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Therac-25

1985 ~ 1987



AECL Development History

e Therac-6: 6 MeV device,

— Produced in early 1970’s

— Designed with substantial hardware safety systems and
minimal software control

— Long history of safe use in radiation therapy

e Therac-20: 20 MeV dual-mode device

— Derived from Therac-6 with minimal hardware changes,
enhanced software control

e Therac-25: 25 MeV dual-mode device

— Redesigned hardware to incorporate significant
software control, extended Therac-6 software



Therac-25

e Medical linear accelerator

— Used to zap tumors with high energy beams.

 Electron beams for shallow tissue or x-ray photons
for deeper tissue.

 Eleven Therac-25s were installed:
— Six In Canada
— Five In the United States

e Developed by Atomic Energy Commission
Limited (AECL).



Therac-25

e Improvements over Therac-20:

— Uses new “double pass” technigue to accelerate
electrons.

— Machine itself takes up less space.

e Other differences from the Therac-20:

— Software now coupled to the rest of the system
and responsible for safety checks.

« Hardware safety interlocks removed.
— “Easler to use.”
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Accident History

June 1985, Overdose (shoulder, arm damaged)
— Technician informed overdose Is Impossible

July 1985, Overdose (hip destroyed)

— AECL identifies possible position sensor fault

Dec 1985, Overdose (burns)

March 1986, Overdose (fatality)
— “Malfunction 54"
— Sensor reads underdosage

— AECL finds no electrical faults, claims no previous
Incidents



Accident History (cont.)

April 1986, Overdose (fatality)
— Hospital staff identify race condition

— FDA, CHPB begin inquiries

January 1987, Overdose (burns)

— FDA, CHPB recall device

July 1987, Equipment repairs Approved

November 1988, Final Safety Report



What Happened?

o SiX patients were delivered severe
overdoses of radiation between 1985 and

1987.
— Four of these patients died.
o Why?
— The turntable was In the wrong position.
— Patients were receiving x-rays without beam-

scattering (v ﬁj’rﬁﬁ).



What would cause that to happen?

Race conditions.
— Several different race condition bugs.

Overflow error.

— The turntable position was not checked every 256th
time the “Class3” variable is incremented.

No hardware safety interlocks.
Wrong information on the console.

Non-descriptive error messages.
— “Malfunction 54"

— “H-tilt”

User-override-able error modes.



Cost of the Bug

o To users (patients):
— Four deaths, two other serious injuries.

e To developers (AECL):

— One lawsuit
e Settled out of court

— Time/money to investigate and fix the bugs

e To product owners (11 hospitals):
— System downtime



Source of the Bug

* |ncompetent engineering.
— Design
— Troubleshooting
 Virtually no testing of the software.

— The safety analysis excluded the software!
— No usability testing.



Bug Classifications

» Classification(s)
— Race Condition (System Level bug)
— Overflow error
— User Interface

» \Were the bugs related?
— No.



Testing That Would Have Found
These Bugs...

Design Review
System level testing
Usability Testing

Cost of testing... worth it?

— Yes. Itwas irresponsible and unethical to not
thoroughly test this system.



Sources

Leveson, N., Turner, C. S., An Investigation of the Therac-25
Accidents. IEEE Computer, Vol. 26, No. 7, July 1993, pp. 18-41.
http://courses.cs.vt.edu/~cs3604/lib/Therac_25/Therac_1.htmi
— Information for this article was largely obtained from primary sources
including official FDA documents and internal memos, lawsuit

depositions, letters, and various other sources that are not publicly
available.

The authors:
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Nancy Leveson Clark S. Turner



Ariane 501

1996



Ariane 501

On 4 June 1996, the maiden flight of the Ariane 5
launcher ended In a failure.

Only about 40 seconds after initiation of the flight
seguence, at an altitude of about 3700 m, the
launcher veered off its flight path, broke up and
exploded.

