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Abstract—Composing music is an inspired yet challenging task,
in that the process involves many considerations such as assigning
pitches, determining rhythm, and arranging accompaniment.
Algorithmic composition aims to develop algorithms for music
composition. Recently, algorithmic composition using artificial
intelligence technologies received considerable attention. In par-
ticular, computational intelligence is widely used and achieves
promising results in the creation of music. This paper attempts
to provide a survey on the computational intelligence techniques
used in music composition. First, the existing approaches are
reviewed in light of the major musical elements considered in
composition, to wit, musical form, melody, and accompaniment.
Second, the review highlights the components of evolutionary
algorithms and neural networks designed for music composition.

Index Terms—computational intelligence, music composition,
evolutionary computation, neural networks.

I. INTRODUCTION

Music plays an essential role in our daily life. It serves as
a significant medium to entertain people, deliver messages,
improve productivity, and express moods and emotions. Com-
posing melodious music is a challenging task since many
musical elements need to be considered, such as pitch, rhythm,
chord, timbre, musical form, and accompaniment [99], [125].
In the past, music composition was usually accomplished by
a few talented people. The algorithmic composition, which
formulates the creation of music as a formal problem, facil-
itates the development of algorithms for music composition.
The concept of algorithmic composition can be traced back
to the Musikalisches Würfelspiel (musical dice game), which
is often attributed to Mozart. In the game, a music piece
is generated by assembling some music fragments that are
randomly selected. Mozart’s manuscript K.516f, written in
1787, is commonly viewed as an example piece of the musical
dice game because it contains many two-bar fragments, even
though the random selection by dice is not evidenced.

The algorithmic composition enables automatic composition
by using computers and mathematics. In 1957, Hiller and
Isaacson [60] first programmed the Illinois automatic computer
(ILLIAC) to generate music algorithmically. The music piece
was composed by the computer and then transformed into
a score for a string quartet to perform. Xenakis [150] in
1963 created a program as an assistant to produce data for
his stochastic composition. The research on algorithmic com-
position has significantly grown since then. Some overviews
on automatic composition can be found in [9], [10], [45],

The authors are with the Department of Computer Science and Information
Engineering, National Chung Cheng University, Chiayi 621, Taiwan (e-mail:
lch101p@cs.ccu.edu.tw; ckting@cs.ccu.edu.tw).

[68], [107]. Moreover, there have been an abundant amount
of software and applications for computer composition and
computer-aided composition, such as Iamus [1], GarageBand
[2], Chordbot [3], and TonePad [4]. Notably, the Iamus system
[1] is capable of creating professional music pieces, some of
which were even played by human musicians (e.g., the Lon-
don Symphony Orchestra). GarageBand [2] is a well-known
computer-aided composition software provided by Apple. It
supports numerous music fragments and synthetic instrument
samples for the user to easily compose music by combining
them.

The methodology of algorithmic composition includes
mathematics, grammar, and artificial intelligence. First, from
a mathematical perspective, composing music can be viewed
as a stochastic process and, therefore, the mathematical mod-
els such as Markov chains are useful for composition [34].
The music composition using mathematical models have the
advantages of low complexity and fast response, which are
adequate for real-time application. Sertan and Chordia [126]
utilized the variable-length Markov model that considers the
pitch, rhythm, instrument, and key, to predict the subsequent
sequence of Turkish folk music. Prechtl et al. [116] generated
music for games by using the Markov chains with musical
features such as tempo, velocity, volume, and chords. Voss
and Clark [146] observed and proposed the 1/f noise for
composition. Hsü and Hsü [64], [65] adopted fractal geometry
in the expression of music and presented the self-similarity for
the musical form.

Second, music can also be regarded as a language with
distinctive grammar [120]. Composing music turns out to be a
process of constructing sentences using the musical grammar,
which is usually comprised of the rules about rhythm and
harmony. Howe [63] codified the musical elements in the
multi-dimensional arrays and used the computer to compose
music by determining the locations of pitches and rhythms
through five operators. Steedman [128] and Salas et al. [122],
[123] adopted linguistics and grammar to generate music. The
proposed approaches describe music as a language, and then
learn its patterns from music pieces, to build the model for
composing a new melody.

Third, the advances of artificial intelligence (AI) promote
its application to algorithmic composition. The composition
systems based on AI technologies such as cellular automata
[22], [100], knowledge-based systems [11], [42], machine
learning [41], and evolutionary computation [101], [148], have
received several encouraging results [47], [112]. In addition
to composition, the AI technologies are applied to expressive
performance of music [33], [78]. Recently, the use of computa-
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tional intelligence (CI) in music composition has emerged. The
CI techniques, including neural networks, fuzzy systems, and
evolutionary computation, have achieved remarkable results
and render powerful tools for modeling, learning, uncertainty
handling, search, and optimization. These techniques have
been applied to music composition. In particular, the evolu-
tionary composition system progresses by making widespread
use of genetic algorithm (GA) [59], [61], genetic programming
(GP) [79], particle swarm optimization (PSO) [74], [75], ant
colony optimization (ACO) [38], [39], and other evolution-
ary algorithms [121]. The population-based, quality-driven,
and stochastic nature of evolutionary algorithms makes them
especially suitable for music composition and computational
creativity. Neural networks are often utilized in the learning
and modeling processes for music composition. Bharucha and
Todd [13] proposed a model using neural networks for the
prediction of notes. This work is followed by plenty of studies
on the use of neural networks to compose music. In addition,
neural networks are applied to assist the evaluation of com-
positions [18], [58]. Fuzzy systems cater to the classification
and analysis of music; nonetheless, they are seldom used for
music composition.

This paper provides a survey on the CI techniques used
in music composition to reflect the recent advances in this
area. The survey is organized from two perspectives: musical
elements and CI technology. First, in the light of musical
elements, the task of music composition entails deliberating
the musical form, creating the melody, and arranging the
accompaniment. The musical form is associated with the
fundamental structure, phrases, motives, and music genre. In
composing a melody, the musical elements such as timbre,
pitch, rhythm, harmony, and tune need to be properly assigned.
The emotion is an advanced consideration in generating com-
positions. As for the accompaniment, the musicians arrange
the main accompaniment, chords, and bass, to enhance the
harmony and euphony of the composition. Second, the differ-
ent aspects of the CI techniques need to be pondered upon for
music composition. In the evolutionary composition systems,
various designs for the representation, crossover, and mutation
are proposed. The music systems using neural networks are
developed to generate compositions and assist evolutionary
composition. In addition, the evaluation of compositions is
a paramount issue that needs to be addressed in the CI-based
composition systems.

