
1

Chapter 6:
Operating System support

From Coulouris, Dollimore and Kindberg
Distributed Systems:

Concepts and Design
Edition 4, © Pearson Education 2005

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

Introduction

What is an operating system (OS)?
To provide problem-oriented abstractions of the
underlying physical resources on a single node and
present them through the system call interface

Network OS
Built-in networking capability
Multiple system images, one per node
Retain autonomy in managing resources on its own
node
Users have to be involved to schedule processes
across the nodes
E.g. UNIX, Windows NT

2

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

Introduction (con’t)

Distributed OS
One single system image
OS has control over all the nodes in the system
May transparently locate new process at whatever
node suits its scheduling policies such as load
balancing
Not available in general use
⌧Users have much invested in application software
⌧Users prefer to have a degree of autonomy for their machines

Middleware + OS
Provide balance between autonomy and network-
transparent resource access on the other

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

The OS Layer

OS: runs at a node
Has a kernel and associated user-level services, e.g. libraries,
for abstraction of local hardware resources

Middleware: runs on a variety of OS-hardware
combinations at nodes of a distributed system

Utilizes a combination of local resources to implement its
mechanisms for remote invocations between objects or
processes at the nodes

Kernel, server, and client
A kernel provides services for local processes to access local
resources
A server provides services for processes to access resources,
locally and remotely
A client calls for services to access resources local and remote
resources

3

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

Figure 6.1
System layers

Applications, services

Computer &

Platform

Middleware

OS: kernel,
libraries &
servers

network hardware

OS1

Computer &
network hardware

Node 1 Node 2

Processes, threads,
communication, ...

OS2
Processes, threads,
communication, ...

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

The OS Layer (con’t)

Requirements for kernels and servers
Encapsulation: provide service interface to resources
Protection: provide protection to keep resources from
illegitimate accesses
Concurrent processing: achieve concurrency
transparency, such as concurrently sharing and
accessing resources

Tasks needed for clients calling for services
Communication: requests and results have to be
passed over a network or within a computer
Scheduling: When an operation is invoked, its
processing must be scheduled within the kernel or
server

4

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

Figure 6.2
Core OS functionality

Communication
manager

Thread manager Memory manager

Supervisor

Process manager

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

Core OS Components

Process manager: handles the creation and
operations upon processes
Thread manager: thread creation,
synchronization and scheduling
Communication manager: communication
between threads attached to different processes
on the same computer
Memory manager: management of physical and
virtual memory
Supervisor: dispatching of interrupts, system call
traps and other exceptions

5

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

Protection

Illegitimate access
examples
⌧Unauthorized operations on resources
⌧To sidestep the exported operations

Need hardware support and a kernel to protect
modules from one another at the level of individual
invocations, regardless of the language in which they
are written

Kernel
A program that is distinguished by the facts that it is
always runs and its code is executed with complete
access privileges for the physical resources on its
host computer

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

Kernel

Executes in privileged mode; arranges other
processes execute in user mode
Set up address spaces to protect itself and other
processes from accesses of an aberrant
process
A process can transfer from a user-level
address space to the kernel’s address space via
an exception such as an interrupt or system call
trap

When the TRAP instruction is executed, as with any
type of exception, the hardware forces the processor
to execute a kernel-supplied handler function, in
order that no process may gain illicit control of the

6

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

Process and Thread

A process consists of an execution environment,
the unit of resource management

An address space
Activity (thread) synchronization and communication
resources such as semaphores and communication
interfaces
Higher-level resources such as open files and
windows

Thread is an activity, execution
Threads within same process can share resources of
the execution environment
An execution environment provides protection from
threads outside it

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

Figure 6.3
Address space

Stack

Text

Heap

Auxiliary
regions

0

2N

7

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

Creation of Processes

Choice of process host
Policy: loads, architectures, resources, etc.