Investigation report by Mr Jean-Marie Luton, ESA
Director General and Mr Alain Bensoussan,
CNES Chairman

— ESA-CNES Press Release of 10 June 1996



Ariane 501 Fallure Report

Nominal behavior of the launcher up to HO + 36
seconds;

Simultaneous fatlure of the two Inertial reference
systems;

Swivelling into the extreme position of the nozzles
(='rEidp) of the two solid boosters (S#£458) and,
slightly later, of the Vulcain engine, causing the
launcher to veer abruptly;

Self-destruction of the launcher correctly triggered
by rupture of the electrical links between the solid
boosters and the core stage.



French Guyana, June 4, 1996
$800 million software failure




Sequence of Events on Ariane 501

At 36.7 seconds after HO (approx. 30 seconds after lift-off) the computer
within the back-up inertial reference system, which was working on stand-
by for guidance and attitude control, became inoperative. This was caused
by an internal variable related to the horizontal velocity of the launcher
exceeding a limit which existed in the software of this computer.

Approx. 0.05 seconds later the active inertial reference system, identical to
the back-up system in hardware and software, failed for the same reason.
Since the back-up inertial system was already inoperative, correct
guidance and attitude information could no longer be obtained and loss of
the mission was inevitable.

As a result of its failure, the active inertial reference system transmitted
essentially diagnostic information to the launcher's main computer, where
It was interpreted as flight data and used for flight control calculations.



Sequence of Events on Ariane 501

* On the basis of those calculations the main computer
commanded the booster nozzles, and somewhat later the
main engine nozzle also, to make a large correction for an
attitude deviation ([’ﬂlﬂfﬁ) that had not occurred.

« A rapid change of attitude occurred which caused the
launcher to disintegrate at 39 seconds after HO due to
aerodynamic forces (% xvg17Y).

o Destruction was automatically initiated upon disintegration,
as designed, at an altitude of 4 km and a distance of 1 km
from the launch pad.



Post-Flight Analysis (1/4)

Inertial reference system of Ariane 5 is same as in Ariane 4

In Ariane 4
— Used before launch
— For realignment of system in case of late hold in countdown

In Ariane 5

— No use!l!

— Retained for commonality reasons

— Operates for 40 seconds after lift-off
Horizontal velocity variable

— Decided not to prevent overflow of values
— Did not analyze which values would the variable have after lift-off



Post-Flight Analysis (2/4)

e [n Arlane 4

— During first 40 seconds of flight

* No value overflow possible for the horizontal
velocity variable

e In Ariane 5
— High initial acceleration

— Horizontal velocity is FIVE times more rapid
than Ariane 4

e Horizontal velocity variable value overflow
occurred within 40 seconds!!!



Post-Flight Analysis (3/4)

* |n the review process
— Limitations of alignment software not fully
analyzed

— Possible implications of allowing it to continue
to function during flight were not realized

* In the specification and test plans

— Ariane 5 trajectory data were not included

* Not tested under simulated Ariane 5 flight
conditions

 Design error was not discovered



Post-Flight Analysis (4/4)

 In overall system simulation

— Decided to use simulated output of inertial
reference system, not the system itself or its
detailed simulation

— Could have included entire inertial reference
system in overall system simulation

 |n post-flight simulations
— Software In Inertial reference system +
actual trajectory of Ariane 501 flight
— Faithfully reproduced the chain of events leading
to the failure of inertial reference systems



Mars Climate Orbiter

1998 ~ 1999



Mars Climate Orbiter

Launched December
1998

Arrived at Mars 10
months later

Slowing to enter a
polar orbit in
September 1999

Flew to close to the
planet’s surface and
was lost

(HEHM)




Mars Climate Orbiter

“The prime contractor for the mission,
Lockheed Martin, measured the thruster (&
IH1wy) firings in pounds even though NASA
had requested metric measurements. That
sent the Climate Orbiter in too low, where
the $125-million spacecraft burned up or
broke apart in Mars' atmosphere.”

http://www4.cnn.com/TECH/space/9911/10/orbiter.03/#3



Mars Climate Orbiter

e Wow!