The paper is organized as follows. Section II reviews the
studies on music composition using musical form, including
motive, phrases, and genre. Section III reviews the approaches
based on CI for composing the melody in terms of timbre,
pitch, rhythm, and emotion. Section IV recapitulates the CI
methods for the accompaniment arrangements. Section V sur-
veys the designs of the CI techniques for music composition.
Section VI provides some suggestions for future research
topics. Finally, a summary of this paper is presented in
Section VII.

II. COMPOSITION USING MUSICAL FORM

Music composition involves many musical elements, such
as timbre, pitch, rhythm, motive, phrase, and chord. Figure 1

summarizes the musical elements in composition, which can
be divided into three major categories: musical form, melody,
and accompaniment. Musicians usually deliberate over the
musical form as the basic structure and then fill in pitches
to construct the melody. Afterward, The accompaniment is
assigned to strengthen the harmony or complement the com-
position.

This section reviews the research on the utilization of
musical form in CI-based composition systems. Moreover,
we discuss the music genre as an advanced consideration for
composing music.

A. Musical Form

Musical form serves as the fundamental structure of a
composition. While composing music in a specific genre, com-
posers consider the musical form to establish its framework
and then develop motives and phrases. For example, the form
AABA is ordinarily applied in sonatas, and ABAB and ABCA
are commonly used in modern popular music. The musical
form constitutes the main frame of a composition, where the
notes will be filled in to construct the melody afterward.

In the composition system, Xu et al. [151] adopted four con-
ventional forms of popular music, i.e., ABAB, ABAA, AAAA,
and ABBB (or ABCA). The first two motives are repeated in
these forms for intensification. Liu and Ting [86] considered
the musical forms used by a famous Asian pop-music singer.
Although musical form is a fundamental component in music
composition, there exist few studies addressing this issue in the
CI-based composition approaches. Design and development of
musical form is hence a direction for future studies.

B. Motive

Motive represents the minimum component repeating in
some phrases. The form of repeats can be classified into two
types: sequence imitation and repetition imitation. The former
indicates that the repeated motives are similar but different,
whereas the latter requires they are identical. Both types of
imitation are beneficial to cultivate the hook for the music
and make phrases or compositions memorable.

1) Sequence Imitation: Ricanek et al. [119] considered the
thematic bridging issue at music composition. They designed
a fitness function favoring the similarity between phrases
for sequence imitation. In the composition system of Pa-
padopoulos and Wiggins [111], the users can specify their
preferred motives. The fitness function for the GA will count
the interval patterns matched. Towsey et al. [136] also took the
features of patterns into account. The sequence imitation and
repetition imitation are achieved by copying three or four notes
from repeated rhythm patterns and repeated pitch patterns,
respectively. Calv and Seitzer [24] used GA to generate the
melodic motives and adopted the genetic algorithm traversal
tree (GATT) to construct the musical structure. The fitness
function especially rewards the intervals matching the Fi-
bonacci sequence. Long et al. [89] claimed that the melody and
rhythm in different phrases should be similar for the coherent
effect. When generating a new phrase, the system checks if the
previous melody can be partially adopted. Loughran et al. [90]
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Figure 1. Musical elements in composition

used grammatical evolution (GE) to generate the sequences for
a long melody. The composition was created by merging the
top four individuals obtained from the final generation. The
best individual will share its motifs with others, which will be
slightly varied in regards to rhythm and pitch.

2) Repetition Imitation: The system proposed by Chiu and
Shan [28] repeats the motives resting upon the analysis on
the structure of input music. It divides the phrases into several
segments to form the motives. Liu and Ting [84], [85] and Wu
et al. [149] observed and applied three types of repetitions
commonly used in the creation of music. According to the
type of repetition, the measures involving the repetition are
compared and the best one will replace others to form the
repetition. Liu and Ting [86] adopted both the repetition
imitation and sequence imitation to mimic the composition
of a famous Asia pop-music singer. The better motif in the
generated music will replace other motifs originating from the
musical form in the original song.

C. Genre

Music genre is an important consideration for composition.
A genre is formed by a composition style in a specific region,
culture, instrument, or group. Composing music for a certain
genre involves three elements: rhythm, scale, and structure.
Most genres have unique rhythm patterns or scales. For
example, Chinese music uses the pentatonic scale composed
of only five pitches. In addition, music genres usually have
special structures.

Jazz is a music genre popularly studied in the CI and non-
CI based composition systems because of its salient features
in scale and rhythm. For composing jazz music, Papadopoulos
and Wiggins [111] proposed a GA with a representation and
a fitness function based on the jazz scales. Biles [16], [17]
developed the GenJam system supporting the trade four in jazz
impromptu. The GenJam is capable of improvisation through
interaction with the jazz player. Tzimeas and Mangina [138]
presented a GA-based system to transform the compositions
of Bach into jazz music. The user, who must be familiar with
jazz music, listens to an input song of Bach and identifies the
notes with a jazz flavor during the evolutionary process of GA.

Aside from jazz, other music genres are also considered
in the composition systems using CI. The GA composer of
McIntyre [98] focuses on the four-part Baroque harmony,
consisting of soprano, alto, tenor, and bass. In light of the
Baroque genre, the fitness function includes the rules spe-
cially designed for chord spelling, doubling, voice leading,
smoothness, and resolution. Dimitrios and Eleni [36] proposed
the SENEgaL to create Western Africa rhythm music. In the
system, they introduced different styles of Western Africa
rhythm: Gahu, Linjen, Nokobe, Kaki Lambe, and Fanga. Each
type has different rhythmic patterns that are played on two
or more instruments. The user can specify the proportion of
Western Africa patterns considered while composing music.
Wang et al. [147] extracted the features, including the repeat
rhythm patterns and special intervallic motives, from Chinese
Jiangnan ditties. They found that the Jiangnan ditties have
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many three-note and four-note intervallic motives; precisely,
more than 80% are three-note intervallic motives. Hence the
fitness function rewards the intervallic motives to form the
specialty of Chinese Jiangnan ditties.

Some studies have focused on the composition style of
a specific musician or a music group. Liu and Ting [85]
determined the weights for the rule-based fitness function
by using the music and charts information of the famous
rock band Guns N’ Roses. They [86] further utilized the
sequential pattern mining technique for the patterns of Jay
Chou’s composition style. The patterns obtained are used as
the genes for the GA to create new compositions.

III. COMPOSITION OF MELODY

This section introduces the musical elements and the studies
of using CI-based techniques in the composition of melody.

