

Computer-Aided Verification 計算機輔助驗證 (Spring 2006)

熊博安 國立中正大學資訊工程研究所 <u>http://www.cs.ccu.edu.tw/~pahsiung/courses/cav/</u> <u>pahsiung@cs.ccu.edu.tw</u> (05)2720411 ext. 33119

Course Information

<u>Theory + Practice</u>

- Theory: formal specification, modeling, verification
- Practice: tool use, algorithm implementation, etc.
- Formal more than informal Verification
 - <u>Semi-formal: Verification + Simulation</u>
- Tools:
 - Model checkers: SGM, SMV, SPIN, FormalCheck, ...
 - Simulators: Modelsim, SystemC
- Target Systems:
 - Software, Hardware, Protocols, Abstract Specifications, ...
 - Real-Time Systems, Embedded Systems, HW-SW SoC, ...

Who should take this course?

- Interested in <u>FORMALLY VERIFYING</u> system correctness
- Interested in <u>PRACTICALLY</u> <u>IMPLEMENTING</u> verification theories
- ◆ MUST: C or C++ programming & tracing
- ♦ Not scared of <u>THEORY!</u>
- ♦ Love using <u>TOOLS!!</u>

Who should NOT take this course?

- Only wants course credits
- Does not like research
- Does not like projects and labs
- Does not like using tools
- Does not like formal theory
- Not creative (lack of new ideas)
- Yawns and goes to sleep when someone is talking about Finite State Machines!

Course Syllabus & Schedule

Contents	Week
 Introduction to CAV 	1, 2
 Introduction to Model Checking 	3
 System Model & Logic Specification 	4, 5
 Explicit/Symbolic Model Checking 	6, 7, 8
Mid-Term Exam	9
♦ BMC, SAT	10
 Assume-Guarantee Reasoning 	11, 12
 Priority and Urgency Verification 	13
 Coverage Analysis 	14
Paper Presentations	15
Project Results Presentations	16
 Final Exam 	17 9 8-

Reference Book

(圖書館有)

 Edmund M. Clarke, Orna Grumberg, and Doron A. Peled, "Model Checking," MIT Press, 1999.

Verification Tool

 SGM Model Checker, Pao-Ann Hsiung and Farn Wang, <u>http://www.cs.ccu.edu.tw/~pahsiung/sgm/</u>

🖃 State Graph Manipulators (SGM v1.2) 👘 🗖								
File Graph Op	otions Merge Re	duce Verify Ex	amples				Window	Help
File Graph Or	otions Merge Re A[2] 4 modes 5 transitions A[2]							
				View	Reset Free	Rename Print	Save Close	
CWD: /homes/rfsm	nl/eric/work/sgm2/ex	amples/sgm2-eg	File: fischer.s	Log: fischer.log	Se	mantics: Loose	Verbosity	/: -2

Deadlines and Grading

Work	Deadline	Grade
Labs & Assignments	2 weeks due	25%
Project Proposal	March 29, 2006	N/A
Project Work	April, May 2006	N/A
Paper Selection	April 19, 2006	N/A
Mid-Term Exam	April 19, 2006	20%
Paper Presentation	June 7, 2006	15%
Project Report & Present	June 14, 2006	20%
Final Exam	June 21, 2006	20%

Term Project

Form a team of 2 persons at most Proposal (Deadline: March 29) – Topic, summary, members, goals Presentation (Date: June 14) $-10 \sim 15$ slides $-15 \sim 20$ minutes talk -5 minutes Q/A Report (Deadline: June 14) - See course web page for details

Project Topic (1)

- Verify a communication protocol (Bluetooth, 802.11, ATM, WAP, etc.)
 - Protocol modeled by extended timed automata (ETA)
 - Protocol requirements specified in CTL
 - Verification results

Project Topic (2)

- Verify a piece of real-time embedded software (RTES)
 - Software and hardware modeled by ETA
 - RTES requirements specified in CTL
 - Verification results

Project Topic (3)

- Verify a System-on-a-Chip (SoC)
 - SoC modeled by ETA
 - SoC design requirements specified in CTL
 - Verification results

Project Topic (4)

- Develop & Implement your own analysis technique in SGM (BONUS: 40%)
 - Algorithm for your reduction technique
 - Proof of correctness for your algorithm
 - Implementation of your algorithm in SGM
 - Application examples
 - Reduction results

Project Topic (5)

- Develop a counterexample graphical viewer (signal timing diagram, MSC, UML sequence diagram, ...) (BONUS: 40%)
 - Representation modeling (how is a counterexample represented by your selected view from above)
 - Proof of equivalence (counterexample == represented view)
 - Implementation in SGM
 - Application examples

Project Topic (6)

- Develop an interface in SGM for Safecharts (BONUS: 50%)
 - Input syntax for Safecharts
 - Semantics storing for Safecharts
 - Translation from Safecharts to extended timed automata

Project Topic (7)

- Develop an interface in SGM for UML
 State Machines (formerly called Statecharts)
 (BONUS: 40%)
 - Input syntax for State Machines
 - Semantics storing for State Machines
 - Translation from State Machines to extended timed automata

• SMV • SPIN

- Model check some simple protocols, systems,

software programs, or hardware circuits on

• RED

• SGM

Assignments

- Individual work
- Due 2 weeks after announcement
- Written homeworks
 - CTL specification
 - System model
 - Model transformation

Paper Reading

- Individual work
- Paper Selection (Deadline: April 19)
 - CAV related papers
 - Model checking
 - Formal verification
 - Theory, Practice, Tools, Case Studies
 - Conferences: CAV, CONCUR, FORTE, FME, LICS, STOCS, ...
 - Journal: IEEE trans, ACM trans, FMSD, ...
- Presentation (Date: June 7)
 - 15 ~ 20 slides
 - $-15 \sim 20$ minutes talk
 - 5 minutes Q/A
- Written Report (Deadline: June 7)
 - 1 page summary (don't copy abstract!)

ENJOY THE COURSE (as much as you can!)