« And whilst all this was occurring the Mars Polar Lander
was on Iits way to the red planet

e “That incident has prompted some 11th hour
considerations about how to safely fly the Polar Lander.
“Everybody really wants to make sure that all the issues
have been looked at”, says Karen McBride, a member of
the UCLA Mars Polar Lander science team.”

http://www4.cnn.com/TECH/space/9911/10/orbiter.03/#3



Mars Polar Lander

1999



Mars Polar Lander

Launched January 3, 1999

Two hours prior to
reaching its Mars orbit
Insertion point on
December 3, 1999, the
spacecraft reported that all
systems were good to go
for orbit insertion

There was no further
contact

US120,000,000




Mars Polar Lander

* “The most likely cause of the lander’s failure,
Investigators decided, was that a spurious sensor
signal associated with the craft’s legs falsely
Indicated that the craft had touched down when in
fact it was some 130-feet (40 meters) above the
surface. This caused the descent engines to shut
down prematurely and the lander to free fall out of

the Martian sky.”

http://www.space.com/businesstechnology/technology/mpl -software crash _000331.html



Mars Polar Lander

e Spurious signals — hard to test

— By the way — this is an example of the type of
requirement that might be covered in the
external interfaces section (range of allowable
Input etc)

e But surely there had to be a better way to
test for touch-down than vibrations in the
legs



The Sleipner A Oil Platform

1991



The Sleipner A Oil Platform

* Norwegian Oil company’s
platform in the North Sea

o “When [it] sank in August
1991, the crash caused a
seismic event registering
3.0 on the Richter scale,
and left nothing but a pile
of debris at 220m of
depth.”

e The failure involved a
total economic loss of
about $700 million.”

http://www.ima.umn.edu/~arnold/disasters/sleipner.htmi



The Sleipner A Oil Platform

Long accident investigation

Traced the problem back to an incorrect entry in
the Nastran finite element model used to design
the concrete base. The concrete walls had been
made too thin.

When the model was corrected and rerun on the
actual structure it predicted failure at 65m

Fallure had occurred at 62 m




The Pentium FDIV Bug

1994



The Pentium FDIV Bug

A programming error in a for loop led to 5
of the cells of a look-up table being not
downloaded to the chip

Chip was burned with the error

Sometimes (4195835 / 3145727) *
3145727 — 4195835 =-192.00 and similar
errors

On older ¢1994 chips (Pentium 90)

http://www.mathworks.com/company/pentium/index.shtmi



The Pentium FDIV Bug

e 4195833.0 <= X <=4195836.4
o 3145725.7 <=y <= 3145728.4

Fanium FDIY error

The correct values all
would round to 1.3338
and the incorrect values
all would round to 1.3337,
an error in the 5th
significant digit.
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Look-up Table

e

i
o e

0101.000

0100.000

0011.000 =5
0010.000
0001.000
0000.000
1111.000

Ispuleway |eied payiys

1110.000

(I

OLLL')

1[Jrorie

0011}
LLOL'L
0LOL'L
LOOL'L
00011
LLLO')
OLLO'L
1010}
00LO'L
LLOO'L
0L00°)

1000 L

0000°L

1101.000

1100.000

1011.000

Divisor



USS Yorktown

1998



USS Yorktown |

The Yorktown lost control
of Its propulsion system
because its computers
were unable to divide by
the number zero, the
memo said. The
Yorktown'’s Standard
Monitoring Control
System administrator
entered zero Into the data
field for the Remote Data
Base Manager program.

The ship was completely
disabled for several hours




USS Yorktown

This 1s such a dumb bug there is little need to
comment!

All input data should be checked for validity
If you have a zero divide risk then trap it

Particularly if it might bring down an entire
warship

And, even If a zero divide gets through, how
robust Is a system where a single user input out of
range error can crash an entire ship?



Patriot

1991



Patriot

e On February 25, 1991,
during the Gulf War, an
American Patriot Missile
battery in Dharan, Saudi
Arabia, failed to intercept
an incoming Iragi Scud
missile. The Scud struck
an American Army
barracks and killed 28
soldiers.