Creation of a new execution environment
Initialize the address space with statically defined
format
Initialize the address space with respect to an
existing execution environment, e.g. fork in UNIX
⌧Copy-on-write
⌧Initially, page frames are shared between page tables and write-

protected at hardware level
⌧Any process’s attempt to write will issue page fault
⌧Kernel’s page handler will replicate the frame with a new frame
⌧Update page table and these two frames are writable at hardware

level for two processes respectively

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

Figure 6.4
Copy-on-write

a) Before write b) After write

Shared
frame

A's page
table

B's page
table

Process A’s address space Process B’s address space

Kernel

RA RB

RB copied
from RA

8

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

Threads

Why multi-threads?
Performance
⌧Throughput example: 2 ms processing time, 8 ms I/O access
⌧Single thread and two threads on one CPU, two threads on two CPUs, and

three or four threads on two CPUs

Server threading architectures
Fixed threads
⌧Too few or many threads, high level switching between I/O and worker

Thread-per-request
⌧Threads do not contend for a shared queue, one thread per request
⌧Overhead of thread creation and destruction

Thread-per-connection or thread-per-object
⌧Low overhead
⌧Load unbalanced; some workers have many requests while others have

none

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

Figure 6.5
Client and server with threads

Server

N threads

Input-output

Client

Thread 2 makes

T1

Thread 1

requests to server

generates
results

Requests

Receipt &
queuing

9

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

Figure 6.6
Alternative server threading architectures (see also Figure 6.5)

a. Thread-per-request b. Thread-per-connection c. Thread-per-object

remote

workers

I/O remoteremote I/O

per-connection threads per-object threads

objects objects objects

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

Multi-Threaded vs. Multiple Processes

Thread creation and management within an
existing process are cheaper than processes
Switching between different threads within the
same process is cheaper than switching
between different processes

Context switching
Resources sharing can be achieved more
efficiently between threads than between
different processes
But, threads within a process are not protected
from one another

synchronization

10

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

Figure 6.7
State associated with execution environments and threads

Execution environment Thread
Address space tables Saved processor registers
Communication interfaces, open filesPriority and execution state (such as

BLOCKED)
Semaphores, other synchronization
objects

Software interrupt handling information

List of thread identifiers Execution environment identifier
Pages of address space resident in memory; hardware cache entries

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

Threads Implementation

Kernel threads
Managed by kernel

User-level threads
Implemented as libraries and linked to applications
Only processes, not threads, can be recognized by
kernel
Con:
⌧Threads within a process cannot take advantage of a

multiprocessor
⌧A thread blocked may block entire process and all threads within it
⌧Threads within different processes cannot scheduled by a single

scheme

Pro:
⌧Thread operations are less costly
⌧May have application-specific scheduling policies
⌧More threads can be supported at user level than kernel level

11

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

Hierarchical Scheduling

Enable user-level code to provide scheduling
hints to kernel’s thread scheduler

Thread operations occur at user-level
Can take advantage of a multiprocessor
Application-specific scheduling policies
But the entire process may be blocked if a thread
within it is blocked

Example: FastThreads
Processes notify the kernel about processor
requirements
The kernel notify the process about its thread status
and let the process to make a scheduling decision

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

Figure 6.10
Scheduler activations

Process
A

Process
B

Virtual processors Kernel

Process

Kernel

P idle

P needed

P added

SA blocked

SA unblocked

SA preempted

A. Assignment of virtual processors
 to processes

B. Events between user-level scheduler & kerne
 Key: P = processor; SA = scheduler activation

12

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

Performance

Invocation costs
Domain transition
⌧Several system calls (context switch)

Communication across networks
⌧Fixed overhead: network latency, measured by null procedure
⌧Data

• Data transmission across network
• Marshalling
• Copying (across user-kernel, protocol layer, kernel buffer and

network interface)
• Packet initialization (add headers, trailers, and checksum)

⌧Wait for ack

Thread scheduling and switching
⌧Server thread is scheduled

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

Figure 6.11
Invocations between address spaces

Control transfer via
trap instruction

User Kernel

Thread

User 1 User 2

Control transfer via
privileged instructions

Thread 1 Thread 2

Protection domain
boundary

(a) System call

(b) RPC/RMI (within one computer)

Kernel

(c) RPC/RMI (between computers)

