
Computer-Aided Verification
Introduction

Pao-Ann Hsiung
National Chung Cheng University

Contents

• Case Studies
– Therac-25 system software bugs
– Ariane 501 software bug
– Mars Climate Orbiter, Mars Polar Lander
– Pentium FDIV bug
– The Sleipner A Oil Platform
– USS Yorktown

• Motivation for CAV
• Introduction to Formal Verification
• Introduction to Model Checking

Therac-25

1985 ~ 1987

AECL Development History

• Therac-6: 6 MeV device,
– Produced in early 1970’s
– Designed with substantial hardware safety systems and

minimal software control
– Long history of safe use in radiation therapy

• Therac-20: 20 MeV dual-mode device
– Derived from Therac-6 with minimal hardware changes,

enhanced software control
• Therac-25: 25 MeV dual-mode device

– Redesigned hardware to incorporate significant
software control, extended Therac-6 software

Therac-25

• Medical linear accelerator
– Used to zap tumors with high energy beams.

• Electron beams for shallow tissue or x-ray photons
for deeper tissue.

• Eleven Therac-25s were installed:
– Six in Canada
– Five in the United States

• Developed by Atomic Energy Commission
Limited (AECL).

Therac-25

• Improvements over Therac-20:
– Uses new “double pass” technique to accelerate

electrons.
– Machine itself takes up less space.

• Other differences from the Therac-20:
– Software now coupled to the rest of the system

and responsible for safety checks.
• Hardware safety interlocks removed.

– “Easier to use.”

Therac-25 Turntable

Counterweight

Field Light Mirror

Beam Flattener
(X-ray Mode)

Scan Magnet
(Electron Mode)

Turntable

Accident History

• June 1985, Overdose (shoulder, arm damaged)
– Technician informed overdose is impossible

• July 1985, Overdose (hip destroyed)
– AECL identifies possible position sensor fault

• Dec 1985, Overdose (burns)
• March 1986, Overdose (fatality)

– “Malfunction 54”
– Sensor reads underdosage
– AECL finds no electrical faults, claims no previous

incidents

Accident History (cont.)

• April 1986, Overdose (fatality)
– Hospital staff identify race condition
– FDA, CHPB begin inquiries

• January 1987, Overdose (burns)
– FDA, CHPB recall device

• July 1987, Equipment repairs Approved
• November 1988, Final Safety Report

What Happened?

• Six patients were delivered severe
overdoses of radiation between 1985 and
1987.
– Four of these patients died.

• Why?
– The turntable was in the wrong position.
– Patients were receiving x-rays without beam-

scattering (光散射).

What would cause that to happen?

• Race conditions.
– Several different race condition bugs.

• Overflow error.
– The turntable position was not checked every 256th

time the “Class3” variable is incremented.
• No hardware safety interlocks.
• Wrong information on the console.
• Non-descriptive error messages.

– “Malfunction 54”
– “H-tilt”

• User-override-able error modes.

Cost of the Bug

• To users (patients):
– Four deaths, two other serious injuries.

• To developers (AECL):
– One lawsuit

• Settled out of court

– Time/money to investigate and fix the bugs
• To product owners (11 hospitals):

– System downtime

Source of the Bug

• Incompetent engineering.
– Design
– Troubleshooting

• Virtually no testing of the software.
– The safety analysis excluded the software!
– No usability testing.

Bug Classifications

• Classification(s)
– Race Condition (System Level bug)
– Overflow error
– User Interface

• Were the bugs related?
– No.

Testing That Would Have Found
These Bugs…

• Design Review
• System level testing
• Usability Testing

• Cost of testing… worth it?
– Yes. It was irresponsible and unethical to not

thoroughly test this system.

Sources
• Leveson, N., Turner, C. S., An Investigation of the Therac-25

Accidents. IEEE Computer, Vol. 26, No. 7, July 1993, pp. 18-41.
http://courses.cs.vt.edu/~cs3604/lib/Therac_25/Therac_1.html
– Information for this article was largely obtained from primary sources

including official FDA documents and internal memos, lawsuit
depositions, letters, and various other sources that are not publicly
available.

Nancy Leveson Clark S. Turner

The authors:

Ariane 501

1996

Ariane 501

• On 4 June 1996, the maiden flight of the Ariane 5
launcher ended in a failure.

