
1

Chapter 6: 
Operating System support

From Coulouris, Dollimore and Kindberg
Distributed Systems: 

Concepts and Design
Edition 4, © Pearson Education 2005

Instructor’s Guide for  Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design   Edn. 4   
© Pearson Education 2005 

Introduction

What is an operating system (OS)?
To provide problem-oriented abstractions of the 
underlying physical resources on a single node and 
present them through the system call interface

Network OS
Built-in networking capability
Multiple system images, one per node
Retain autonomy in managing resources on its own 
node
Users have to be involved to schedule processes 
across the nodes
E.g. UNIX, Windows NT 



2

Instructor’s Guide for  Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design   Edn. 4   
© Pearson Education 2005 

Introduction (con’t)

Distributed OS
One single system image
OS has control over all the nodes in the system
May transparently locate new process at whatever 
node suits its scheduling policies such as load 
balancing
Not available in general use
⌧Users have much invested in application software
⌧Users prefer to have a degree of autonomy for their machines

Middleware + OS
Provide balance between autonomy and network-
transparent resource access on the other

Instructor’s Guide for  Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design   Edn. 4   
© Pearson Education 2005 

The OS Layer

OS: runs at a node
Has a kernel and associated user-level services, e.g. libraries, 
for abstraction of local hardware resources

Middleware: runs on a variety of OS-hardware 
combinations at nodes of a distributed system

Utilizes a combination of local resources to implement its 
mechanisms for remote invocations between objects or 
processes at the nodes

Kernel, server, and client
A kernel provides services for local processes to access local 
resources
A server provides services for processes to access resources, 
locally and remotely
A client calls for services to access resources local and remote
resources
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The OS Layer (con’t)

Requirements for kernels and servers
Encapsulation: provide service interface to resources
Protection: provide protection to keep resources from 
illegitimate accesses
Concurrent processing: achieve concurrency 
transparency, such as concurrently sharing and 
accessing resources

Tasks needed for clients calling for services
Communication: requests and results have to be 
passed over a network or within a computer
Scheduling: When an operation is invoked, its 
processing must be scheduled within the kernel or 
server
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Figure 6.2
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Core OS Components

Process manager: handles the creation and 
operations upon processes
Thread manager: thread creation, 
synchronization and scheduling
Communication manager: communication 
between threads attached to different processes 
on the same computer
Memory manager: management of physical and 
virtual memory
Supervisor: dispatching of interrupts, system call 
traps and other exceptions
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Protection

Illegitimate access 
examples
⌧Unauthorized operations on resources
⌧To sidestep the exported operations

Need hardware support and a kernel to protect 
modules from one another at the level of individual 
invocations, regardless of the language in which they 
are written

Kernel
A program that is distinguished by the facts that it is 
always runs and its code is executed with complete 
access privileges for the physical resources on its 
host computer
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Kernel

Executes in privileged mode; arranges other 
processes execute in user mode
Set up address spaces to protect itself and other 
processes from accesses of an aberrant 
process
A process can transfer from a user-level 
address space to the kernel’s address space via 
an exception such as an interrupt or system call 
trap

When the TRAP instruction is executed, as with any 
type of exception, the hardware forces the processor 
to execute a kernel-supplied handler function, in 
order that no process may gain illicit control of the
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Process and Thread

A process consists of an execution environment, 
the unit of resource management

An address space
Activity (thread) synchronization and communication 
resources such as semaphores and communication 
interfaces
Higher-level resources such as open files and 
windows

Thread is an activity, execution
Threads within same process can share resources of 
the execution environment
An execution environment provides protection from 
threads outside it
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Creation of Processes

Choice of process host
Policy: loads, architectures, resources, etc.

Creation of a new execution environment
Initialize the address space with statically defined 
format
Initialize the address space with respect to an 
existing execution environment, e.g. fork in UNIX
⌧Copy-on-write
⌧Initially, page frames are shared between page tables and write-

protected at hardware level
⌧Any process’s attempt to write will issue page fault
⌧Kernel’s page handler will replicate the frame with a new frame
⌧Update page table and these two frames are writable at hardware 

level for two processes respectively
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Figure 6.4
Copy-on-write
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Threads

Why multi-threads?
Performance
⌧Throughput example: 2 ms processing time, 8 ms I/O access
⌧Single thread and two threads on one CPU, two threads on two CPUs, and 

three or four threads on two CPUs

Server threading architectures
Fixed threads
⌧Too few or many threads, high level switching between I/O and worker

Thread-per-request
⌧Threads do not contend for a shared queue, one thread per request
⌧Overhead of thread creation and destruction

Thread-per-connection or thread-per-object
⌧Low overhead
⌧Load unbalanced; some workers have many requests while others have 

none
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Figure 6.5
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Figure 6.6
Alternative server threading architectures (see also Figure 6.5)
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Multi-Threaded vs. Multiple Processes