Patriot

“The range gate's prediction of where the Scud will next appear is a function
of the Scud's known velocity and the time of the last radar detection. Velocity
Is a real number that can be expressed as a whole number and a decimal (e.g.,
3750.2563...miles per hour). Time is kept continuously by the system's internal
clock in tenths of seconds but is expressed as an integer or whole number (e.g.,
32, 33, 34...). The longer the system has been running, the larger the number
representing time. To predict where the Scud will next appear, both time and
velocity must be expressed as real numbers. Because of the way the Patriot
computer performs its calculations and the fact that its registers are only 24
bits long, the conversion of time from an integer to a real number cannot be
any more precise than 24 bits. This conversion results in a loss of precision
causing a less accurate time calculation. The effect of this i Inaccuracy on the
range gate's calculation is directly proportional to the target's velocity and
the length of the system has been running. Consequently, performing the
conversion after the Patriot has been running continuously for extended
periods causes the range gate to shift away from the center of the target,
making it less likely that the target, in this case a Scud, will be successfully
Intercepted.”

Government Accounting Office Report http://www.fas.org/spp/starwars/gao/im92026.htm



Patriot

 This bug is typical of a requirements deficiency
caused by reuse

o Patriot was originally an anti-aircraft (|’ 2
system designed to remain “up” for short periods
of time and to track slow (~mach 1-2) targets

» It was moved into a missile defence (~ 7fifi) role
where it now had to be on station for many days
and to track much faster targets



Design Productivity Crisis
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MARCH 13, 2003

Design Productivity Crisis
Software
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Air traffic control bug found

NEC neglected
to fix defect

The Yomiuri Shimbun

A software bug left unfixed by NEC
Corp. was found to be partly responsible for
a computer breakdown that badly disrupt-
ed domestic flight schedules on March 1
and 2, Construction and Transport Ministry
sources said Wednesday.

NEC Corp. had incorrectly programmed
the computer system of an air traffic control
facility in Tokorozawa, Saitama Prefecture,
the sources said. Although the company
knew about the defect, it did not take any

Ex-Nippon Food

measures to fix it, the sources said.

The trouble occurred in a device called the
flight data processing system (FDP), which
processes information on all flights from all
the nation’s airports, the sources said.

The computer is made up of about 1,000
data storage units. A preinstalled data pro-
cessing program to read the data was re-
placed in September. But with the new pro-
gram, the whole system can crash if the
data in one unit is misread.

NEC discovered the defect at the end of
January, but since the FDP system had
been running without any problems since
September, NEC allegedly considered the
defect unlikely to cause serious trouble.
The company therefore did not take any
measures to fix the problem.

But when another computer program
was updated on March 1, the location of the

data in the storage units was changed.
Soon after the data processing program
was restarted, the system went down, ac-
cording to the sources,

“In addition to NEC’'s programming
error, our negligence in not fully checking
the functioning of the renewed program
caused the gliteh,” a Construction and
Transport Ministry official said.

The official said the ministry would con-
sider whether to claim compensation from
NEC for damages resulting from the
breakdown after fully reviewing the con-
tents of their contract with the company.
 The breakdown took place at the min-
istry’s Air Traffic Control Center in Tokoro-
zawa, Saitama Prefecture. On March 1 and
2, a total of 215 flights were canceled, and
1,462 flights were delayed for 30 minutes or
more. At least 270,000 people flying on
i

Japan Airlines, All Nippon Airways and
Japan Air System were affected by the fail-
ure,

An NEC official said, “We'll reflect on
the failure in our programming, which se-
riously inconvenienced many people, and
do our best to prevent any recurrence of
the trouble,”

Eiichiro Sekigawa, a critie of aviation af-
fairs, said: “The incident could have been
worse. This time it only affected departing
flights. That kind of trouble could affect air
planes in flight in the future. NEC has re-
portedly said that it didn’t report the trou-
ble to the ministry, assuming that the prob-
lem was not a serious one. But I wonder
how the company reached that decision. [
urge them to take a strict approach when it
comes to aviation safety and to thoroughly
review their operations for improvements.”

R



Design Productivity Crisis
Internet Security

e Microsoft's Passport bug leaves 200 million
users vulnerable

— Passport accounts are central repositories for a
person's online data as well as acting as the single
key for the customer's online accounts.