A. Timbre

Timbre represents the tone color of sound. When composing
music, timbre should be considered and properly arranged
because each instrument or vocal type (soprano, contralto,
tenor, baritone, and bass) has its sound characteristics. The
instruments and vocals, for example, have their characters
and need to be organized for the ensemble. Timbre can be
classified into two types: instrument and vocal. For instru-
mental music, many instruments have their own unique tones,
which should be considered when composing music for them.
In addition, playing techniques, e.g., the bowing techniques
for violin, influence the timbre of instruments and hence may
be taken into account in composition. As for vocal music,
the compositions are subject to the timbre of each part, i.e.,
soprano, alto, tenor, and bass, of the singers.

Timbre can be applied to the evaluation criterion for the
assignment of instruments. Wang et al. [147] extracted the
features from Chinese Jiangnan ditties for the fitness function,
in which the timbre serves as an evaluation criterion using
the spectral centroid to fit the instruments. Dimitrios and
Eleni [36] proposed the SENEgaL system generating the
Western Africa rhythm music. In the interactive interface,
the user can choose different timbres of drum to play the
music. Considering the elements and playing techniques of
drums, Dostál [40] designed a chromosome representation for
GA to generate drum rhythms in the human-like rhythmic
accompaniment system.

B. Pitch

Assigning the pitch for each note is a paramount task in
music composition. The assignment pertains to range, tune,
and harmony of pitches. Tune is associated with the sequence
of pitches, whereas harmony concerns the concurrence of
multiple pitches.

1) Range: In the assignment of pitches, the composers must
include the range of instruments or vocals for consideration.
The violin, for instance, has a limit of four and a half
octaves in playable notes, although the range is determined
by the player’s skills. A composition system therefore needs

to consider whether the generated tunes or chords are playable
or not; otherwise, the composition will turn out to be a
meaningless adornment with musical notations.

Regarding the range of playable pitches, Tuohy and Potter
[137] presented a music system using GA, where the pitch
range is specifically determined for guitars in the composition.
Some studies concern the polyphonic music composition. In
[84], [85], the tracks for different instruments are represented
and composed separately according to their individual pitch
ranges and playing techniques. The rhythmic composition
focuses on the features of rhythm, e.g., the stroke, flam, drag,
and ruff of drumming. Oliwa [108] designed a GA-based
system treating the tracks of lead guitar, rhythm guitar, rock
organ/piano, and drums. The representation of each track is
specialized according to the purpose, pitch range, and the
playing techniques of the instruments.

The limitation of pitch is crucial to vocal music. A common
genre is the four-part choral music, comprising the soprano,
alto, tenor, and bass. McIntyre [98] proposed using GA to gen-
erate the four-part Baroque chorus. The fitness function takes
account of the vocal range; moreover, the system suggests
leaving proper spacing between the voice and the melody in all
four parts. Phon-Amnuaisuk et al. [114] also used the fitness
function to keep the pitches within the proper range. Donnelly
and Sheppard [37] and Maddox [91] considered the vocal
range in the fitness evaluation of the four-part chorus music,
where each part should exclude the out-of-range pitches. Geis
and Middendorf [57] presented an ant colony optimizer to
generate the four-part accompaniment, for which the vocal
range is also considered in the fitness evaluation. Long et al.
[89] developed a composition system for human singing. The
system restricts the use of pitches to the range of two octaves
that humans can sing. Muñoz et al. [104] formulated the
construction of the figured bass as an optimization problem.
With the input of a bass line, the local composer agents
cooperate with the population-based agents to generate the
complete four-part music pieces.

2) Tune: Tune is a pivotal musical component that affects
the listenability of a composition. It is associated with the
intervals between pitches and is usually used as the basis for
the assessment of a melody. To assign the sequences of pitches
for a good tune is difficult due to the enormous combinations
and constraints on the notes. A considerable number of studies
have proposed the CI-based methods to deal with this problem.
The methods can be divided into four types: generating the
whole-tune, combining music segments, constructing note by
note, and imitation.

First, the most common way is to generate the whole tune
at one time. This way is usually used in the evolutionary com-
position systems, where the series of notes can be generated
randomly or using some specially designed operators.

• Several studies have created the tunes at random and
then used the fitness evaluation to sort out the good
tunes [8], [92], [96], [97], [108], [110], [136], [155].
Papadopoulos and Wiggins [111] constructed the tunes
given the chord progression. The pitches are assigned
randomly from the notes of the corresponding chords.
In the GA proposed by Towsey et al. [136], the tunes
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are evaluated according to 21 musical features regarding
pitch, tonality, and contour. The pitch features are used
to fix the pitch range and measure the pitch diversity;
the tonality features keep the proportion of non-scales
and dissonant intervals; the contour features deal with
the tendency of melody, decrease large leaps, and handle
the return of large leaps. Marques et al. [96] manipulated
the tunes according to the intervals between consecutive
notes. Blackwell and Bentley [19], [20], [21] designed a
PSO approach to generate the tune, of which the pitch,
volume, and the duration of notes are represented as a
particle. Geis and Middendorf [57] manipulated the ants
to crawl around the notes for composing the tune.

• Instead of random creation, the music theory about con-
sonance, chord information, and music patterns are also
employed to generate the tunes. Biles [16], [17], [18] used
the chord information and jazz theory to assign the notes
appropriate for impromptu. In the composition systems of
Unehara and Onisawa [109], [140], [141], [142], a tune is
generated from the database of music theory. Maeda and
Kajihara [92] utilized the twelve-tone technique to create
simple music pieces. The process begins with a tone
row created by twelve tones and then evolves depending
upon the harmonious degree. Liu and Ting [85] proposed
creating tunes for consonance hinged on the chords in
each measure. The T-Music composition system [89]
handles the tunes considering the chord progression and
cadence. The system follows the cadence principle to
assign the ending note of phrase.

• Some studies have utilized the mathematical equations
or human assistance in the construction of tunes. Yoon
[154] used fractals with musical seed data to generate
meaningful music segments. Phon-Amnuaisuk et al. [114]
presented the four-voice harmony system, in which the
user inputs the soprano information as the tune, and the
GA then harmonizes it by generating the alto, tenor, and
bass parts. Reddin et al. [118] proposed a composition
system based on GE, which adopts six measurements, i.e.,
pitch variety, dissonance, pitch contour, melodic direction
stability, note destiny, and pitch range, for the fitness
function to handle the tune. Loughran et al. [90] used
GE to create tonal music. The tunes are generated with
reference to the grammar, such that most notes are in the
middle range of piano.