• Only about 40 seconds after initiation of the flight
sequence, at an altitude of about 3700 m, the
launcher veered off its flight path, broke up and
exploded.

• Investigation report by Mr Jean-Marie Luton, ESA
Director General and Mr Alain Bensoussan,
CNES Chairman
– ESA-CNES Press Release of 10 June 1996

Ariane 501 Failure Report

• Nominal behavior of the launcher up to H0 + 36
seconds;

• Simultaneous failure of the two inertial reference
systems;

• Swivelling into the extreme position of the nozzles
(尾噴管) of the two solid boosters (助推器) and,
slightly later, of the Vulcain engine, causing the
launcher to veer abruptly;

• Self-destruction of the launcher correctly triggered
by rupture of the electrical links between the solid
boosters and the core stage.

Sequence of Events on Ariane 501

• At 36.7 seconds after H0 (approx. 30 seconds after lift-off) the computer
within the back-up inertial reference system, which was working on stand-
by for guidance and attitude control, became inoperative. This was caused
by an internal variable related to the horizontal velocity of the launcher
exceeding a limit which existed in the software of this computer.

• Approx. 0.05 seconds later the active inertial reference system, identical to
the back-up system in hardware and software, failed for the same reason.
Since the back-up inertial system was already inoperative, correct
guidance and attitude information could no longer be obtained and loss of
the mission was inevitable.

• As a result of its failure, the active inertial reference system transmitted
essentially diagnostic information to the launcher's main computer, where
it was interpreted as flight data and used for flight control calculations.

Sequence of Events on Ariane 501

• On the basis of those calculations the main computer
commanded the booster nozzles, and somewhat later the
main engine nozzle also, to make a large correction for an
attitude deviation (偏航) that had not occurred.

• A rapid change of attitude occurred which caused the
launcher to disintegrate at 39 seconds after H0 due to
aerodynamic forces (空氣動力).

• Destruction was automatically initiated upon disintegration,
as designed, at an altitude of 4 km and a distance of 1 km
from the launch pad.

Post-Flight Analysis (1/4)

• Inertial reference system of Ariane 5 is same as in Ariane 4
• In Ariane 4

– Used before launch
– For realignment of system in case of late hold in countdown

• In Ariane 5
– No use!!!
– Retained for commonality reasons
– Operates for 40 seconds after lift-off

• Horizontal velocity variable
– Decided not to prevent overflow of values
– Did not analyze which values would the variable have after lift-off

Post-Flight Analysis (2/4)

• In Ariane 4
– During first 40 seconds of flight

• No value overflow possible for the horizontal
velocity variable

• In Ariane 5
– High initial acceleration
– Horizontal velocity is FIVE times more rapid

than Ariane 4
• Horizontal velocity variable value overflow

occurred within 40 seconds!!!

Post-Flight Analysis (3/4)

• In the review process
– Limitations of alignment software not fully

analyzed
– Possible implications of allowing it to continue

to function during flight were not realized
• In the specification and test plans

– Ariane 5 trajectory data were not included
• Not tested under simulated Ariane 5 flight

conditions
• Design error was not discovered

Post-Flight Analysis (4/4)

• In overall system simulation
– Decided to use simulated output of inertial

reference system, not the system itself or its
detailed simulation

– Could have included entire inertial reference
system in overall system simulation

• In post-flight simulations
– Software in inertial reference system +

actual trajectory of Ariane 501 flight
– Faithfully reproduced the chain of events leading

to the failure of inertial reference systems

Mars Climate Orbiter

1998 ~ 1999

Mars Climate Orbiter

• Launched December
1998

• Arrived at Mars 10
months later

• Slowing to enter a
polar orbit in
September 1999

• Flew to close to the
planet’s surface and
was lost

Mars Climate Orbiter

• “The prime contractor for the mission,
Lockheed Martin, measured the thruster (推
沖器) firings in pounds even though NASA
had requested metric measurements. That
sent the Climate Orbiter in too low, where
the $125-million spacecraft burned up or
broke apart in Mars' atmosphere.”

http://www4.cnn.com/TECH/space/9911/10/orbiter.03/#3

Mars Climate Orbiter
• Wow!