— The flaw, in Passport's password recovery
mechanism, could have allowed an attacker to
change the password on any account to which the
username is known.

— BBC, CNET news May 8, 2003



Conclusions

o According to Dept of Commerce's National Inst.
of Standards and Technology (NIST), 2002

— Software errors cost US economy $59.5 billion
annually

— An estimated $22.2 billion could be saved by improved
testing infrastructures

— Half of the errors are not found until “downstream” In
the software design process

http://www.nist.gov/public_affairs/releases/n02-10.htm
http://www.nist.gov/director/prog-ofc/report02-3.pdf



Reality in System Design

e Computer systems are getting more complex
and pervasive

— Testing takes more time than designing
— Automation is key to improve time-to-market

e |n safety-critical applications, bugs are
unacceptable

— Mission control, medical devices

e Bugs are expensive
— FDIV In Pentium: 4195835/3145727



Reality in System Verification
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Why Study Computer-Aided
Verification?

e A general approach with applications to
— Hardware/software designs
— Network protocols
— Embedded control systems

e Rapidly increasing industrial interest

e Interesting mathematical foundations
— Modeling, semantics, concurrency theory
— Logic and automata theory
— Algorithms analysis, data structures



Traditional Methods @

» White Box Testing

1. Validate the implementation details with a knowledge of
how the unit Is put together.

2. Check all the basic components work and that they are
connected properly.

3. Give us more confidence that the adder will work under all
circumstances.

Example: Focus on validating an adder unit inside the controller.

White Box Black Box




Traditional Methods @

» Black Box Testing

1. Focus on the external inputs and outputs of the unit under test,
with no knowledge of the internal implementation details.

2. Apply stimulus to primary inputs and the results of the primary
outputs are observed.

3. Validate the specified functions of the unit were implemented
without any interest in how they were implemented.

4. This will exercise the adder but will not check to make sure
that the adder works for all possible inputs

Example: Check to see if the controller can count from 1 to 10.
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Traditional Methods @

Static Testing
Examine the construction of the design

Looks to see If the design structure conforms to some
set of rules

Need to be told what to look for

Dynamic Testing

Apply a set of stimuli

Easy to test complex behavior
Difficult to exhaustively test

It does not show that the design works under all
conditions



Traditional Methods @

Random Testing

Generate random patterns for the inputs

The problems come from not what you know but what
you don't know

You might be able to do this for data inputs, but
control Inputs require specific data or data sequences
to make the device perform any useful operation at all



Formal Verification

e Goal: provide tools and techniques as
design aids to improve reliability

 Formal: correctness claim is a precise
mathematical statement

e Verification: analysis either proves or
disproves the correctness claim



Formal Verification Approach

e Build a of the system
— What are behaviors?
e Write correctness requirement in a
language
— What are behaviors?

e Analysis: check that model satisfies
specification



Why Formal Verification?

e Testing/simulation of
designs/implementations may not reveal error
(e.g., no errors revealed after 2 days)

e Formal verification (=exhaustive testing) of
design provides 100% coverage
(e.g., error revealed within 5 min)

e TOOL support.
e No need of testbench, test vectors



Interactive versus Algorithmic
Verification

e |Interactive analysis
— Analysis reduces to proving a theorem in a
logic
— Uses Interactive theorem prover
— Requires more expertise
— E.g. Theorem Proving



Interactive versus Algorithmic
Verification

e Algorithmic analysis
— Analysis is performed by an algorithm (tool)

— Analysis gives counterexamples for
debugging

— Typically requires exhaustive search of
state space

— Limited by high computational complexity
— E.g. Model Checking, Equivalence Checking




Theorem Proving @

= Prove that an implementation satisfies a specification
by mathematical reasoning.

= |[mplementation and specification expressed as
formulas in a formal logic .

= Relationship (logical equivalence/ logical implication)
described as a theorem to be proven.

= A proof system:

A set of axioms(facts) and inference(deduction) rules
(simplification, rewriting, induction, etc.)