• The pitch range and scale are concerned in the generation
of tunes. For example, Loughran et al. [90] restricted the
pitch range to four octaves by grammar, while Donnelly
and Sheppard [37] limited the range to an interval of 13th
and the interval of consecutive notes to 9th. Kaliakatsos-
Papakostas et al. [73] developed a hybrid system using
PSO to create the musical features of tune and rhythm,
which will be used in the evaluation criterion for GA.
Osana et al. [53], [76], [131] generated the tunes using the
features on pitch, rhythm, and chord progression obtained
from the sample melody. Wang et al. [147] proposed a
composing system for the Chinese Jiangnan ditty. They
first extracted the features, including pitch range, melodic
interval, mode, note duration, timbre, rhythm pattern, and

intervallic motive, from the existing Jiangnan ditties, and
subsequently used the features for the fitness evaluation.
The tunes are handled through the Chinese pentatonic
mode.

Second, the tune can be constructed by combining musical
patterns or pieces. Chiu and Shan [28] used pattern mining
to extract the features, including motif, chord, and structure,
from the input music. The extracted motifs are selected to
compose the tune for a melody, where the selection depends
on the chord sequences to ensure the harmony of the melodic
progression. Liu and Ting [86] proposed using frequent pattern
mining to extract the musical patterns repeatedly used by a
composer. The tune is created by assembling these patterns.

The third way is to generate the series of notes sequentially.
The rationale behind this approach is that the current and
the previous notes provide the information for determining
an appropriate pitch or rhythm for the subsequent notes. The
neural networks and grammatical models are often used in this
approach. Bharucha and Todd [13], [133] designed a neural
network to predict the next note, given the current note as
input. The learning process of the neural network is performed
with culture-specific modes and chords. Mozer [102], [103]
used the recurrent neural network (RNN) to predict notes for
creating the composition. The RNN was trained with a number
of Bach’s music pieces and traditional European folk songs.
Chen and Miikkulainen [26] also adopted neural networks to
address the tune issue. They used a whole measure as the input
data to generate its subsequent measure. The generated tunes
are then examined for transposition. Chen et al. [27], [52] used
a table defining the fitness of notes based on the music theory
to create the initial sequences of notes. Tomari et al. [135]
employed the N-gram model to predict the next note in the
evaluation of compositions. The N-gram model was trained
with 30 Japanese children’s songs.

Fourth, the tune can be formed by imitating the existing
music. Wu et al. [149] and Ting et al. [132] presented a
novel composing system, which initializes the population with
existing songs. In particular, the system addresses the issue of
tunes by imitation; that is, it attempts to change the notes
in phrases without altering the melodic progression of the
original song. Tuohy and Potter [137] developed a system
to convert music pieces into the compositions appropriate for
guitar playing. The conversion includes four considerations for
the tune: 1) The arranged note should be playable for a guitar
instead of a causal assignment; 2) the fitness function rewards
consecutive notes in a moving line; 3) the notes occurring in
both of the original and new compositions are preferred; and
4) the chord notes are important but should not be abused.
Alfonseca et al. [8] proposed creating the tunes by the minimal
normalized compression distance. Vargas et al. [145] tried to
mimic the composition process of musicians to create music
pieces. They used a music database to initialize four measures
as a lick and constructed the tunes in accordance with the
given chords and scales.

3) Harmony: Harmony is associated with two formations
of pitches: 1) The vertical one concerns multiple pitches,
from the same or different tracks, sounding at the same time
(beat); and 2) the horizontal one is related to multiple pitches
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sounding in tandem to form the chord progression. Harmony
is crucial to music composition. A proper arrangement of
pitches can achieve the consonance, thereby making music
delightful and peaceful. In the composition systems using
evolutionary algorithms, harmony is ordinarily considered in
the fitness function. For the four-part chorus, the four parts can
be viewed and handled as four different instruments sounding
human voices. Phon-Amnuaisuk et al. [114] dealt with the
harmony in the four-part chorus through several criteria to
avoid parallel unison, parallel perfect fifths, parallel octaves,
crossing voices, and hidden fifths. Maddox [91] developed a
GA for the four-part chorus. For harmony, the fitness function
penalizes the parallel fifths, parallel unison and octaves, leap
greater than one octave, improper resolution of a large leap,
and overlapping voices. Donnelly and Sheppard [37] examined
the harmony for generating the four-part chorus by GA. The
harmonic rules are defined in the fitness function to avoid the
parallel octaves, parallel fifths, and dissonant intervals such as
seconds, fourths, and sevenths.

Chords serve as an important basis for forming harmony.
The chord progression constitutes the orientation of pitches
in a melody. Some studies have utilized this notion to tackle
the harmony in music composition. McIntyre [98] used GA to
generate a four-part Baroque chorus. The GA handles harmony
in the fitness function that considers several conditions in the
chords, including chord correspondence, start and stop notes
in chords, and resolutions for chords. Marques et al. [96]
presented a fitness function favoring the concurrent notes that
can conform to a chord, especially the major or minor chord,
for forming the harmony. Chang and Jiau [25] addressed the
harmony issue by adopting the suitable chords for a melody.

The harmony of notes across multiple tracks is another
issue in music composition. Oliwa [108] presented a GA-based
composition system, in which the fitness function regulates
that the lead guitar should use the chords corresponding to
those used by the rhythm guitar and the piano for harmony.
Xu et al. [151] adopted the music theory, harmonics, as the
basis for fitness evaluation. The fitness function treats harmony
via mapping the mode to the chord progression. In addition,
each period (A to C) of generated music has its own rules to
maintain harmony. Liu and Ting [84] proposed using the music
theory rules derived from consonance to tackle the harmony
issue across the tracks of different instruments. The fitness
function rewards the consonance of the main, bass, and chord
accompaniments that are evolved through GA.

C. Rhythm

Rhythm endows the connection between notes as well as
an essential factor in another dimension, by contrast to the
dimension of pitch, to be considered in composition. It assigns
the duration for each note (including the rest note) to make
the music vivid or form a specific genre. Establishing rhythms
is not easy because of the huge variety in allocating notes to
the beats.

Like handling the pitch, several evolutionary composition
approaches utilize the fitness evaluation to find the appropriate
rhythms. Maeda and Kajihara [93] included rhythm in the

evaluation criteria of their GA for automatic composition
[92]. The fitness values are determined by the duration, ratio,
and time interval. Moreover, they proposed another evaluation
criterion regarding the rhythm and the statistics on the timing
variation of sound. Wang et al. [147] presented a fitness
function that evaluates the rhythms using statistical results.
The frequent durations and rhythm patterns in the extracted
compositions are rewarded with a high fitness value.