Thread creation and management within an 
existing process are cheaper than processes
Switching between different threads within the 
same process is cheaper than switching 
between different processes

Context switching
Resources sharing can be achieved more 
efficiently between threads than between 
different processes
But, threads within a process are not protected 
from one another

synchronization
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Figure 6.7
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Threads Implementation

Kernel threads
Managed by kernel

User-level threads
Implemented as libraries and linked to applications
Only processes, not threads, can be recognized by 
kernel 
Con:
⌧Threads within a process cannot take advantage of a 

multiprocessor
⌧A thread blocked may block entire process and all threads within it
⌧Threads within different processes cannot scheduled by a single 

scheme

Pro:
⌧Thread operations are less costly
⌧May have application-specific scheduling policies
⌧More threads can be supported at user level than kernel level
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Hierarchical Scheduling

Enable user-level code to provide scheduling 
hints to kernel’s thread scheduler

Thread operations occur at user-level
Can take advantage of a multiprocessor
Application-specific scheduling policies
But the entire process may be blocked if a thread 
within it is blocked

Example: FastThreads
Processes notify the kernel about processor 
requirements
The kernel notify the process about its thread status 
and let the process to make a scheduling decision
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Figure 6.10
Scheduler activations
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Performance

Invocation costs
Domain transition
⌧Several system calls (context switch)

Communication across networks
⌧Fixed overhead: network latency, measured by null procedure
⌧Data

• Data transmission across network
• Marshalling
• Copying (across user-kernel, protocol layer, kernel buffer and 

network interface)
• Packet initialization (add headers, trailers, and checksum)

⌧Wait for ack

Thread scheduling and switching
⌧Server thread is scheduled
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Figure 6.11
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Figure 6.12
RPC delay against parameter size
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Lightweight RPC (LRPC)

To improve invocation within a computer
Use shared memory to reduce data copying
Let client to enter server’s execution 
environment and call the procedure

Client trap to kernel via server’s interface
Kernel check its validity to find valid server procedure
Kernel issues a context switch to server’s execution 
environment
Execute the server procedure
Thus no need to block client thread and create a 
server thread to handle, which is needed for remote 
invocation
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Figure 6.13
A lightweight remote procedure call
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Asynchronous Operation

To defeat high latencies
Concurrent invocations

To make concurrent invocations (asynchronous), instead of 
serialized invocations (synchronous)

Asynchronous invocations: CORBA oneway
Servers place status of invocation in promise
Clients make separate to collect the results

Persistent asynchronous invocations: QRPC
Network may be disconnected
QRPC queues invocation requests when disconnected and 
dispatch them to servers when connected
It may queues results in servers until the client reconnects and
collects them
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Figure 6.14
Times for serialized and concurrent invocations
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OS Architecture

OS = kernel + servers running on user-level
Monolithic kernels and microkernels

The differences are primarily in the decision as to 
what functionality belongs in the kernel and what is 
left to server processes that can be dynamically 
loaded to run on top of it
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Figure 6.15
Monolithic kernel and microkernel

Monolithic Kernel Microkernel

Server: Dynamically loaded server program:Kernel  code and data:

.......

.......

Key:

S4

S1 .......

S1 S2 S3

S2 S3 S4

Instructor’s Guide for  Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design   Edn. 4   
© Pearson Education 2005 

Monolithic Kernel

Massive and in the order of megabytes of code
Coded in a non-modular way
Altering any individual software component to 
adapt it to changing requirements is difficult
It can contain some server processes running in 
its address space, such as file servers and 
networking
Service invocation is efficient
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Microkernel

Provides only the most basic abstraction
System services are provided by user-level 
servers that are dynamically loaded when 
needed
Clients access these services via the kernel
Portability:

Can provide more than one system call interface–
more than one operating system; able to provide the 
binary emulation of other OS

The micorkernel lies between hardware layer 
and a layer consisting major system 
components called subsystems
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Figure 6.16
The role of the microkernel
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Microkernel (con’t)

To improve performance, middleware may use 
microkernel directly; otherwise, it uses the 
subsystems
Easy to develop

Kernel is small, and easy to keep out of bugs
Modules can be easily debugged since their crashes 
will not hurt kernel
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Some Hybrid Approaches

Mach and Chorus
Allow to dynamically load servers into kernel or user 
address space
Develop at user-level, execute at kernel-level for 
performance

SPIN
The kernel and all dynamically loaded modules 
execute in a single address space
All are written in a type-safe language (Modula-3), so 
they are mutually protected; i.e. protection domain 
within the kernel space are established using 
protected name spaces
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Some Hybrid Approaches (con’t)

L4
Dynamically loaded modules execute at user-level
It optimizes the interprocess communication to 
improve the performance

Exokernel
Employ user-level libraries instead of user-level 
servers to supply functional extensions
All these functionality – even a file system– to be 
linked into applications