Theorem Proving @

Some known theorem proving systems:

HOL PVS Lambda
Advantages:

High abstraction and powerful logic expressiveness
Unrestricted applications

Useful for verifying datapath- dominated circuits
Limitations:

Interactive (under user guidance)

Requires expertise for efficient use

Automated for narrow classes of designs



Model Checking

e Term coined by Clarke and Emerson in 1981
to mean checking a finite-state model with
respect to a temporal logic

e Applies generally to automated verification
— Model need not be finite
— Requirements in many different languages

e Provides diagnostic information to debug the
model



Verification Methodology
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Equivalence Checking

» Checks If two circuits are equivalent
— Register-Transfer Level (RTL)
— Gate Level

» Reports differences between the two

o Used after:
— clock tree synthesis
— scan chain insertion
— manual modifications



Equivalence Checking

e Two circuits are functionally equivalent if

they exhibit the

e Combinational Circuits
— For all possible input values

o Sequential Circuits

— For all possible input
sequences

Pi

CL

I

CL

Po




Formal Verification Tools

Protocol: UPPAAL, SGM, Kronos, ...
System Design (UML, ...): visualSTATE
Software: SPIN

Hardware:

— EC: Formality, Tornado

— MC: SMV, FormalCheck, RuleBase, SGM, ...
— TP: PVS, ACL2
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Fle.. | Edit.. | Run.. | Help | SN DESIGN VERIFICATION  Unes:[16 Fn:

£ = 0, 1, ackl, ackl }; .
Sm Yee (LRI ae ! ne B3 "never" (state 0} [printf (" MSC:

chan sender =[1] of { byte };
chan receiver=[1] of { byte };

Message Sequence Chart

Line 54

line 6£3 "pan_in" (stz

i proctype Sender ()
{ byte any;

agaln:

da Save in:

sender?ackl -» hreak
sendec?any /* lost */
tineout f* retransmit +/
fi
od;
do
o receiverImsgl;
if
sender?ackl -» break
sender?any /* lost */
. timeout /* retransmit +/
fi

od;
goto again

¥

proctype Receiver ()

byte any;

again:
do
o receivertmsgl -» senderlackl; break
: receiver?msgl - sender!ack0
o oreceiver?any /* lost */
od;

PO:
do

4 o receivertmsgl -> senderlack; break

bin/spin -X p -v -g -1 -5 -r -t -j0 p=

Verification Dutput

jwarning: for p.o. reduction to he valid the never claim must he stutter-closed
(never claims generated from LTL formulae are stutter-closed)
pan: acceptance cycle (at depth 53)
pan: wrote pan_in. trail
(Spin Version 3.1.3 -- 16 March 1998)
Warning: Search not completed
+ Partial Order Reduction

Full statespace search for:
never-clain
assertion wiolations (if within scope of claim)
acceptance  cycles (fairness disahled)
invalid endstates (disabled by never-claim)

State-vector 32 hyte, depth reached 67, errors: 1
35 states, stored (41 visited)

£ states, matched m;.;:
47 transitions (= visited+matched) e 1§
1 stonic steps T
hash conflicts: 0 (resolved) S
(max size 2°19 states)
2,542  memory usage (Mbyte)
Smaller | Larger | Save in: msc.ps | Close | _| Preserve