Moreover, Towsey et al. [136] devised a GA that evaluates
the rhythms according to the rhythmic features, including the
note density, rest density, rhythmic variety, rhythmic range,
and syncopation. Tomari et al. [135] used the N-gram model
for the evaluation criterion. The N-gram model was learned
from 30 Japanese children’s songs. To deal with rhythm, the
model considers the transition of rhythm every two bars. Long
et al. [89] developed the T-music system, which takes into
account the rhythm components, such as the length of the last
note in a phrase, and the similarity of rhythm between two
phrases. Loughran et al. [90] used GE to establish the rhythms.
The system prefers short notes in the grammar because the
authors argued that the existence of many long notes will make
the music dull. In Oliwa’s rock music composition system
[108], the fitness function also rewards short notes for a fast
tapping and playing of the lead guitar.

Rhythm is a major issue at percussion accompaniment.
Dostál [40] developed a human-like rhythmic system that
generates the drum’s rhythm for accompaniment. The fitness
function favors the coincidence of beats in the melody and
drum accompaniment. Yamamoto et al. [152] proposed an
interactive GA to generate the drum fill-in patterns, which
are represented by no-sound, snare drum, high-tam, low-tam,
floor-tam, open-high-hat, and closed-high-hat.

Some studies use neural networks to model rhythms and
assist the fitness evaluation. Gibson and Byrne [58] adopted a
neural network as the fitness function for GA in composition.
The system first learns the rhythm and then responds with
the goodness of the input rhythm. Chen and Miikkulainen
[26] proposed a neural network to generate melodies. The
system adjusts the duration of notes to form the rhythm.
Yuksel et al. [155] combined RNN and evolutionary algorithm
to manage the tune and rhythm simultaneously. The neural
network is trained with a set of pitches and duration of notes.
Tokui and Iba [134] applied the interactive GA and GP to
create the rhythmic patterns. The back-propagation neural
network is applied to model user’s evaluation, in order to
reduce the number of interactive evaluations and lessen the
fatigue caused.

Few studies propose directly using the rhythm of the origi-
nal composition and focus the efforts on the assignment of
tunes. For instance, Liu and Ting [86] mined the frequent
musical patterns consisting of both tune and rhythm. Music
composition turns out to be a task of recombining the patterns,
thereby arranging the rhythm as well. Chiu and Shan [28]
also used music pattern mining for composition. The rhythm
assignment was omitted since the structure of measures in their
system was predetermined.
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D. Emotion

The emotion conveyed through music is also a key consid-
eration in music composition. The emotion of a composition
is associated with timbre, rhythm, chord progression, scale,
etc. For example, the bright timbre and fast tempo are usually
used to express spirited, happy, and excited emotions.

Zhu et al. [157] designed an interactive GA to generate
compositions with a specified emotion. They adopted the KTH
rule system [51], which models the performance principles
used by musicians, for the evaluation rules. The weights of
the rules are determined by the response (happy or sad) of
users. Onisaw et al. [109] also used an interactive evolutionary
system to compose a joyful or sorrowful melody to reflect the
user’s feeling. They concluded that a joyful melody is harder
than a sorrowful melody to evaluate because the former needs
to consider more elements, such as rhythm and tempo. Xu
et al. [151] introduced the harmony emotion rules to their
composing system, which employs a major mode with fast
tempo for happiness and a minor mode with slow tempo for
sadness.

IV. COMPOSITION WITH ACCOMPANIMENT

Accompaniment is vital to reinforce the melody. Good
accompaniment can promote harmony, enhance the music
structure, and intensify the expressiveness of the compositions.
The accompaniment can be divided into three parts: main
accompaniment, chord accompaniment, and bass.

A. Main Accompaniment

The main accompaniment usually collocates with the
melody note by note to make up or intensify it. Acevedo
[7] used the counterpoint method for a GA to build the main
accompaniment of the input melody. The fitness function con-
siders different aspects of the accompaniment: The proportion
of notes in the same key and the length of measures in the
generated accompaniment should be similar with those in the
input melody. The beginning and ending notes need to be
consonant with the melody. The intervals and repetitions of
notes are also limited. Liu and Ting [84] developed a GA
for making the polyphonic accompaniment, where the three
accompaniments (main, bass, and chord) have their own fitness
functions. The main accompaniment was designed to enhance
the harmony and complement the insufficient rhythm in the
melody.

B. Chord Accompaniment

Chord accompaniment is one of the key factors in mu-
sic composition. The music would become boring and
monotonous without the chords supporting harmony. The CI
techniques for handling the chord accompaniment can be
classified into two types: Some assume the chords are given
and compose the music accordingly; some produce the chord
progression while creating the composition.

For the first type, supposing the chord progression is
predetermined, the composition system will focus on the
search for the appropriate pitches, scales, rhythms, and so

on. The GA developed by Liu and Ting [84] evaluates the
fitness of compositions according to the chords given by the
user. The chords follow a predefined progression but will
be evolved into different forms by the GA. Furthermore,
they [86] proposed generating compositions by following
the original chord progression. The chords are employed to
evaluate the consonance with the generated melody. Xu et
al. [151] presented a varying chord progression for harmony.
The selection of chords depends on the mode, intervals, ending
parts, and three different periods. Chiu and Shan [28] used
the pattern mining technique to extract chord progressions
from the input music. These progressions are adopted as the
basis for evaluating the sequence of randomly selected chords,
where a high similarity in chord progression leads to a high
fitness value.

For the second type, chords and melody are handled con-
currently. Chang and Jiau [25] developed a system to automat-
ically generate chords for the melody in two phases: The local
recognition phase determines the chord candidates according
to the common chord templates and rhythm. The global
decision phase further selects the most suitable chords from
the candidates based on the chord progression rules. Nakamura
and Onisawa [106] designed an interactive GA system to
construct the chord sequence. The chords are evolved with
the compositions by the GA with the listener’s feedback.

C. Bass Part

The bass part is an important element helping to stabilize
the progression of music. For composition, Liu and Ting [84]
proposed evolving the bass line using GA. In the composition
system, the candidate bass lines are generated with reference
to the chords used. The fitness function evaluates the bass
lines according to their harmony with the melody and other
accompaniments.

In addition, for the four-part music, the bass part is ordi-
narily composed of chord notes, especially the root of chord.
The relevant studies have been described in Section III.B.

V. DESIGNS OF COMPUTATIONAL INTELLIGENCE

This section introduces the various designs of computa-
tional intelligence techniques for music composition. First,
we recapitulate the studies on the operators used in the
evolutionary composition systems. Next, we review the neural
networks proposed for music composition. The research on
the application of fuzzy systems to music is also briefed.
Finally, the subsection reviews the methods for the evaluation
of compositions.

