II.3. Multiple Description Coding for Video Delivery

Prof. Chia-Wen Lin Department of CS National Chung Cheng University 886-5-272-0411 ext. 33120 cwlin@cs.ccu.edu.tw

Introduction

- Multiple description coding (MDC)
 - Encoder generate two or more bitstreams (Descriptions)
 - Receive any of them can reconstruct the video with lower quality
 - Receive all of them can reconstruct the video with full quality

Introduction (Cont.)

- MDC can provide acceptable video quality without retransmission
 - Good for real time application, such as video phone and video conferencing
 - Simplify the network design, feedback and retransmission are burdens, they need more actions in both the server and clients

Introduction (Cont.)

- MDC can cooperate with multiple path transport (MPT)
 - Traffic dispersion and load balancing
 - Avoid congestion problem at hotspots, increase the overall throughput
 - Single description coding will need more complex scheduling scheme than MDC in an MPT environment

Introduction (Cont.)

- Multiple Description coding (MDC) vs. Layered Coding (LC)
 - Layered coding generate the bitstream which can be depart into several layers
 - Contrast to MDC, the layers in LC are with different importance, enhancement layers will be useless if the base layer is not received

MDC: Disadvantages & Goal

- Disadvantage of MDC
 - Lower compression rate than ordinary coder
- Goal of designing MD coder
 - Minimize the redundancy
 - Reconstruct an acceptable video when packet loss (some descriptions lost)

General MD Coder

- Two main design issues with an MD coder
 Mismatch control: mismatch between encoder and
 - decoder cause the drift problems
 - Redundancy allocation: to reduce the mismatch, redundancy is required
- If a coder can dynamically adopt itself
 Can exploit the variety of channel conditions and video statistics

General MD Coder (Cont.) MD coding allows a video decoder to extract meaningful information from a subset of the bitstream

 An encoder produces two descriptions (may be equally important) that are transmitted over two channels

General MD Coder (Cont.)

- The basic framework for MDC
 - Coder creates two descriptions with rate = R_1 and R_2 and send them across two channels
 - Receive two descriptions, central decoder can decode a high-quality video with distortion = D_0
 - Receive only one description, side decoder can decode lower quality video with distortion = $D_{1,1}$ or $D_{1,2}$
 - A balanced design will set $R_1 = R_2$ and $D_{1,1} = D_{1,2} = D_1$

Multiple Description Scalar Quantizer [Vaishampayan 93]

- The input signal x is quantized to yield an integer index l = q(x), where $q(\cdot)$ is a uniform quantizer
- Information about *l* is mapped to a pair of indexes (*i*,*j*) = a(*l*)
- The index *i* is transmitted on channel 1, while the index *j* is transmitted on channel 2
- If information for channel 1 or 2 only is received, the distortion level D_1 or D_2 will be incurred, respectively
- Receiving both information can obtain the full quality
 If only one index is received, it is possible to estimate
- the index / by choosing the central index in the row/column of the received index i or j, respectively
 Has been applied to intra coding of blocks in a DCT-
- Has been applied to intra coding of blocks in a DCTbased image/video coding framework

Multiple-Description Subsampling

- Spatial domain
- Temporal domain
- Frequency domain

Temporal-Domain Subsampling (Video Redundancy Coding in H.263+)

Design of Predictive MDC (Cont.)

- The central distortion depends on $\mathcal Z$ only, and the side distortion depends on both $\mathcal Z$ and $\mathcal M.$
- The total rate R can be expressed as
 R = R^{*}(Z) + ρ(M,Z)

Thus the optimization becomes

 $\min\{(1-p)^2 D_0(Z) + \lambda R'(Z) +$

 $\min[2p(1-p)D_1(Z,M) + \lambda \rho'(Z,M)]$

(2)

Prediction MC Coding

- Predictive coding is popular in today's video coder
- The encoder tracks the state *S*, expects to be present at the decoder bases the predictor *P* upon the state
- In a P-MD decoder, the central and side decoders are each typical predictive decoders
- Depend on which descriptions are received, the decoder has three possible states, but encoder can never know that
- If encoder use the predictor depends on state not available at the decoder, mismatch and error propagation occurs

Table 1 Summary of Predictor Classes	
А	Predictor(s) that introduce no mismatch
В	Single-description predictor; (no prediction inefficiency, but with mismatch)
	Predictor that controls trade-off between

MDC vs. Multiple Path Transport (MPT)

- Errors in MDC
 - Problem: Descriptions of the same frame are both lost
 - This will be same as the frame lost in an ordinary coder
 - Descriptions of the same frame are always transmitted successively
 - Network bursty errors will damage multiple continuous packets
- A huge risk that the descriptions of same frame will be lost
- MPT can be used to solve this problem

MDC vs. Multiple Path Transport (MPT)

- Features of MPT
 - The chance that two paths failure simultaneously will be very low
 - Load balancing: Reduce the congestion problem
 - More network bandwidth then Single Path Transmission (SPT)

MDC vs. Multiple Path Transport (MPT)

- General System Architecture
 - MD coder generate *M* bitstreams
 - Multipath Routing finds K paths from the network
 - Traffic allocator distribute the *M* descriptions among *K* paths
 - Feedback is desirable, but not necessary, many MD coder can work without feedback

MDC vs. Multiple Path Transport (MPT)

- Video streaming in Ad Hoc Networks

 Wireless networks without infrastructure
 Every devices may act as a relay node
- MPT is good for ad hoc networks
 - NIFT IS good for ad hour due to read and
 - Paths may break down due to node movementLinks are unreliable, with high packet loss rate
 - Individual links are able to aggregate to support high bandwidth

S. Mao *et al.*, "Video transport over ad hoc networks: Multistream coding with multipath transport," *IEEE J. Select. Areas Commun.*, vol. 21, pp. 1721–1737, Dec. 2003.

Summary

- Various techniques for MDC are discussed
- Factors that must be considered when designing an MD video coder are addressed
- MDC+MPT is good in improving error resiliency
- A research example about multipath streaming with MDC is presented