
1

Chapter 6:
Operating System support

From Coulouris, Dollimore and Kindberg
Distributed Systems:

Concepts and Design
Edition 4, © Pearson Education 2005

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

Introduction

aWhat is an operating system (OS)?
`To provide problem-oriented abstractions of the

underlying physical resources on a single node and
present them through the system call interface

aNetwork OS
`Built-in networking capability
`Multiple system images, one per node
`Retain autonomy in managing resources on its own

node
`Users have to be involved to schedule processes

across the nodes
`E.g. UNIX, Windows NT

2

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

Introduction (con’t)

aDistributed OS
`One single system image
`OS has control over all the nodes in the system
`May transparently locate new process at whatever

node suits its scheduling policies such as load
balancing

`Not available in general use
⌧Users have much invested in application software
⌧Users prefer to have a degree of autonomy for their machines

aMiddleware + OS
`Provide balance between autonomy and network-

transparent resource access on the other

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

The OS Layer

a OS: runs at a node
`Has a kernel and associated user-level services, e.g. libraries,

for abstraction of local hardware resources
aMiddleware: runs on a variety of OS-hardware

combinations at nodes of a distributed system
`Utilizes a combination of local resources to implement its

mechanisms for remote invocations between objects or
processes at the nodes

a Kernel, server, and client
`A kernel provides services for local processes to access local

resources
`A server provides services for processes to access resources,

locally and remotely
`A client calls for services to access resources local and remote

resources

3

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

Figure 6.1
System layers

Applications, services

Computer &

Platform

Middleware

OS: kernel,
libraries &
servers

network hardware

OS1

Computer &
network hardware

Node 1 Node 2

Processes, threads,
communication, ...

OS2
Processes, threads,
communication, ...

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

The OS Layer (con’t)

aRequirements for kernels and servers
`Encapsulation: provide service interface to resources
`Protection: provide protection to keep resources from

illegitimate accesses
`Concurrent processing: achieve concurrency

transparency, such as concurrently sharing and
accessing resources

aTasks needed for clients calling for services
`Communication: requests and results have to be

passed over a network or within a computer
`Scheduling: When an operation is invoked, its

processing must be scheduled within the kernel or
server

4

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

Figure 6.2
Core OS functionality

Communication
manager

Thread manager Memory manager

Supervisor

Process manager

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

Core OS Components

aProcess manager: handles the creation and
operations upon processes

aThread manager: thread creation,
synchronization and scheduling

aCommunication manager: communication
between threads attached to different processes
on the same computer

aMemory manager: management of physical and
virtual memory

aSupervisor: dispatching of interrupts, system call
traps and other exceptions

5

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

Protection

aIllegitimate access
`examples

⌧Unauthorized operations on resources
⌧To sidestep the exported operations

`Need hardware support and a kernel to protect
modules from one another at the level of individual
invocations, regardless of the language in which they
are written

aKernel
`A program that is distinguished by the facts that it is

always runs and its code is executed with complete
access privileges for the physical resources on its
host computer

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

Kernel

aExecutes in privileged mode; arranges other
processes execute in user mode

aSet up address spaces to protect itself and other
processes from accesses of an aberrant
process

aA process can transfer from a user-level
address space to the kernel’s address space via
an exception such as an interrupt or system call
trap
`When the TRAP instruction is executed, as with any

type of exception, the hardware forces the processor
to execute a kernel-supplied handler function, in
order that no process may gain illicit control of the

6

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

Process and Thread

aA process consists of an execution environment,
the unit of resource management
`An address space
`Activity (thread) synchronization and communication

resources such as semaphores and communication
interfaces

`Higher-level resources such as open files and
windows

aThread is an activity, execution
`Threads within same process can share resources of

the execution environment
`An execution environment provides protection from

threads outside it

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

Figure 6.3
Address space

Stack

Text

Heap

Auxiliary
regions

0

2N

7

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

Creation of Processes

aChoice of process host
`Policy: loads, architectures, resources, etc.