A. Evolutionary Computation

Evolutionary algorithms have been widely used for auto-
matic composition and achieved several favorable results. The
design of an evolutionary algorithm pertains to representation,
selection, crossover, mutation, and fitness function.
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1) Representation: The integer string is commonly used
as the representation for the elements of music composition,
such as timbre, pitch, and rhythm. Unemi and Nakada [143],
[144] presented a two dimensional array as the representation
for the guitar, bass and drum. The representation indicates the
information of both the rhythm and the notes for the three
tracks. The proportion of rest and tenuto are determined with
respect to the representation form. Papadopoulos and Wiggins
[111] proposed a representation resting on the degrees of scale
relative to the current chord for composing a jazz melody.
The representation is capable of handling the information
about the scales and responding chords rather than only the
absolute pitches. Vargas et al. [145] designed an improved
chromosome representation using a numerical sequence based
on the chords assigned to the measure. For example, the chord
Cmaj7 corresponds to a major scale (avoid 4th) according to
the musical theory. Therefore, the available notes will be C,
D, E, G, A, B, octave C, octave D, octave E, and so on, which
are indicated by the numbers 1 to 15 for representation.

Instead of a fixed length, Donnelly and Sheppard [37]
proposed the variable length chromosome for representation
of the four-part music composition. Each chromosome con-
tains four parts for the musical line, namely, soprano, alto,
tenor, and bass. The variable length representation allows
the composition to grow and shrink caused by the insertion
and deletion of the mutation operator, respectively. Oliwa
[108] presented different representations for the tracks of
instruments, including the lead guitar, rhythm guitar, keyboard,
and drums, considering the differences in their components
and playing techniques. For instance, the representation for the
lead guitar preserves the space for the tapping technique, while
that for the drum is based on the rhythm patterns. Biles [16]
took account of the pitches and rhythms in the representation.
In addition, the notes of hold and rest are considered as events.
The chromosome uses the information about the chords and
scales to ensure the represented notes are playable by human
players, which is critical for the impromptu interactive process.

2) Crossover: The well-known crossover operators, such
as k-point crossover and uniform crossover, are usually appli-
cable to the evolutionary algorithms for music composition.
In addition, some studies have developed special crossover
operators that consider the musical characters or enhanced
performance.

Marques et al. [96] devised the note crossover and octave
crossover. The former regulates that the crossover should take
place in the note with sound; namely, the rest and tenuto notes
are excluded. The latter keeps the tone of the chosen note but
exchanges in one octave. Vargas et al. [145] suggested that the
crossover should avoid disrupting compositions. The proposed
crossover operator produces valid compositions according to
the distance of intervals. Likewise, Liu and Ting [84], [85]
proposed placing the cutting points between measures to
prevent destroying the structure of music sections. Wu et al.
[149] designed three crossover operators considering different
restrictions: 1) The chord-based switch locates the cutting
points between measures with absolutely identical chords; 2)
the root-based switch picks the cutting points between the
measures having up to one different note and the same root

of chords; and 3) the analogous switch is similar to the root-
based switch but permits cutting points locating between the
measures with different roots of chords.

3) Mutation: Some studies have devised the mutation op-
erator to improve the efficiency in composing music. Beyond
simply flipping genes, Biles [16] presented two mutation
operators with musical meaning. The first mutation operator
alters chromosomes in light of transposition, retrograde, rota-
tion, inversion, sorting, and retrograde-inversion. The second
operator acts as a high level mutation processing musical
phrases. Marques et al. [96] proposed two mutation operators
on the notes and octave. The note mutation is performed on the
notes excluding the rest and tenuto notes. The octave mutation
shifts the pitch of the selected note by one octave. Matić
[97] designed three mutation operators to increase the fitness
of compositions. The first mutation operator shifts a tone
into its lower octave to reduce the number of large intervals.
The second operator changes the pitch if the current note is
dissonant with its subsequent note. The third mutation simply
swaps two consecutive notes. Donnelly and Sheppard [37] pre-
sented a series of mutation rules: repeat, split, arpeggiate, leap,
upper neighbor, lower neighbor, anticipation, delay, passing
tone, deleting note, and merging note. When performed, the
mutation probabilistically selects one of the rules to change
the composition. Vargas et al. [145] developed three mutation
operators to ensure the consistency of phrases. These mutation
operators retain the pleasant sound without damaging the
results of crossover by transposing two down, octave, and
hemiola operators. The transpose two down operator shifts an
entire phrase down by two tones to introduce diversity to the
phrase without destroying the consonance. The octave operator
decreases a note with a large interval by one octave to reduce
the horizontal interval. The hemiola operator repeats a group
of notes throughout a phrase.

B. Neural Networks

Neural networks are often used to evaluate compositions
or predict notes in music composition. In these applications,
neural networks are trained to model the evaluation or arrange-
ment of musical elements. Regarding the evaluation, neural
networks are commonly adopted to assist the fitness function
in the evolutionary composition systems. Biles et al. [18]
adopted the neural networks as the fitness function for the
impromptu system GenJam. Tokui and Iba [134] employed
neural networks to model the user’s preference and thereby
mitigate the fatigue issue at interactive composition. Burton
and Vladimirova [23] applied the adaptive resonance theory
(ART) network for the fitness evaluation in GA. The ART
network is trained to model the clusters of drum patterns in
various genres of music, including rock, funk, disco, Latin and
fusion.

As for the prediction of notes, Bharucha and Todd [13],
[133] utilized neural networks to predict the next note. After
the learning process, the neural network is seeded with an
initial value and then generates a new composition note by
note. Similarly, Chen and Miikkulainen [26] adopted a neural
network to generate the next measure, given the current
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ones. The neural network takes both the tune and rhythm
into account. Mozer [102], [103] trained an RNN with the
music pieces of Bach and traditional European folk songs
to generate compositions. In addition, he proposed learning
the AABA phrase patterns in order to maintain the musical
structure. Eck and Schmidhuber [43], [44] suggested using the
long short-term memory (LSTM) to improve the composition
process of RNN. Considering the issue that the compositions
made by RNN usually lack the global structure, the LSTM
is adopted to learn the musical chord structure. The authors
believed the well-trained chord structure can form a cycle
for a global musical structure. Liu et al. [87] also proposed
using RNN to generate music. Specifically, they adopted the
resilient propagation (RProp) in place of the common back-
propagation. The LSTM was adopted to solve the issue at
the long phrases. Franklin [48] compared several types of
RNN for music composition and presented a composition
system using the LSTM and music representation. Coca et
al. [29], [30] applied the chaotic algorithm [31] to generate
chaotic melodies for inspiration. The proposed RNN system
has two input units: melodic and chaotic units. The former is
devised for learning, whereas the latter is used for inspiring
the composition process.

