Chapter 1

Components, Quantities, and Units

Introduction

• This chapter will give you a preview of the types of things you will study throughout this book
Objectives

• Recognize common electrical components and measuring instruments
• State basic electrical and magnetic quantities and their units
• Use Scientific notation to express quantities
• Use engineering notation and metric prefixes to express large and small quantities
• Convert from one metric-prefixed unit to another

Resistors

• Resistors limit electrical current in a circuit
Capacitors

- Capacitors store electrical charge and are used to block dc and pass ac

Inductors

- Inductors, or coils, are used to store energy in an electromagnetic field
Transformers

- Transformers are used for ac coupling, or to increase/decrease ac voltages

Electronic Instruments
Electronic Instruments

- A DC power supply provides current and voltage to power electronic circuits
- A function generator provides electronic signals for our circuits
- A digital multimeter (DMM) can be used as a voltmeter, ammeter or ohmmeter, depending upon the function selected

Oscilloscope

- The oscilloscope is used for observing and measuring ac voltage signals in a circuit
- Digital storage scopes are able to store waveforms
- Some digital scopes are capable of performing analysis on waveforms
Digital Multimeter

• A digital multimeter (DMM) measures voltage, current or resistance, depending upon the function selected
 – A voltmeter is used to measure voltage across a component or circuit
 – An ammeter is used to measure current through a circuit
 – An ohmmeter is used to measure resistance

Electrical Units

• Letters are used in electronics to represent quantities and units
• The units and symbols are defined by the SI system
 – The term SI is the French abbreviation for System International
Electrical Units

<table>
<thead>
<tr>
<th>QUANTITY</th>
<th>SYMBOL</th>
<th>UNIT</th>
<th>SYMBOL</th>
</tr>
</thead>
<tbody>
<tr>
<td>capacitance</td>
<td>C</td>
<td>farad</td>
<td>F</td>
</tr>
<tr>
<td>charge</td>
<td>Q</td>
<td>coulomb</td>
<td>C</td>
</tr>
<tr>
<td>conductance</td>
<td>G</td>
<td>siemens</td>
<td>S</td>
</tr>
<tr>
<td>current</td>
<td>I</td>
<td>ampere</td>
<td>A</td>
</tr>
<tr>
<td>energy</td>
<td>W</td>
<td>joule</td>
<td>J</td>
</tr>
<tr>
<td>frequency</td>
<td>f</td>
<td>hertz</td>
<td>Hz</td>
</tr>
<tr>
<td>impedance</td>
<td>Z</td>
<td>ohm</td>
<td>Ω</td>
</tr>
<tr>
<td>inductance</td>
<td>L</td>
<td>henry</td>
<td>H</td>
</tr>
<tr>
<td>power</td>
<td>P</td>
<td>watt</td>
<td>W</td>
</tr>
<tr>
<td>reactance</td>
<td>X</td>
<td>ohm</td>
<td>Ω</td>
</tr>
<tr>
<td>resistance</td>
<td>R</td>
<td>ohm</td>
<td>Ω</td>
</tr>
<tr>
<td>voltage</td>
<td>V</td>
<td>volt</td>
<td>V</td>
</tr>
</tbody>
</table>

Magnetic Units

- Letters are also used to represent magnetic quantities and units in the SI system

<table>
<thead>
<tr>
<th>QUANTITY</th>
<th>SYMBOL</th>
<th>UNIT</th>
<th>SYMBOL</th>
</tr>
</thead>
<tbody>
<tr>
<td>flux density</td>
<td>B</td>
<td>tesla</td>
<td>T</td>
</tr>
<tr>
<td>magnetic flux</td>
<td>φ</td>
<td>weber</td>
<td>Wb</td>
</tr>
<tr>
<td>magnetizing force</td>
<td>H</td>
<td>ampere-turns/meter</td>
<td>A/m</td>
</tr>
<tr>
<td>magnetomotive force</td>
<td>F_m</td>
<td>ampere-turn</td>
<td>A t</td>
</tr>
<tr>
<td>permeability</td>
<td>μ</td>
<td>webers/ampere-turns-meter</td>
<td>WN/Atm</td>
</tr>
<tr>
<td>reluctance</td>
<td>R</td>
<td>ampere-turns/weber</td>
<td>A μ/Wb</td>
</tr>
</tbody>
</table>
Scientific Notation

