has a path quantifier
– AG AF p  instead of  GF p



Difference between CTL and LTL
• Think of CTL formulas as approximations to LTL

– AG EF p is weaker than  G F p

So, use CTL when it applies...

– AF AG p is stronger than  F G p

p
Good for finding bugs...

Good for verifying...p p

• CTL formulas easier to verify



p

• Example:  AF p =  “inevitably p”
CTL model checking algorithm

Complexity
– linear in size of model (FSM)
– linear in size of specification formula

Note:  general LTL problem is exponential in formula size



Specifying using ω−automata
• An automaton accepting infinite sequences

– Finite set of states (with initial state)
– Transitions labeled with Boolean conditions
– Set of accepting states

p
G (p -> F q)

~q

q

~p

Interpretation:
• A run is accepting if it visits an accepting state infinitely often
• Language = set of sequences with accepting runs



Verifying using ω−automata 

• Construct parallel product of model and 
automaton

• Search for “bad cycles”
– Very similar algorithm to temporal logic model 

checking

• Complexity (deterministic automaton)
– Linear in model size
– Linear in number of automaton states
– Complexity in number of acceptance conditions varies



Automata vs. Temporal Logic
• Tableau procedure

– LTL formulas can be translated into equivalent automata
– Translation is exponential

• ω-automata are strictly more expressive than LTL
p

T
• LTL with “auxiliary” variables = ω-automata 

“p at even times”
Example:

Example:
G (even -> p)

where:
init(even) := 1;
next(even) := ~even;



Overview of Topics
• Introduction to model checking
• System modeling and logic specification

– Automata, reactive modules, temporal logics
• Analysis techniques

– Explicit/Symbolic model checking
– Bounded model checking (BMC) using Boolean 

satisfiability (SAT)
• Model checker implementation techniques

– State-space reduction techniques
– Compositional, assume-guarantee reasoning

• Advanced issues
– Prioritized and urgent systems
– Coverage analysis for model checking
– Control/Program synthesis (optional)


	Computer-Aided Verification�Introduction
	Contents
	Therac-25
	AECL Development History
	Therac-25
	Therac-25
	Therac-25 Turntable
	Accident History
	Accident History (cont.)
	What Happened?
	What would cause that to happen?
	Cost of the Bug
	Source of the Bug
	Bug Classifications
	Testing That Would Have Found These Bugs…
	Sources
	Ariane 501
	Ariane 501
	Ariane 501 Failure Report
	Sequence of Events on Ariane 501
	Sequence of Events on Ariane 501
	Post-Flight Analysis (1/4)
	Post-Flight Analysis (2/4)
	Post-Flight Analysis (3/4)
	Post-Flight Analysis (4/4)
	Mars Climate Orbiter
	Mars Climate Orbiter
	Mars Climate Orbiter
	Mars Climate Orbiter
	Mars Polar Lander
	Mars Polar Lander
	Mars Polar Lander
	Mars Polar Lander
	The Sleipner A Oil Platform
	The Sleipner A Oil Platform
	The Sleipner A Oil Platform
	The Pentium FDIV Bug
	The Pentium FDIV Bug
	The Pentium FDIV Bug
	Look-up Table
	USS Yorktown
	USS Yorktown
	USS Yorktown
	Patriot
	Patriot
	Patriot
	Patriot
	Design Productivity Crisis�Hardware
	Design Productivity Crisis�Software
	Design Productivity Crisis�Internet Security
	Conclusions
	Reality in System Design
	Reality in System Verification
	Why Study Computer-Aided Verification?
	Traditional Methods
	Traditional Methods
	Traditional Methods
	Traditional Methods
	Formal Verification
	Formal Verification Approach
	Why Formal Verification? 
	Interactive versus Algorithmic Verification
	Interactive versus Algorithmic Verification
	Theorem Proving
	Theorem Proving
	Model Checking
	Verification Methodology
	Equivalence Checking
	Equivalence Checking
	Formal Verification Tools
	Train Simulator
	HW Verification Tools
	Hardware Verification
	Software Verification
	Limitations
	‘State Explosion’ Problem
	Model Checking
	Linear temporal logic (LTL)
	Types of Temporal Properties
	Example: Traffic Light Controller
	Controller Program
	Example continued...
	Example code, cont… 
	Specifications in temporal logic
	Counterexample
	Fixing the error
	Another counterexample
	Fixing the liveness error
	All properties verified
	Computation tree logic (CTL)
	Difference between CTL and LTL
	CTL model checking algorithm
	Specifying using w-automata
	Verifying using w-automata 
	Automata vs. Temporal Logic
	Overview of Topics