C. Fuzzy Systems

The notions of fuzzy sets and fuzzy logic are widely used
in the classification of music genre [12], [46], [115], recog-
nition of music emotions [50], [72], [153], recommendation
systems [81], [113], music retrieval [88], [129], [156], copy-
right protection [77] and authentication [82]. Although these
approaches focus on processing audio signals and metadata
rather than create music compositions, they can be used to
deal with the emotion and music genre in the compositions. In
addition, fuzzy sets and logic can further assist the evaluation
of compositions owing to the intrinsic fuzzy nature of the
music genre, emotion, and evaluation.

D. Evaluation of Compositions

The CI techniques ordinarily require feedback to adapt the
model or guide the evolution. Evaluation of the existing or
generated compositions caters for the major feedback and has
a vital influence on the learning and evolutionary process. As
the above sections described, various designs for the fitness
function are presented to deal with the pitch, harmony, rhythm,
and accompaniment in music composition.

The evaluation methods used in CI for music composition
can be classified into three categories: interaction-based, rule-
based, and learning-based. The following recapitulates the
studies on these three types of music evaluation.

1) Interaction-based Evaluation: The interaction-based
evaluation relies on the listener’s feedback on the generated
music. The methods collect the listener’s responses, e.g.,
evaluation scores, preferences, or physiological signals such as
heartbeat, pulse, and skin conductance, to a sample phrase or
composition; and then use the collected information to evaluate
the sample. The interaction-based evaluation methods provide
a direct and useful way to evaluate the generated compositions;

therefore, they are commonly used in CI/AI-based composition
systems.

Based on the interactive evaluation, several studies proposed
the interactive evolutionary algorithms (IEAs) for music com-
position [130]. In the IEAs, the fitness of a composition is
determined as per the listener’s evaluation result. Johanson and
Poli [71] presented an interactive GP to arrange the pitches of
notes, while Tokui and Iba [134] devised another interactive
GP to evolve the rhythm of compositions. Yoon [154] proposed
a composition system based on fractals and GA, which relies
on the evaluation results from the listeners to evolve the gen-
erated compositions. Nakamura and Onisawa [105] developed
a lyrics/music composition system that considers the user’s
impression and music genre. Given the user’s choice about
genre, the system creates the lyrics using the Markov chain
and a lyrics database, while the music is composed of the
melody and one of the three accompaniments for the genre.
The combination of the music and lyrics is then evaluated by
the user.

Instead of an entire composition, some evaluation ap-
proaches require the listeners to take note of and evaluate
only certain parts of the composition to lighten their loading.
The GenJam system [14] uses the real-time human evalu-
ation on the segments of generated jazz solos. Jacob [67]
developed an IEA to evolve the weights, phrase lengths, and
transposition table for a new melody, given the motif and
the chord progression. Like GenJam, the IEA requires the
audience to evaluate a partial composition to reduce the load-
ing in evaluation. Onisaw et al. [109] designed an interactive
composition system to generate the emotional melody. The
listeners evaluate only four bars as to whether or not the
melody transfers the correct emotion. Unehara and Onisawa
[140] adopted the interaction with humans for choosing their
favorite 16-bar music. Fukumoto and Ogawa [54] proposed an
interactive differential evolution (IDE) for creating the eight-
note sign sounds. The evaluation of the sounds generated
by the DE is based on comparison: Each time the listeners
choose their preferred one from two sounds, and from four
sounds at different evolutionary phases in the first and second
experiments, respectively. The authors further compared the
performances of the IDE and IGA in music composition [55],
[56]. Chen et al. [27], [52] utilized the user’s feedback, in
the form of preference scores, to evaluate the music phrases
generated by the proposed evolutionary algorithm. The fitness
of a music block is defined by the average score of all the
music phrases containing this block.

Another form of interaction-based evaluation is through the
collaboration with musicians for professional feedback. The
GenJam [16], [17] can do trade fours at a jazz impromptu.
It listens to the human player performing four bars and then
converts the music into the chromosome structure to evolve.
The resultant chromosome soon responds to accomplish the
trade fours. Diaz-Jerez [35] developed the composition system
Melomics, which makes use of the professional composers’
scored results. Manaris [94] designed an interactive music
generator using GA, Markov model, and power laws. The
music generator creates music in response to the human
player’s performance.
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The results of interaction-based evaluation provide a gen-
uine feedback on the compositions. However, a crucial issue
lies in the fatigue caused by the repeated listening, which
gradually runs out of human evaluator’s patience and decreases
their music sensitivity. Hence, the number of evaluations based
on interaction is usually very limited in order to maintain the
quality and consistence of the evaluation results.

2) Rule-based Evaluation: The rule-based evaluation
adopts explicit rules for evaluation of generated compositions.
The evaluation rules are developed according to personal
experience or music theory in composition, considering the
musical elements such as rhythm, phrase, scale, and chord.
The rule-based evaluation renders the objective measures, by
contrast to the personal and subjective measures of interaction-
based evaluation. Moreover, the rule-based evaluation saves
the high cost at interaction and benefits the efficiency of the
fitness evaluation in evolutionary music composition.

Horner and Goldberg [62] presented a GA that creates
compositions by iteratively producing the segments bridging
music parts, where the fitness evaluation depends upon the
predetermined static patterns. Phon-Amnuaisuk et al. [114]
adopted some evaluation rules from music theory considering
leaps and intervals. Özcan and Erçal [110] used the evaluation
rules based on notes, intervals, and pitch contour, in their GA
for generating improvisations. Oliwa [108] proposed a GA
using a set of fitness functions tied to different instruments
in rock music. For example, the fitness function for the notes
of a lead guitar is associated with the ascending/descending
tone scale, tapping, and flatten. Matić [97] presented a fitness
function that compares the mean and variance of intervals,
and the proportion of scale notes in a measure between
the generated melodies and the input melodies. Acampora
et al. [6] adopted a set of evaluation rules concerning the
progression of notes in creating the four-part harmony. More
specifically, the rules are involved with the modulation and
tonality of the subsequent chords. The composition system of
Geis and Middendorf [57] evaluates the melody and the four
part accompaniments separately. The evaluation rules for the
melody consider the smoothness, contour, resolution, and end-
of-tonic, whereas that for the accompaniments considers the
chord, voice distance and leading, progression, smoothness,
and resolution. Towsey et al. [136] defined the 21 pitch,
tonality, and contour features hinged on the music theory
and used them in the evaluation rules. Freitas and Guimaraes
[49] used a bi-objective evaluation method to address the
dissonance and simplicity of harmony. The fitness functions
are based on six rules considering the triads, dissonant chords,
invalid pitches and chords, unison, and tomic position. Liu
and Ting [84] proposed evaluating the compositions according
to the music theory. They adopted a set of rules associated
with chord notes, leap, harmony, and rhythm in the fitness
evaluation. This method was further applied to an automatic
composition system based on phrase imitation [132].