• Scientific notation is a convenient method of expressing large and small numbers
• A quantity is expressed as a number between 1 and 10, and a power of ten

Example:
5000 would be expressed as 5×10^3 in Scientific notation.

Powers of Ten

• The power of ten is expressed as an exponent of the base 10
• Exponent indicates the number of places that the decimal point is moved to the right (positive exponent) or left (negative exponent) to produce the decimal number
Engineering Notation

Engineering notation is similar to Scientific notation, except that engineering notation can have from 1 to 3 digits to the left of the decimal place, and the powers of 10 are multiples of 3.

Metric Prefixes

Metric prefixes are symbols that represent the powers of ten used in Engineering notation.

<table>
<thead>
<tr>
<th>METRIC PREFIX</th>
<th>SYMBOL</th>
<th>POWER OF TEN</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>pico</td>
<td>p</td>
<td>10^{-12}</td>
<td>one-trillionth</td>
</tr>
<tr>
<td>nano</td>
<td>n</td>
<td>10^{-9}</td>
<td>one-billionth</td>
</tr>
<tr>
<td>micro</td>
<td>μ</td>
<td>10^{-6}</td>
<td>one-millionth</td>
</tr>
<tr>
<td>milli</td>
<td>m</td>
<td>10^{-3}</td>
<td>one-thousandth</td>
</tr>
<tr>
<td>kilo</td>
<td>k</td>
<td>10^{3}</td>
<td>one thousand</td>
</tr>
<tr>
<td>mega</td>
<td>M</td>
<td>10^{6}</td>
<td>one million</td>
</tr>
<tr>
<td>giga</td>
<td>G</td>
<td>10^{9}</td>
<td>one billion</td>
</tr>
<tr>
<td>tera</td>
<td>T</td>
<td>10^{12}</td>
<td>one trillion</td>
</tr>
</tbody>
</table>
Example of Metric Prefix

Consider the quantity 0.025 amperes, it could be expressed as \(25 \times 10^{-3}\) A in Engineering notation, or using the metric prefix as \(25\ mA\)

Scientific notation vs Engineering notation

Consider the number: 23,000

In Scientific notation it would be expressed as: \(2.3 \times 10^4\)

In Engineering notation it would be expressed as: \(23 \times 10^3\)
Metric Unit Conversions

• When converting from a larger unit to a smaller unit, move the decimal point to the right
 \[0.52 \times 10^{-3} = 520 \times 10^{-6}\]
• When converting from a smaller unit to a larger unit, move the decimal point to the left
 \[1200 \times 10^{-9} = 1.2 \times 10^{-6}\]
• Determine the number of places that the decimal point is moved by finding the difference in powers of ten of the units being converted

Summary

• Resistors limit electric current
• Capacitors store electrical charge
• Inductors store energy in their electromagnetic field
• Transformers magnetically couple ac voltages, and may step these voltages up/down
Summary

- Power supplies provide current and voltage
- Voltmeters measure voltage
- Ammeters measure current
- Ohmmeters measure resistance
- Digital Multimeters (DMM) measure voltage, current and resistance

Summary

- Function generators provide electronic signals for our circuits
- An oscilloscope is used for observing and measuring voltages in a circuit
Summary

• Scientific notation expresses a number as one digit to the left of the decimal point times a power of ten
• Engineering notation expresses a number as one, two or three digits to the left of the decimal point times a power of ten that is a multiple of 3
• Metric symbols represent powers of 10 that are multiples of 3