• And whilst all this was occurring the Mars Polar Lander
was on its way to the red planet

• “That incident has prompted some 11th hour
considerations about how to safely fly the Polar Lander.
“Everybody really wants to make sure that all the issues
have been looked at”, says Karen McBride, a member of
the UCLA Mars Polar Lander science team.”

http://www4.cnn.com/TECH/space/9911/10/orbiter.03/#3

Mars Polar Lander

1999

Mars Polar Lander
• Launched January 3, 1999
• Two hours prior to

reaching its Mars orbit
insertion point on
December 3, 1999, the
spacecraft reported that all
systems were good to go
for orbit insertion

• There was no further
contact

• US120,000,000

Mars Polar Lander

• “The most likely cause of the lander’s failure,
investigators decided, was that a spurious sensor
signal associated with the craft’s legs falsely
indicated that the craft had touched down when in
fact it was some 130-feet (40 meters) above the
surface. This caused the descent engines to shut
down prematurely and the lander to free fall out of
the Martian sky.”

http://www.space.com/businesstechnology/technology/mpl_software_crash_000331.html

Mars Polar Lander

• Spurious signals – hard to test
– By the way – this is an example of the type of

requirement that might be covered in the
external interfaces section (range of allowable
input etc)

• But surely there had to be a better way to
test for touch-down than vibrations in the
legs

The Sleipner A Oil Platform

1991

The Sleipner A Oil Platform
• Norwegian Oil company’s

platform in the North Sea
• “When [it] sank in August

1991, the crash caused a
seismic event registering
3.0 on the Richter scale,
and left nothing but a pile
of debris at 220m of
depth.”

• The failure involved a
total economic loss of
about $700 million.”

http://www.ima.umn.edu/~arnold/disasters/sleipner.html

The Sleipner A Oil Platform

• Long accident investigation
• Traced the problem back to an incorrect entry in

the Nastran finite element model used to design
the concrete base. The concrete walls had been
made too thin.

• When the model was corrected and rerun on the
actual structure it predicted failure at 65m

• Failure had occurred at 62 m

The Pentium FDIV Bug

1994

The Pentium FDIV Bug

• A programming error in a for loop led to 5
of the cells of a look-up table being not
downloaded to the chip

• Chip was burned with the error
• Sometimes (4195835 / 3145727) *

3145727 – 4195835 =-192.00 and similar
errors

• On older c1994 chips (Pentium 90)
http://www.mathworks.com/company/pentium/index.shtml

The Pentium FDIV Bug

• 4195833.0 <= x <= 4195836.4
• 3145725.7 <= y <= 3145728.4

The correct values all
would round to 1.3338
and the incorrect values
all would round to 1.3337,
an error in the 5th
significant digit.

Look-up Table

USS Yorktown

1998

USS Yorktown
• The Yorktown lost control

of its propulsion system
because its computers
were unable to divide by
the number zero, the
memo said. The
Yorktown’s Standard
Monitoring Control
System administrator
entered zero into the data
field for the Remote Data
Base Manager program.

• The ship was completely
disabled for several hours

USS Yorktown

• This is such a dumb bug there is little need to
comment!

• All input data should be checked for validity
• If you have a zero divide risk then trap it
• Particularly if it might bring down an entire

warship
• And, even if a zero divide gets through, how

robust is a system where a single user input out of
range error can crash an entire ship?

Patriot

1991

Patriot

• On February 25, 1991,
during the Gulf War, an
American Patriot Missile
battery in Dharan, Saudi
Arabia, failed to intercept
an incoming Iraqi Scud
missile. The Scud struck
an American Army
barracks and killed 28
soldiers.

Patriot
“The range gate's prediction of where the Scud will next appear is a function
of the Scud's known velocity and the time of the last radar detection. Velocity
is a real number that can be expressed as a whole number and a decimal (e.g.,
3750.2563...miles per hour). Time is kept continuously by the system's internal
clock in tenths of seconds but is expressed as an integer or whole number (e.g.,
32, 33, 34...). The longer the system has been running, the larger the number
representing time. To predict where the Scud will next appear, both time and
velocity must be expressed as real numbers. Because of the way the Patriot
computer performs its calculations and the fact that its registers are only 24
bits long, the conversion of time from an integer to a real number cannot be
any more precise than 24 bits. This conversion results in a loss of precision
causing a less accurate time calculation. The effect of this inaccuracy on the
range gate's calculation is directly proportional to the target's velocity and
the length of the system has been running. Consequently, performing the
conversion after the Patriot has been running continuously for extended
periods causes the range gate to shift away from the center of the target,
making it less likely that the target, in this case a Scud, will be successfully
intercepted.”