The rule-based evaluation methods are useful for creating
the compositions of a specific music genre. Some studies
leverage the music theory or the well-formed music structure
for a genre, e.g., Baroque and jazz, to construct the evaluation
rules. McIntyre [98] took account of the four-part Baroque

harmony in the fitness evaluation. Given the chords and the
four-part Baroque style, the GA arranges the notes to the four
music tracks whilst considering the harmony and stability in
the progression. Tzimeas and Mangina [138] constructed a
GA to transform the Baroque music to jazz music. The fitness
is determined by a critically-damped-oscillator function for
varying the evolutionary direction in accordance with the genre
and rhythm [139]. In addition, they used multiple objectives
to deal with the rhythm, where the weights of the objectives
are defined by the similarity to the target rhythm. Wang et
al. [147] focused on the Chinese Jiangnan ditty. The fitness
function in the proposed composition system uses the fea-
tures extracted from several Jiangnan ditties, including range,
melodic interval, mode, note duration, timbre, rhythm pattern,
and intervallic motive. Oliwa [108] designed polyphony com-
position depending on the features of rock music, such as
the tendency of scale, duration of notes, and coordination of
musical instruments.

3) Learning-based Evaluation: The learning-based evalua-
tion constructs the models from music data for the evaluation
of compositions. Machine learning techniques, such as neural
networks, are widely used for the evaluation model. Further-
more, they are applied to analyze, cluster, or classify the music
data, and the results are employed as the basis for evaluation.
Gibson and Byrne [58] utilized neural networks to construct
the model for the fitness evaluation on the combinations of
rhythms. Spector and Alpern [127] used neural networks with
Fahlman’s quickprop algorithm to characterize and evaluate
music in the GP-based composition system. Dannenberg et al.
[32] applied the linear and Bayesian classifiers on music data
and also utilized neural networks to extract the characteristics
of music for creating compositions. Burton and Vladimirova
[23] designed a GA for the arrangement of percussion, in
which the fitness function evaluates compositions according to
the results of a clustering algorithm on the music data. Simi-
larly, Manaris et al. [95] developed a GP method using a fitness
function based on the classification results (classical, popular,
and unpopular music) of neural networks. Osana et al. [53],
[76], [131], [135] trained N-gram models with 30 Japanese
children’s songs for evaluating the compositions. They further
improved the N-gram model by additional evaluation rules.
Yuksel et al. [155] established an RNN as the model for
evaluating compositions. The RNN was trained using a series
of human compositions. During training, the neural network
takes the input notes sequentially and the output is the pitch
and duration of the next note.

The learning-based evaluation methods can be incorporated
with the interaction-based or rule-based evaluation methods.
Ramirez et al. [117] used a classification approach and a
GA to learn the rule-based expressive performance model.
Compared to interaction-based evaluation, the learning-based
evaluation methods leverage the extant compositions and their
evaluations, instead of using real-time feedback from humans.
Hence, the learning-based evaluation methods can be used
to reduce the loading and fatigue issue at interaction-based
evaluation. Biles et al. [15], [16], [18] used neural networks in
GenJam to learn the feedback to the generated impromptu Jazz
music. The neural networks help to moderate the distraction
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and unstable evaluation caused by the fatigue from long-time
listening.

VI. FUTURE DIRECTIONS AND TOPICS

In this section, we present a number of directions and topics
for future research.

A. Representation
Most of the existing studies have adopted simple repre-

sentations for the pitches and duration. These representations,
nonetheless, cannot support the diverse use of musical sym-
bols, such as triplet, vibrato, and ornament. The design of new
representation for supporting comprehensive usage of musical
symbols will benefit the composing of music. In addition, a
representation that can exclude inappropriate settings for the
elements (e.g., pitches, chords, and beats) is desirable.

B. Evaluation
As aforementioned, evaluation of the generated composi-

tions is imperative for the CI-based composition approaches.
However, there exist some weaknesses in the extant designs
of evaluation methods. The interaction-based evaluation can
reflect the user’s genuine preference among the generated
compositions, but its practicability seriously detracts from
the fatigue and decreased sensitivity caused by the long-time
listening. The rule-based evaluation provides a fast way to
evaluate the compositions; however, the determination of the
rules and their weights raises another problem to be addressed.
The learning-based evaluation can build the evaluation model
from the music data but encounters the issues existing in
the machine learning methods, such as training time, model
construction, and fidelity.

To design an evaluation approach that can address the
above issues is a crucial research direction for the CI-based
composition systems. A promising way is to hybrid the
three evaluation methods to remedy their own weakness. For
example, learning-based approaches can be used to build the
surrogate for the interaction-based evaluation to reduce the
time and human loading at interaction [69], [70], [83]. The
evaluation rules in the rule-based approaches can serve as
the basis of an evaluation model, while the learning-based
methods are capable of learning the weights from personal
experiences or music data.

C. Deep Learning
Deep learning has thrived and gained many exciting

achievements over recent years [80], [124]. For example, the
famous music streaming service company, Spotify, adopts the
deep learning technique to analyze the user’s preferences for
better service and experience. In music composition, Huang
and Wu [66] presented a work on the generation of music
through deep learning. They used a multi-layer LSTM and
character-level language model to learn the musical struc-
ture. In addition, Google has recently released their Magenta
project [5], which uses the RNN on the TensorFlow platform
to generate piano melody. Although the current results are
preliminary, to explore the great potential of deep learning in
music composition is a significant topic for future research.

VII. CONCLUSIONS

Computational intelligence plays a pivotal role in algorith-
mic composition. This paper presents a survey on the research
of CI in music composition. In this survey, we review and
discuss the CI techniques for creating music in the light
of musical elements and algorithmic design. The first part
reviews the existing approaches for dealing with the three
principal elements in music composition, i.e., musical form,
melody, and accompaniment. The second part recapitulates
the various designs of evolutionary algorithms and neural
networks for creating compositions. In addition, we categorize
the evaluation methods into interaction-based, rule-based, and
learning-based evaluation, and discuss the existing approaches
for these three types of evaluation manners.

The above reviews and discussions show that the CI tech-
niques are highly capable and promising for algorithmic
composition. This survey also reflects the importance of evalu-
ation, representation, and learning of compositions in musical
creativity. Enhancement and advanced designs on these aspects
are suggested as the significant directions for future research
on CI in music composition.
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