Save in: |p123.0ut Clear Close | | P ¥

NIdS



1421 machines

11102 transitions

2981 inputs

2667 outputs

3204 local states

Declare state sp.: 10™M476

Train Simulator

P
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HW Verlflcatlon Tools

Supplier Tool Name Class of Tool DL Design Level
COMMERCIAL TOOLS
Chrystalis Design Verifier | Equiv. Checking VHDL/Verilog | RTL/Gate
Synopsys Formality Equiv. Checking VHDL/Verilog | RTL/Gate
Cadence Affirma Equiv. Checking VHDL/Verilog | RTL/Gate
Compass VFormal Equiv. Checking VHDL/Verilog | RTL/Gate
Verysys Tornado Equiv. Checking VHDL/Verilog | RTL/Gate
Abstract Hardware Ltd. | Checkoff-E Equiv. Checking VHDL/Verilog | RTL/Gate
IBM BoolsEye Equiv. Checking VHDL/Verilog | RTL/Gate
Cadence FormalCheck Model Checking VHDL/Verilog | RTL
Abstract Hardware Ltd. | Checkoff-M Model Checking VHDL/Verilog | RTL/Gate
| IBM RuleBase Model Checking VHDL RTL
Abstract Hardware Ltd. | Lambda Theorem Proving VHDL/Verilog | RTL/Gate
PUBLIC DOMAIN TOOLS
CMU SMV Model Checking own language RTL
Cadence Cadence SMV | Model Checking Verilog RTL
UC Berkeley VIS Model/Equ. Check. | Verilog RTL/Gate
Stanford U. Murphy Model Checking own language | RTL
Cambridge U. HOL Theorem Proving | (SML) universal
SRI PVS Theorem Proving (LISP) universal
UT Austin/CLI ACL2 Theorem Proving (LISP) universal




Hardware Verification

e Fits well in design flow
— Designs in VHDL, Verilog
— Simulation, synthesis, and verification
— Used as a debugging tool
e Who Is using It?
— Design teams: Lucent, Intel, IBM, ...
— CAD tool vendors: Cadence, Synopsis
— Commercial model checkers: FormalCheck



Software Verification

e Software
— High-level modeling not common
— Applications: protocols, telecommunications
— Languages: ESTEREL, UML

e Recent trend: integrate model checking In
programming analysis tools
— Applied directly to source code
— Main challenge: extracting model from code

— Sample projects: SLAM (Microsoft), Feaver (Bell
Labs)



Limitations

Appropriate for control-intensive
applications

Decidability and complexity remains an
obstacle
Falsification rather than verification

— Model, and not system, is verified

— Only stated requirements are checked

Finding suitable abstraction requires
expertise



‘State Explosion’ Problem

M1 Azl - 5. M2

b C <3 4
M1 x M2

( 1,a| : : / 2,b 1,.c 2,c
- /ﬁ)ji% >
L
3,a 4,a 3,b / \’ 4.b \ 3,c 4.c
All combinations = exponential in no. of comp(\?\




Model Checking

temporal logic spec

. outputs
inputs

no + counterexample
p /1
g \

finite-state
model



Linear temporal logic (LTL)

A logical notation that allows to:
— specify relations in time
— conveniently express finite control properties

 Temporal operators

-Gp “henceforth p”
—Fp “eventually p”
—Xp “p at the next time”

—pUq “p until "




Types of Temporal Properties

o Safety (nothing bad happens)
G ~(ackl & ack2) “mutual exclusion”
G (req = (reg W ack)) “req must hold until ack”

e Liveness (something good happens)

G (req =2 F ack) “If req, eventually ack”

e Failrness (something good keeps happening)

GF req - GF ack “If infinitely often req,
Infinitely often ack”



Example: Traffic Light Controller

e Guarantee no collisions
e Guarantee eventual service



Controller Program

module main(N_SENSE,S SENSE,E SENSE,
N _GO,S GO,E GO);
input N SENSE, S SENSE, E. SENSE;
output N GO, S_GO, E GO;
reg NS LOCK, EW LOCK, N REQ, S REQ, E REQ;

/[* set request bits when sense is high */

always begin if (IN_REQ & N_SENSE) N REQ =1, end
always beginif (IS REQ &S SENSE) S REQ =1; end
always begin if '{E_REQ & E. SENSE) E. REQ =1; end



Example continued...

/* controller for North light */
always begin
If (N_REQ)
begin
wait ('lEW_LOCK);
NS LOCK=1; N GO =1;
wait (IN_SENSE);
If (IS_GO) NS _LOCK =0;
N GO =0; N REQ =0;
end
end

[* South light is similar . . . */



Example code, cont...

[* Controller for East light */

always begin
If (E_REQ)
begin
EW LOCK =1;
wait (INS_LOCK);
E GO =1,
wait ('E_SENSE);
EW LOCK=0;E_ GO =0; E REQ =0;
end
end



Specifications in temporal logic

« Safety (no collisions)
G ~(E_Go & (N _Go|S Go))

o Liveness
G (~N_Go & N_Sense -> F N_Go);
G (~S _Go &S Sense->FS _Go);
G (~E_Go & E_Sense -> F E_Go);

e Fairness constraints
GF ~(N_Go & N_Sense);
GF ~(S_Go & S _Sense);
GF ~(E_Go & E_Sense);

[* assume each sensor off infinitely often */



Counterexample

« East and North lights on at same time...