aCreation of a new execution environment
`Initialize the address space with statically defined

format
`Initialize the address space with respect to an

existing execution environment, e.g. fork in UNIX
⌧Copy-on-write
⌧Initially, page frames are shared between page tables and write-

protected at hardware level
⌧Any process’s attempt to write will issue page fault
⌧Kernel’s page handler will replicate the frame with a new frame
⌧Update page table and these two frames are writable at hardware

level for two processes respectively

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

Figure 6.4
Copy-on-write

a) Before write b) After write

Shared
frame

A's page
table

B's page
table

Process A’s address space Process B’s address space

Kernel

RA RB

RB copied
from RA

8

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

Threads

aWhy multi-threads?
`Performance

⌧Throughput example: 2 ms processing time, 8 ms I/O access
⌧Single thread and two threads on one CPU, two threads on two CPUs, and

three or four threads on two CPUs

a Server threading architectures
`Fixed threads

⌧Too few or many threads, high level switching between I/O and worker

`Thread-per-request
⌧Threads do not contend for a shared queue, one thread per request
⌧Overhead of thread creation and destruction

`Thread-per-connection or thread-per-object
⌧Low overhead
⌧Load unbalanced; some workers have many requests while others have

none

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

Figure 6.5
Client and server with threads

Server

N threads

Input-output

Client

Thread 2 makes

T1

Thread 1

requests to server

generates
results

Requests

Receipt &
queuing

9

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

Figure 6.6
Alternative server threading architectures (see also Figure 6.5)

a. Thread-per-request b. Thread-per-connection c. Thread-per-object

remote

workers

I/O remoteremote I/O

per-connection threads per-object threads

objects objects objects

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

Multi-Threaded vs. Multiple Processes

aThread creation and management within an
existing process are cheaper than processes

aSwitching between different threads within the
same process is cheaper than switching
between different processes
`Context switching

aResources sharing can be achieved more
efficiently between threads than between
different processes

aBut, threads within a process are not protected
from one another
`synchronization

10

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

Figure 6.7
State associated with execution environments and threads

Execution environment Thread
Address space tables Saved processor registers
Communication interfaces, open filesPriority and execution state (such as

BLOCKED)
Semaphores, other synchronization
objects

Software interrupt handling information

List of thread identifiers Execution environment identifier
Pages of address space resident in memory; hardware cache entries

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

Threads Implementation

aKernel threads
`Managed by kernel

aUser-level threads
`Implemented as libraries and linked to applications
`Only processes, not threads, can be recognized by

kernel
`Con:

⌧Threads within a process cannot take advantage of a
multiprocessor

⌧A thread blocked may block entire process and all threads within it
⌧Threads within different processes cannot scheduled by a single

scheme

`Pro:
⌧Thread operations are less costly
⌧May have application-specific scheduling policies
⌧More threads can be supported at user level than kernel level

11

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

Hierarchical Scheduling

aEnable user-level code to provide scheduling
hints to kernel’s thread scheduler
`Thread operations occur at user-level
`Can take advantage of a multiprocessor
`Application-specific scheduling policies
`But the entire process may be blocked if a thread

within it is blocked
aExample: FastThreads
`Processes notify the kernel about processor

requirements
`The kernel notify the process about its thread status

and let the process to make a scheduling decision

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

Figure 6.10
Scheduler activations

Process
A

Process
B

Virtual processors Kernel

Process

Kernel

P idle

P needed

P added

SA blocked

SA unblocked

SA preempted

A. Assignment of virtual processors
 to processes

B. Events between user-level scheduler & kerne
 Key: P = processor; SA = scheduler activation

12

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

Performance

aInvocation costs
`Domain transition

⌧Several system calls (context switch)

`Communication across networks
⌧Fixed overhead: network latency, measured by null procedure
⌧Data

• Data transmission across network
• Marshalling
• Copying (across user-kernel, protocol layer, kernel buffer and

network interface)
• Packet initialization (add headers, trailers, and checksum)

⌧Wait for ack

`Thread scheduling and switching
⌧Server thread is scheduled

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

Figure 6.11
Invocations between address spaces

Control transfer via
trap instruction

User Kernel

Thread

User 1 User 2

Control transfer via
privileged instructions

Thread 1 Thread 2

Protection domain
boundary

(a) System call

(b) RPC/RMI (within one computer)

Kernel

(c) RPC/RMI (between computers)

