Computer-Aided Verification
計算機輔助驗證
(Spring 2006)
熊博安
國立中正大學資訊工程研究所
http://www.cs.ccu.edu.tw/~pahsiung/courses/cav/
pahsiung@cs.ccu.edu.tw
(05)2720411 ext. 33119
Class: EA-205
Office: EA-512
Course Information

♦ **Theory + Practice**
 - **Theory**: formal specification, modeling, verification
 - **Practice**: tool use, algorithm implementation, etc.

♦ **Formal more than informal Verification**
 - **Semi-formal**: Verification + Simulation

♦ **Tools:**
 - **Model checkers**: SGM, SMV, SPIN, FormalCheck, …
 - **Simulators**: Modelsim, SystemC

♦ **Target Systems:**
 - Software, Hardware, Protocols, Abstract Specifications, …
Who should take this course?

♦ Interested in **FORMALLY VERIFYING** system correctness

♦ Interested in **PRACTICALLY IMPLEMENTING** verification theories

♦ MUST: C or C++ **programming & tracing**

♦ Not scared of **THEORY**!

♦ Love using **TOOLS!!**
Who should NOT take this course?

♦ Only wants course credits
♦ Does not like research
♦ Does not like projects and labs
♦ Does not like using tools
♦ Does not like formal theory
♦ Not creative (lack of new ideas)
♦ Yawns and goes to sleep when someone is talking about Finite State Machines!
Course Syllabus & Schedule

Contents

♦ Introduction to CAV 1, 2
♦ Introduction to Model Checking 3
♦ System Model & Logic Specification 4, 5
♦ Explicit/Symbolic Model Checking 6, 7, 8
♦ Mid-Term Exam 9
♦ BMC, SAT 10
♦ Assume-Guarantee Reasoning 11, 12
♦ Priority and Urgency Verification 13
♦ Coverage Analysis 14
♦ Paper Presentations 15
♦ Project Results Presentations 16
♦ Final Exam 17
Reference Book

(圖書館有)
Verification Tool

- SGM Model Checker, Pao-Ann Hsiung and Farn Wang,
 http://www.cs.ccu.edu.tw/~pahsiung/sgm/
Deadlines and Grading

<table>
<thead>
<tr>
<th>Work</th>
<th>Deadline</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Labs & Assignments</td>
<td>2 weeks due</td>
<td>25%</td>
</tr>
<tr>
<td>Project Proposal</td>
<td>March 29, 2006</td>
<td>N/A</td>
</tr>
<tr>
<td>Project Work</td>
<td>April, May 2006</td>
<td>N/A</td>
</tr>
<tr>
<td>Paper Selection</td>
<td>April 19, 2006</td>
<td>N/A</td>
</tr>
<tr>
<td>Mid-Term Exam</td>
<td>April 19, 2006</td>
<td>20%</td>
</tr>
<tr>
<td>Paper Presentation</td>
<td>June 7, 2006</td>
<td>15%</td>
</tr>
<tr>
<td>Project Report & Present</td>
<td>June 14, 2006</td>
<td>20%</td>
</tr>
<tr>
<td>Final Exam</td>
<td>June 21, 2006</td>
<td>20%</td>
</tr>
</tbody>
</table>
Term Project

♦ Form a team of 2 persons at most
♦ Proposal (Deadline: March 29)
 – Topic, summary, members, goals
♦ Presentation (Date: June 14)
 – 10 ~ 15 slides
 – 15 ~ 20 minutes talk
 – 5 minutes Q/A
♦ Report (Deadline: June 14)
 – See course web page for details
Project Topic (1)

- Verify a communication protocol (Bluetooth, 802.11, ATM, WAP, etc.)
 - Protocol modeled by extended timed automata (ETA)
 - Protocol requirements specified in CTL
 - Verification results
Project Topic (2)

- Verify a piece of real-time embedded software (RTES)
 - Software and hardware modeled by ETA
 - RTES requirements specified in CTL
 - Verification results
Project Topic (3)

- Verify a System-on-a-Chip (SoC)
 - SoC modeled by ETA
 - SoC design requirements specified in CTL
 - Verification results
Project Topic (4)

♦ Develop & Implement your own analysis technique in SGM (BONUS: 40%)
 – Algorithm for your reduction technique
 – Proof of correctness for your algorithm
 – Implementation of your algorithm in SGM
 – Application examples
 – Reduction results
Project Topic (5)

- Develop a counterexample graphical viewer (signal timing diagram, MSC, UML sequence diagram, ...) (BONUS: 40%)
 - Representation modeling (how is a counterexample represented by your selected view from above)
 - Proof of equivalence (counterexample == represented view)
 - Implementation in SGM
 - Application examples
Project Topic (6)

- Develop an interface in SGM for Safecharts (BONUS: 50%)
 - Input syntax for Safecharts
 - Semantics storing for Safecharts
 - Translation from Safecharts to extended timed automata
Project Topic (7)

♦ Develop an interface in SGM for UML State Machines (formerly called Statecharts) (BONUS: 40%)
 – Input syntax for State Machines
 – Semantics storing for State Machines
 – Translation from State Machines to extended timed automata
Labs

♦ Must be done individually

♦ Topics
 - Model check some simple protocols, systems, software programs, or hardware circuits on
 • SGM
 • SMV
 • SPIN
 • RED
Assignments

♦ Individual work
♦ Due 2 weeks after announcement
♦ Written homeworks
 – CTL specification
 – System model
 – Model transformation
Paper Reading

♦ Individual work
♦ Paper Selection (Deadline: April 19)
 – CAV related papers
 • Model checking
 • Formal verification
 • Theory, Practice, Tools, Case Studies
 • Conferences: CAV, CONCUR, FORTE, FME, LICS, STOCS, …
 • Journal: IEEE trans, ACM trans, FMSD, …
♦ Presentation (Date: June 7)
 – 15 ~ 20 slides
 – 15 ~ 20 minutes talk
 – 5 minutes Q/A
♦ Written Report (Deadline: June 7)
 – 1 page summary (don’t copy abstract!)
ENJOY THE COURSE (as much as you can!)