E Go [

E Req /. :

E_Sense 4 A glalrlr?ehii?noeeé (I)igt?ttgoes
NS Lock Lo i\ off.

N : S takes priority and
N_Req 4 resets NS_Lock
N_Sense /. A 4 \

S Go Lo\

S Req /. \

S_Sense IR




Fixing the error

e Don’t allow N light to go on while
south light is going off.

always begin
if (N_REQ)
begin
wait (lEW_LOCK & (S_GO & !S_SENSE));
NS LOCK=1; N GO =1;
wait (IN_SENSE);
if (!S_GO) NS_LOCK =0;
N GO =0; N REQ =0;
end
end



Another counterexample

e North traffic I1s never served...

E Go
E_Req
E _Sense
NS Lock
N _Go
N_Req
N_Sense
S _Go
S _Req
S_Sense

/

\

/

JJL)

N and S lights go
off at same time

Neither resets lock

Last state repeats
forever




Fixing the liveness error

 When N light goes off, test whether S light
IS also going off, and If so reset lock.

always begin
if (N_REQ)
begin
wait ('EW_LOCK & (S_GO & !S _SENSE));
NS LOCK=1;N GO =1;
wait ('N_SENSE);
if (1S_GO |!S_SENSE) NS_LOCK = 0;
N GO =0; N REQ =0;
end
end



All properties verified

e Guarantee no collisions
« Guarantee service assuming fairness

o Computational resources used:

— 57 states searched
— 0.1 CPU seconds



Computation tree logic (CTL)

 Branching time model Ok
e Path quantifiers o
\
— A = “for all future paths” O/ G C
~ P
— E = “for some future path” HE O\
o Example: AF p = “inevitably p” O

« Every operator has a path quantifier
— AG AF p instead of GF p



Difference between CTL and LTL

e Think of CTL formulas as approximations to LTL
— AG EFp Isweakerthan GFp

CO_.‘ Good for finding bugs...
P

— AF AG p Isstrongerthan FGp

C’ D Q Good for verifying...
o CTL formulas easier to verify

So, use CTL when it applies...



CTL model checking algorithm
 Example: AF p = “inevitably p”

. 3
> >

Complexity
linear in size of model (FSM)
linear in size of specification formula

Note: general LTL problem is exponential in formula size



Specifying using m—automata
« An automaton accepting infinite sequences G (p->Fq)
m@ X
L A
— Finite set of states (2with Initial state)

— Transitions labeled with Boolean conditions
— Set of accepting states

Interpretation:
A run is accepting if it visits an accepting state infinitely often
» Language = set of sequences with accepting runs



Verifying using m—automata

e Construct parallel product of model and
automaton

« Search for “bad cycles”

— Very similar algorithm to temporal logic model
checking

o Complexity (deterministic automaton)
— Linear in model size
— Linear in number of automaton states
— Complexity in number of acceptance conditions varies



Automata vs. Temporal Logic

e Tableau procedure
— LTL formulas can be translated into equivalent automata
— Translation is exponential

e -automata are strictly more expressive than LTL

Example: P
m@ “p at even times”

D

.
o LTL with “auxiliary” variables = m-automata

Example: where:
G (even ->p) init(even) :=1;
next(even) := ~even;



Overview of Topics

Introduction to model checking

System modeling and logic specification
— Automata, reactive modules, temporal logics

Analysis technigques
—  Explicit/Symbolic model checking
—  Bounded model checking (BMC) using Boolean
satisfiability (SAT)
Model checker implementation techniques
—  State-space reduction techniques
—  Compositional, assume-guarantee reasoning

Advanced issues
—  Prioritized and urgent systems

—  Coverage analysis for model checking
—  Control/Program synthesis (optional)
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