Government Accounting Office Report http://www.fas.org/spp/starwars/gao/im92026.htm

Patriot

• This bug is typical of a requirements deficiency
caused by reuse

• Patriot was originally an anti-aircraft (防空)
system designed to remain “up” for short periods
of time and to track slow (~mach 1-2) targets

• It was moved into a missile defence (反飛彈) role
where it now had to be on station for many days
and to track much faster targets

Design Productivity Crisis
Hardware

Design Productivity Crisis
Software

Design Productivity Crisis
Internet Security

• Microsoft's Passport bug leaves 200 million
users vulnerable
– Passport accounts are central repositories for a

person's online data as well as acting as the single
key for the customer's online accounts.

– The flaw, in Passport's password recovery
mechanism, could have allowed an attacker to
change the password on any account to which the
username is known.

– BBC, CNET news May 8, 2003

Conclusions

• According to Dept of Commerce's National Inst.
of Standards and Technology (NIST), 2002
– Software errors cost US economy $59.5 billion

annually
– An estimated $22.2 billion could be saved by improved

testing infrastructures
– Half of the errors are not found until “downstream” in

the software design process

http://www.nist.gov/public_affairs/releases/n02-10.htm
http://www.nist.gov/director/prog-ofc/report02-3.pdf

Reality in System Design

• Computer systems are getting more complex
and pervasive
– Testing takes more time than designing
– Automation is key to improve time-to-market

• In safety-critical applications, bugs are
unacceptable
– Mission control, medical devices

• Bugs are expensive
– FDIV in Pentium: 4195835/3145727

Reality in System Verification

Design Cost per Hgh-end IC in Million US$

0

5

10

15

20

25

2M in
350nm

5M in
250nm

20M in
180nm

40M in
130nm

80M in
90nm

Logic Gates

Verif ication Architecture Physical Design Validation

IBS Inc, Nov 2002

Growth must be curtailed
Unpredictable

Verification
65%

Design
35%

Expensive

Why Study Computer-Aided
Verification?

• A general approach with applications to
– Hardware/software designs
– Network protocols
– Embedded control systems

• Rapidly increasing industrial interest
• Interesting mathematical foundations

– Modeling, semantics, concurrency theory
– Logic and automata theory
– Algorithms analysis, data structures

White Box Testing
1. Validate the implementation details with a knowledge of

how the unit is put together.
2. Check all the basic components work and that they are

connected properly.
3. Give us more confidence that the adder will work under all

circumstances.
Example: Focus on validating an adder unit inside the controller.

Traditional Methods

Black Box Testing
1. Focus on the external inputs and outputs of the unit under test,

with no knowledge of the internal implementation details.
2. Apply stimulus to primary inputs and the results of the primary

outputs are observed.
3. Validate the specified functions of the unit were implemented

without any interest in how they were implemented.
4. This will exercise the adder but will not check to make sure

that the adder works for all possible inputs

Example: Check to see if the controller can count from 1 to 10.

Traditional Methods

Static Testing
1. Examine the construction of the design
2. Looks to see if the design structure conforms to some

set of rules
3. Need to be told what to look for

Dynamic Testing
1. Apply a set of stimuli
2. Easy to test complex behavior
3. Difficult to exhaustively test
4. It does not show that the design works under all

conditions

Traditional Methods

Random Testing
1. Generate random patterns for the inputs
2. The problems come from not what you know but what

you don't know
3. You might be able to do this for data inputs, but

control inputs require specific data or data sequences
to make the device perform any useful operation at all

Traditional Methods

Formal Verification

• Goal: provide tools and techniques as
design aids to improve reliability

• Formal: correctness claim is a precise
mathematical statement

• Verification: analysis either proves or
disproves the correctness claim

Formal Verification Approach

• Build a model of the system
– What are possible behaviors?

• Write correctness requirement in a
specification language
– What are desirable behaviors?

• Analysis: check that model satisfies
specification

Why Formal Verification?
• Testing/simulation of

designs/implementations may not reveal error
(e.g., no errors revealed after 2 days)

• Formal verification (=exhaustive testing) of
design provides 100% coverage
(e.g., error revealed within 5 min).

