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Introduction

aWhat is an operating system (OS)?
`To provide problem-oriented abstractions of the 

underlying physical resources on a single node and 
present them through the system call interface

aNetwork OS
`Built-in networking capability
`Multiple system images, one per node
`Retain autonomy in managing resources on its own 

node
`Users have to be involved to schedule processes 

across the nodes
`E.g. UNIX, Windows NT 
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Introduction (con’t)

aDistributed OS
`One single system image
`OS has control over all the nodes in the system
`May transparently locate new process at whatever 

node suits its scheduling policies such as load 
balancing

`Not available in general use
⌧Users have much invested in application software
⌧Users prefer to have a degree of autonomy for their machines

aMiddleware + OS
`Provide balance between autonomy and network-

transparent resource access on the other
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The OS Layer

a OS: runs at a node
`Has a kernel and associated user-level services, e.g. libraries, 

for abstraction of local hardware resources
aMiddleware: runs on a variety of OS-hardware 

combinations at nodes of a distributed system
`Utilizes a combination of local resources to implement its 

mechanisms for remote invocations between objects or 
processes at the nodes

a Kernel, server, and client
`A kernel provides services for local processes to access local 

resources
`A server provides services for processes to access resources, 

locally and remotely
`A client calls for services to access resources local and remote

resources
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The OS Layer (con’t)

aRequirements for kernels and servers
`Encapsulation: provide service interface to resources
`Protection: provide protection to keep resources from 

illegitimate accesses
`Concurrent processing: achieve concurrency 

transparency, such as concurrently sharing and 
accessing resources

aTasks needed for clients calling for services
`Communication: requests and results have to be 

passed over a network or within a computer
`Scheduling: When an operation is invoked, its 

processing must be scheduled within the kernel or 
server
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Figure 6.2
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Core OS Components

aProcess manager: handles the creation and 
operations upon processes

aThread manager: thread creation, 
synchronization and scheduling

aCommunication manager: communication 
between threads attached to different processes 
on the same computer

aMemory manager: management of physical and 
virtual memory

aSupervisor: dispatching of interrupts, system call 
traps and other exceptions
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Protection

aIllegitimate access 
`examples

⌧Unauthorized operations on resources
⌧To sidestep the exported operations

`Need hardware support and a kernel to protect 
modules from one another at the level of individual 
invocations, regardless of the language in which they 
are written

aKernel
`A program that is distinguished by the facts that it is 

always runs and its code is executed with complete 
access privileges for the physical resources on its 
host computer
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Kernel

aExecutes in privileged mode; arranges other 
processes execute in user mode

aSet up address spaces to protect itself and other 
processes from accesses of an aberrant 
process

aA process can transfer from a user-level 
address space to the kernel’s address space via 
an exception such as an interrupt or system call 
trap
`When the TRAP instruction is executed, as with any 

type of exception, the hardware forces the processor 
to execute a kernel-supplied handler function, in 
order that no process may gain illicit control of the
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Process and Thread

aA process consists of an execution environment, 
the unit of resource management
`An address space
`Activity (thread) synchronization and communication 

resources such as semaphores and communication 
interfaces

`Higher-level resources such as open files and 
windows

aThread is an activity, execution
`Threads within same process can share resources of 

the execution environment
`An execution environment provides protection from 

threads outside it
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Creation of Processes

aChoice of process host
`Policy: loads, architectures, resources, etc.

aCreation of a new execution environment
`Initialize the address space with statically defined 

format
`Initialize the address space with respect to an 

existing execution environment, e.g. fork in UNIX
⌧Copy-on-write
⌧Initially, page frames are shared between page tables and write-

protected at hardware level
⌧Any process’s attempt to write will issue page fault
⌧Kernel’s page handler will replicate the frame with a new frame
⌧Update page table and these two frames are writable at hardware 

level for two processes respectively
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Figure 6.4
Copy-on-write
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Threads

aWhy multi-threads?
`Performance

⌧Throughput example: 2 ms processing time, 8 ms I/O access
⌧Single thread and two threads on one CPU, two threads on two CPUs, and 

three or four threads on two CPUs

a Server threading architectures
`Fixed threads

⌧Too few or many threads, high level switching between I/O and worker

`Thread-per-request
⌧Threads do not contend for a shared queue, one thread per request
⌧Overhead of thread creation and destruction

`Thread-per-connection or thread-per-object
⌧Low overhead
⌧Load unbalanced; some workers have many requests while others have 

none
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Figure 6.5
Client and server with threads
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Figure 6.6
Alternative server threading architectures (see also Figure 6.5)
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Multi-Threaded vs. Multiple Processes

aThread creation and management within an 
existing process are cheaper than processes

aSwitching between different threads within the 
same process is cheaper than switching 
between different processes
`Context switching

aResources sharing can be achieved more 
efficiently between threads than between 
different processes

aBut, threads within a process are not protected 
from one another
`synchronization
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Figure 6.7
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Threads Implementation

aKernel threads
`Managed by kernel

aUser-level threads
`Implemented as libraries and linked to applications
`Only processes, not threads, can be recognized by 

kernel 
`Con:

⌧Threads within a process cannot take advantage of a 
multiprocessor

⌧A thread blocked may block entire process and all threads within it
⌧Threads within different processes cannot scheduled by a single 

scheme

`Pro:
⌧Thread operations are less costly
⌧May have application-specific scheduling policies
⌧More threads can be supported at user level than kernel level
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Hierarchical Scheduling

aEnable user-level code to provide scheduling 
hints to kernel’s thread scheduler
`Thread operations occur at user-level
`Can take advantage of a multiprocessor
`Application-specific scheduling policies
`But the entire process may be blocked if a thread 

within it is blocked
aExample: FastThreads
`Processes notify the kernel about processor 

requirements
`The kernel notify the process about its thread status 

and let the process to make a scheduling decision
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Figure 6.10
Scheduler activations
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Performance

aInvocation costs
`Domain transition

⌧Several system calls (context switch)

`Communication across networks
⌧Fixed overhead: network latency, measured by null procedure
⌧Data

• Data transmission across network
• Marshalling
• Copying (across user-kernel, protocol layer, kernel buffer and 

network interface)
• Packet initialization (add headers, trailers, and checksum)

⌧Wait for ack

`Thread scheduling and switching
⌧Server thread is scheduled
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Figure 6.11
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Figure 6.12
RPC delay against parameter size

1000 2000

RPC delay

Requested dat
size (bytes)

Packet
size

0

Instructor’s Guide for  Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design   Edn. 4   
© Pearson Education 2005 

Lightweight RPC (LRPC)

aTo improve invocation within a computer
aUse shared memory to reduce data copying
aLet client to enter server’s execution 

environment and call the procedure
`Client trap to kernel via server’s interface
`Kernel check its validity to find valid server procedure
`Kernel issues a context switch to server’s execution 

environment
`Execute the server procedure
`Thus no need to block client thread and create a 

server thread to handle, which is needed for remote 
invocation
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Figure 6.13
A lightweight remote procedure call
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Asynchronous Operation

a To defeat high latencies
a Concurrent invocations

`To make concurrent invocations (asynchronous), instead of 
serialized invocations (synchronous)

a Asynchronous invocations: CORBA oneway
`Servers place status of invocation in promise
`Clients make separate to collect the results

a Persistent asynchronous invocations: QRPC
`Network may be disconnected
`QRPC queues invocation requests when disconnected and 

dispatch them to servers when connected
`It may queues results in servers until the client reconnects and

collects them
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Figure 6.14
Times for serialized and concurrent invocations
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OS Architecture

aOS = kernel + servers running on user-level
aMonolithic kernels and microkernels
`The differences are primarily in the decision as to 

what functionality belongs in the kernel and what is 
left to server processes that can be dynamically 
loaded to run on top of it
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Figure 6.15
Monolithic kernel and microkernel
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Monolithic Kernel

aMassive and in the order of megabytes of code
aCoded in a non-modular way
aAltering any individual software component to 

adapt it to changing requirements is difficult
aIt can contain some server processes running in 

its address space, such as file servers and 
networking

aService invocation is efficient
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Microkernel

aProvides only the most basic abstraction
aSystem services are provided by user-level 

servers that are dynamically loaded when 
needed

aClients access these services via the kernel
aPortability:
`Can provide more than one system call interface–

more than one operating system; able to provide the 
binary emulation of other OS

aThe micorkernel lies between hardware layer 
and a layer consisting major system 
components called subsystems
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Figure 6.16
The role of the microkernel
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Microkernel (con’t)

aTo improve performance, middleware may use 
microkernel directly; otherwise, it uses the 
subsystems

aEasy to develop
`Kernel is small, and easy to keep out of bugs
`Modules can be easily debugged since their crashes 

will not hurt kernel
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Some Hybrid Approaches

aMach and Chorus
`Allow to dynamically load servers into kernel or user 

address space
`Develop at user-level, execute at kernel-level for 

performance
aSPIN
`The kernel and all dynamically loaded modules 

execute in a single address space
`All are written in a type-safe language (Modula-3), so 

they are mutually protected; i.e. protection domain 
within the kernel space are established using 
protected name spaces
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Some Hybrid Approaches (con’t)

aL4
`Dynamically loaded modules execute at user-level
`It optimizes the interprocess communication to 

improve the performance
aExokernel
`Employ user-level libraries instead of user-level 

servers to supply functional extensions
`All these functionality – even a file system– to be 

linked into applications