User 1 User 2

Thread 1 Network Thread 2

Kernel 2Kernel 1

13

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

Figure 6.12
RPC delay against parameter size

1000 2000

RPC delay

Requested dat
size (bytes)

Packet
size

0

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

Lightweight RPC (LRPC)

To improve invocation within a computer
Use shared memory to reduce data copying
Let client to enter server’s execution
environment and call the procedure

Client trap to kernel via server’s interface
Kernel check its validity to find valid server procedure
Kernel issues a context switch to server’s execution
environment
Execute the server procedure
Thus no need to block client thread and create a
server thread to handle, which is needed for remote
invocation

14

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

Figure 6.13
A lightweight remote procedure call

1. Copy args

2. Trap to Kernel

4. Execute procedure
and copy results

Client

User stub

Server

Kernel

stub

3. Upcall 5. Return (trap)

A
 A stack

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

Asynchronous Operation

To defeat high latencies
Concurrent invocations

To make concurrent invocations (asynchronous), instead of
serialized invocations (synchronous)

Asynchronous invocations: CORBA oneway
Servers place status of invocation in promise
Clients make separate to collect the results

Persistent asynchronous invocations: QRPC
Network may be disconnected
QRPC queues invocation requests when disconnected and
dispatch them to servers when connected
It may queues results in servers until the client reconnects and
collects them

15

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

Figure 6.14
Times for serialized and concurrent invocations

Client Server

execute request

Send

Receive
unmarshal

marshal

Receive
unmarshal

process results

marshal
Send

process args

marshal
Send

process args

transmission

Receive
unmarshal

process results

execute request

Send

Receive
unmarshal

marshal

marshal
Send

process args

marshal
Send

process args

execute reques

Send

Receive
unmarshal

marshal

execute reques

Send

Receive
unmarshal

marshal
Receive

unmarshal
process results

Receive
unmarshal

process results
time

Client Server

Serialised invocations Concurrent invocations

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

OS Architecture

OS = kernel + servers running on user-level
Monolithic kernels and microkernels

The differences are primarily in the decision as to
what functionality belongs in the kernel and what is
left to server processes that can be dynamically
loaded to run on top of it

16

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

Figure 6.15
Monolithic kernel and microkernel

Monolithic Kernel Microkernel

Server: Dynamically loaded server program:Kernel code and data:

.......

.......

Key:

S4

S1

S1 S2 S3

S2 S3 S4

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

Monolithic Kernel

Massive and in the order of megabytes of code
Coded in a non-modular way
Altering any individual software component to
adapt it to changing requirements is difficult
It can contain some server processes running in
its address space, such as file servers and
networking
Service invocation is efficient

17

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

Microkernel

Provides only the most basic abstraction
System services are provided by user-level
servers that are dynamically loaded when
needed
Clients access these services via the kernel
Portability:

Can provide more than one system call interface–
more than one operating system; able to provide the
binary emulation of other OS

The micorkernel lies between hardware layer
and a layer consisting major system
components called subsystems

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

Figure 6.16
The role of the microkernel

Middleware

Language
support

subsystem

Language
support

subsystem

OS emulation
subsystem

Microkernel

Hardware

The microkernel supports middleware via subsystems

18

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

Microkernel (con’t)

To improve performance, middleware may use
microkernel directly; otherwise, it uses the
subsystems
Easy to develop

Kernel is small, and easy to keep out of bugs
Modules can be easily debugged since their crashes
will not hurt kernel

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

Some Hybrid Approaches

Mach and Chorus
Allow to dynamically load servers into kernel or user
address space
Develop at user-level, execute at kernel-level for
performance

SPIN
The kernel and all dynamically loaded modules
execute in a single address space
All are written in a type-safe language (Modula-3), so
they are mutually protected; i.e. protection domain
within the kernel space are established using
protected name spaces

19

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

Some Hybrid Approaches (con’t)

L4
Dynamically loaded modules execute at user-level
It optimizes the interprocess communication to
improve the performance

Exokernel
Employ user-level libraries instead of user-level
servers to supply functional extensions
All these functionality – even a file system– to be
linked into applications