• TOOL support.
• No need of testbench, test vectors

Interactive versus Algorithmic
Verification

• Interactive analysis
– Analysis reduces to proving a theorem in a

logic
– Uses interactive theorem prover
– Requires more expertise
– E.g. Theorem Proving

Interactive versus Algorithmic
Verification

• Algorithmic analysis
– Analysis is performed by an algorithm (tool)
– Analysis gives counterexamples for

debugging
– Typically requires exhaustive search of

state space
– Limited by high computational complexity
– E.g. Model Checking, Equivalence Checking

Theorem Proving
Prove that an implementation satisfies a specification
by mathematical reasoning.
Implementation and specification expressed as
formulas in a formal logic .
Relationship (logical equivalence/ logical implication)
described as a theorem to be proven.
A proof system:
A set of axioms(facts) and inference(deduction) rules
(simplification, rewriting, induction, etc.)

Some known theorem proving systems:
HOL PVS Lambda
Advantages:
High abstraction and powerful logic expressiveness
Unrestricted applications
Useful for verifying datapath- dominated circuits
Limitations:
Interactive (under user guidance)
Requires expertise for efficient use
Automated for narrow classes of designs

Theorem Proving

Model Checking

• Term coined by Clarke and Emerson in 1981
to mean checking a finite-state model with
respect to a temporal logic

• Applies generally to automated verification
– Model need not be finite
– Requirements in many different languages

• Provides diagnostic information to debug the
model

Verification Methodology
ABSTRACT MODEL SPECIFICATION

COUNTER-EXAMPLE

VERIFIER

YES

DONE

REFINE MODIFY CHECK ANOTEHR
PROPERTY

Equivalence Checking
• Checks if two circuits are equivalent

– Register-Transfer Level (RTL)
– Gate Level

• Reports differences between the two
• Used after:

– clock tree synthesis
– scan chain insertion
– manual modifications

Equivalence Checking
• Two circuits are functionally equivalent if

they exhibit the same behavior

• Combinational Circuits
– For all possible input values

• Sequential Circuits
– For all possible input

sequences

CL

Pi

CL

R

Po

Ps Ns

Formal Verification Tools

• Protocol: UPPAAL, SGM, Kronos, …
• System Design (UML, …): visualSTATE
• Software: SPIN
• Hardware:

– EC: Formality, Tornado
– MC: SMV, FormalCheck, RuleBase, SGM, …
– TP: PVS, ACL2

U
PPA

A
L

visualSTATE

• Hierarchical state
systems

• Flat state systems
• Multiple and inter-

related state
machines

• Supports UML
notation

• Device driver access

VVS
w Baan Visualstate, DTU (CIT project)

SPIN

Train Simulator
1421 machines
11102 transitions
2981 inputs
2667 outputs
3204 local states
Declare state sp.: 10^476

BUGS ?

VVS
visualSTATE

Our techniuqes has reduced verific
ation

time with several orders of magnitude

(ex 14 days to 6 sec)

HW Verification Tools

Hardware Verification

• Fits well in design flow
– Designs in VHDL, Verilog
– Simulation, synthesis, and verification
– Used as a debugging tool

• Who is using it?
– Design teams: Lucent, Intel, IBM, …
– CAD tool vendors: Cadence, Synopsis
– Commercial model checkers: FormalCheck

Software Verification

• Software
– High-level modeling not common
– Applications: protocols, telecommunications
– Languages: ESTEREL, UML

• Recent trend: integrate model checking in
programming analysis tools
– Applied directly to source code
– Main challenge: extracting model from code
– Sample projects: SLAM (Microsoft), Feaver (Bell

Labs)

Limitations

• Appropriate for control-intensive
applications

• Decidability and complexity remains an
obstacle

• Falsification rather than verification
– Model, and not system, is verified
– Only stated requirements are checked

• Finding suitable abstraction requires
expertise

‘State Explosion’ Problem
a

cb

1 2

43

1,a 4,a

3,a 4,a

1,b 2,b

3,b 4,b

1,c 2,c

3,c 4,c

All combinations = exponential in no. of components

M1 M2

M1 x M2

Provably theoretical

intractable

Model Checking

MC

p
q

yes

no + counterexample

outputs

G(p -> F q)

p

q

temporal logic spec

finite-state
model

inputs

Linear temporal logic (LTL)
• A logical notation that allows to:

– specify relations in time
– conveniently express finite control properties

• Temporal operators
– G p “henceforth p”
– F p “eventually p”
– X p “p at the next time”
– p U q “p until q”

Types of Temporal Properties

• Safety (nothing bad happens)
G ~(ack1 & ack2) “mutual exclusion”
G (req (req W ack)) “req must hold until ack”

• Liveness (something good happens)
G (req F ack) “if req, eventually ack”

• Fairness (something good keeps happening)

GF req GF ack “if infinitely often req,
infinitely often ack”

Example: Traffic Light Controller

• Guarantee no collisions
• Guarantee eventual service

E

S

N

Controller Program
module main(N_SENSE,S_SENSE,E_SENSE,

N_GO,S_GO,E_GO);
input N_SENSE, S_SENSE, E_SENSE;
output N_GO, S_GO, E_GO;
reg NS_LOCK, EW_LOCK, N_REQ, S_REQ, E_REQ;

/* set request bits when sense is high */

always begin if (!N_REQ & N_SENSE) N_REQ = 1; end
always begin if (!S_REQ & S_SENSE) S_REQ = 1; end
always begin if (!E_REQ & E_SENSE) E_REQ = 1; end

Example continued...
/* controller for North light */
always begin

if (N_REQ)
begin
wait (!EW_LOCK);
NS_LOCK = 1; N_GO = 1;
wait (!N_SENSE);

if (!S_GO) NS_LOCK = 0;
N_GO = 0; N_REQ = 0;

end
end

/* South light is similar . . . */

Example code, cont…

/* Controller for East light */
always begin

if (E_REQ)
begin
EW_LOCK = 1;
wait (!NS_LOCK);
E_GO = 1;
wait (!E_SENSE);
EW_LOCK = 0; E_GO = 0; E_REQ = 0;

end
end

Specifications in temporal logic
• Safety (no collisions)

G ~(E_Go & (N_Go | S_Go));
• Liveness

G (~N_Go & N_Sense -> F N_Go);
G (~S_Go & S_Sense -> F S_Go);
G (~E_Go & E_Sense -> F E_Go);

• Fairness constraints
GF ~(N_Go & N_Sense);
GF ~(S_Go & S_Sense);
GF ~(E_Go & E_Sense);

/* assume each sensor off infinitely often */

Counterexample
• East and North lights on at same time...

E_Go

E_Sense
NS_Lock
N_Go
N_Req
N_Sense
S_Go
S_Req
S_Sense

E_Req
N light goes on at
same time S light goes
off.

S takes priority and
resets NS_Lock

N light goes on at
same time S light goes
off.

S takes priority and
resets NS_Lock

Fixing the error

• Don’t allow N light to go on while
south light is going off.

always begin
if (N_REQ)

begin
wait (!EW_LOCK & !(S_GO & !S_SENSE));
NS_LOCK = 1; N_GO = 1;
wait (!N_SENSE);
if (!S_GO) NS_LOCK = 0;

N_GO = 0; N_REQ = 0;
end

end

Another counterexample
• North traffic is never served...
E_Go

E_Sense
NS_Lock
N_Go
N_Req
N_Sense
S_Go
S_Req
S_Sense

E_Req N and S lights go
off at same time

Neither resets lock

Last state repeats
forever

Fixing the liveness error
• When N light goes off, test whether S light

is also going off, and if so reset lock.
always begin

if (N_REQ)
begin

wait (!EW_LOCK & !(S_GO & !S_SENSE));
NS_LOCK = 1; N_GO = 1;
wait (!N_SENSE);
if (!S_GO | !S_SENSE) NS_LOCK = 0;

N_GO = 0; N_REQ = 0;
end

end

All properties verified
• Guarantee no collisions
• Guarantee service assuming fairness
• Computational resources used:

– 57 states searched
– 0.1 CPU seconds

Computation tree logic (CTL)
• Branching time model
• Path quantifiers

– A = “for all future paths”
– E = “for some future path”

• Example: AF p = “inevitably p”
AF p

p

p

p

• Every operator has a path quantifier
– AG AF p instead of GF p

Difference between CTL and LTL
• Think of CTL formulas as approximations to LTL

– AG EF p is weaker than G F p

So, use CTL when it applies...

– AF AG p is stronger than F G p

p
Good for finding bugs...