User 1 User 2

Thread 1 Network Thread 2

Kernel 2Kernel 1

13

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

Figure 6.12
RPC delay against parameter size

1000 2000

RPC delay

Requested dat
size (bytes)

Packet
size

0

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

Lightweight RPC (LRPC)

aTo improve invocation within a computer
aUse shared memory to reduce data copying
aLet client to enter server’s execution

environment and call the procedure
`Client trap to kernel via server’s interface
`Kernel check its validity to find valid server procedure
`Kernel issues a context switch to server’s execution

environment
`Execute the server procedure
`Thus no need to block client thread and create a

server thread to handle, which is needed for remote
invocation

14

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

Figure 6.13
A lightweight remote procedure call

1. Copy args

2. Trap to Kernel

4. Execute procedure
and copy results

Client

User stub

Server

Kernel

stub

3. Upcall 5. Return (trap)

A
 A stack

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

Asynchronous Operation

a To defeat high latencies
a Concurrent invocations

`To make concurrent invocations (asynchronous), instead of
serialized invocations (synchronous)

a Asynchronous invocations: CORBA oneway
`Servers place status of invocation in promise
`Clients make separate to collect the results

a Persistent asynchronous invocations: QRPC
`Network may be disconnected
`QRPC queues invocation requests when disconnected and

dispatch them to servers when connected
`It may queues results in servers until the client reconnects and

collects them

15

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

Figure 6.14
Times for serialized and concurrent invocations

Client Server

execute request

Send

Receive
unmarshal

marshal

Receive
unmarshal

process results

marshal
Send

process args

marshal
Send

process args

transmission

Receive
unmarshal

process results

execute request

Send

Receive
unmarshal

marshal

marshal
Send

process args

marshal
Send

process args

execute reques

Send

Receive
unmarshal

marshal

execute reques

Send

Receive
unmarshal

marshal
Receive

unmarshal
process results

Receive
unmarshal

process results
time

Client Server

Serialised invocations Concurrent invocations

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

OS Architecture

aOS = kernel + servers running on user-level
aMonolithic kernels and microkernels
`The differences are primarily in the decision as to

what functionality belongs in the kernel and what is
left to server processes that can be dynamically
loaded to run on top of it

16

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

Figure 6.15
Monolithic kernel and microkernel

Monolithic Kernel Microkernel

Server: Dynamically loaded server program:Kernel code and data:

.......

.......

Key:

S4

S1

S1 S2 S3

S2 S3 S4

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

Monolithic Kernel

aMassive and in the order of megabytes of code
aCoded in a non-modular way
aAltering any individual software component to

adapt it to changing requirements is difficult
aIt can contain some server processes running in

its address space, such as file servers and
networking

aService invocation is efficient

17

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

Microkernel

aProvides only the most basic abstraction
aSystem services are provided by user-level

servers that are dynamically loaded when
needed

aClients access these services via the kernel
aPortability:
`Can provide more than one system call interface–

more than one operating system; able to provide the
binary emulation of other OS

aThe micorkernel lies between hardware layer
and a layer consisting major system
components called subsystems

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

Figure 6.16
The role of the microkernel

Middleware

Language
support

subsystem

Language
support

subsystem

OS emulation
subsystem

Microkernel

Hardware

The microkernel supports middleware via subsystems

18

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

Microkernel (con’t)

aTo improve performance, middleware may use
microkernel directly; otherwise, it uses the
subsystems

aEasy to develop
`Kernel is small, and easy to keep out of bugs
`Modules can be easily debugged since their crashes

will not hurt kernel

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

Some Hybrid Approaches

aMach and Chorus
`Allow to dynamically load servers into kernel or user

address space
`Develop at user-level, execute at kernel-level for

performance
aSPIN
`The kernel and all dynamically loaded modules

execute in a single address space
`All are written in a type-safe language (Modula-3), so

they are mutually protected; i.e. protection domain
within the kernel space are established using
protected name spaces

19

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

Some Hybrid Approaches (con’t)

aL4
`Dynamically loaded modules execute at user-level
`It optimizes the interprocess communication to

improve the performance
aExokernel
`Employ user-level libraries instead of user-level

servers to supply functional extensions
`All these functionality – even a file system– to be

linked into applications