Good for verifying...p p

• CTL formulas easier to verify

p

• Example: AF p = “inevitably p”
CTL model checking algorithm

Complexity
– linear in size of model (FSM)
– linear in size of specification formula

Note: general LTL problem is exponential in formula size

Specifying using ω−automata
• An automaton accepting infinite sequences

– Finite set of states (with initial state)
– Transitions labeled with Boolean conditions
– Set of accepting states

p
G (p -> F q)

~q

q

~p

Interpretation:
• A run is accepting if it visits an accepting state infinitely often
• Language = set of sequences with accepting runs

Verifying using ω−automata

• Construct parallel product of model and
automaton

• Search for “bad cycles”
– Very similar algorithm to temporal logic model

checking

• Complexity (deterministic automaton)
– Linear in model size
– Linear in number of automaton states
– Complexity in number of acceptance conditions varies

Automata vs. Temporal Logic
• Tableau procedure

– LTL formulas can be translated into equivalent automata
– Translation is exponential

• ω-automata are strictly more expressive than LTL
p

T
• LTL with “auxiliary” variables = ω-automata

“p at even times”
Example:

Example:
G (even -> p)

where:
init(even) := 1;
next(even) := ~even;

Overview of Topics
• Introduction to model checking
• System modeling and logic specification

– Automata, reactive modules, temporal logics
• Analysis techniques

– Explicit/Symbolic model checking
– Bounded model checking (BMC) using Boolean

satisfiability (SAT)
• Model checker implementation techniques

– State-space reduction techniques
– Compositional, assume-guarantee reasoning

• Advanced issues
– Prioritized and urgent systems
– Coverage analysis for model checking
– Control/Program synthesis (optional)

	Computer-Aided Verification�Introduction
	Contents
	Therac-25
	AECL Development History
	Therac-25
	Therac-25
	Therac-25 Turntable
	Accident History
	Accident History (cont.)
	What Happened?
	What would cause that to happen?
	Cost of the Bug
	Source of the Bug
	Bug Classifications
	Testing That Would Have Found These Bugs…
	Sources
	Ariane 501
	Ariane 501
	Ariane 501 Failure Report
	Sequence of Events on Ariane 501
	Sequence of Events on Ariane 501
	Post-Flight Analysis (1/4)
	Post-Flight Analysis (2/4)
	Post-Flight Analysis (3/4)
	Post-Flight Analysis (4/4)
	Mars Climate Orbiter
	Mars Climate Orbiter
	Mars Climate Orbiter
	Mars Climate Orbiter
	Mars Polar Lander
	Mars Polar Lander
	Mars Polar Lander
	Mars Polar Lander
	The Sleipner A Oil Platform
	The Sleipner A Oil Platform
	The Sleipner A Oil Platform
	The Pentium FDIV Bug
	The Pentium FDIV Bug
	The Pentium FDIV Bug
	Look-up Table
	USS Yorktown
	USS Yorktown
	USS Yorktown
	Patriot
	Patriot
	Patriot
	Patriot
	Design Productivity Crisis�Hardware
	Design Productivity Crisis�Software
	Design Productivity Crisis�Internet Security
	Conclusions
	Reality in System Design
	Reality in System Verification
	Why Study Computer-Aided Verification?
	Traditional Methods
	Traditional Methods
	Traditional Methods
	Traditional Methods
	Formal Verification
	Formal Verification Approach
	Why Formal Verification?
	Interactive versus Algorithmic Verification
	Interactive versus Algorithmic Verification
	Theorem Proving
	Theorem Proving
	Model Checking
	Verification Methodology
	Equivalence Checking
	Equivalence Checking
	Formal Verification Tools
	Train Simulator
	HW Verification Tools
	Hardware Verification
	Software Verification
	Limitations
	‘State Explosion’ Problem
	Model Checking
	Linear temporal logic (LTL)
	Types of Temporal Properties
	Example: Traffic Light Controller
	Controller Program
	Example continued...
	Example code, cont…
	Specifications in temporal logic
	Counterexample
	Fixing the error
	Another counterexample
	Fixing the liveness error
	All properties verified
	Computation tree logic (CTL)
	Difference between CTL and LTL
	CTL model checking algorithm
	Specifying using w-automata
	Verifying using w-automata
	Automata vs. Temporal Logic
	Overview of Topics

