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a b s t r a c t 

The pickup and delivery problem (PDP) addresses real-world problems in logistics and 

transportation, and establishes a critical class of vehicle routing problems. This study 

presents a novel variant of the PDP, called the multi-vehicle selective pickup and deliv- 

ery problem (MVSPDP), and designs three metaheuristic algorithms for this problem. The 

MVSPDP aims to find the minimum-cost routes for a fleet of vehicles collecting and sup- 

plying commodities, subject to the constraints on vehicle capacity and travel distance. The 

problem formulation features relaxing the requirement of visiting all pickup nodes and en- 

abling multiple vehicles for achieving transportation efficiency. To solve the MVSPDP, we 

propose three metaheuristic algorithms: tabu search (TS), genetic algorithm (GA), and scat- 

ter search (SS). A fixed-length representation is presented to indicate the varying number 

of vehicles used and the selection of pickup nodes. Furthermore, we devise four operators 

for TS, GA, and SS to handle the selection of pickup nodes, number of vehicles used, and 

their routes. The experimental results indicate that the three metaheuristic algorithms can 

effectively solve the MVSPDP. In particular, TS outperforms GA and SS in solution quality 

and convergence speed. In addition, the problem formulation produces substantially lower 

transportation costs than the PDP does, thus validating the utility of the MVSPDP. 

© 2017 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

The pickup and delivery problem (PDP) belongs to a critical class of vehicle routing problems and arises in several real-

world logistic problems, such as the delivery of packages and letters. In the PDP, customers are classified into pickup nodes

and delivery nodes, which represent customers providing and demanding commodities, respectively. The PDP is used to find

the shortest route that satisfies the requests of customers. Comprehensive surveys of the PDP are presented in [7,50,51,61] .

Parragh et al. [50,51] divided PDP scenarios into transportation between the depot and customers as well as conveyance

among customers. The first type involves commodities picked from and delivered to the depot. This one-to-many-to-one

(1-M-1) PDP is applicable to reverse logistics in simultaneously managing product distribution from the storehouse and ma-

terial collection for remanufacture [33,34,55,56] . The second type implements the one-to-one (1-1) PDP structure, through

which commodities are transferred between paired pickup and delivery nodes (e.g., dial-a-ride system [18] and message

transmission in mobile networks [64] ). This type can also be applied in many-to-many (M-M) transportation to supply a set

of delivery nodes with commodities collected from numerous pickup nodes [1,8,9,24,37] . 
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In most PDPs, equal amounts of total supply and total demand are assumed, which implicitly imposes a constraint on

visiting all customers [7] . Ting and Liao [61] recently proposed the selective pickup and delivery problem (SPDP) by relaxing

the constraint that the vehicle must visit all nodes in the PDP. Instead of collecting commodities from all pickup nodes,

the SPDP enables the selection of pickup nodes from which to collect sufficient commodities for all delivery nodes. Such

a relaxation in visiting all pickup nodes can substantially reduce the transportation cost for cases that focus on satisfying

the demand of delivery nodes. The selectability of pickup nodes is particularly useful for the real-world applications dealing

with the stock and supply of commodities. For example, in the city bike rental service, arranging the routes for the trucks to

transport bikes to the popular spots is a key issue for redistribution of bikes. The SPDP facilitates reducing the transportation

cost by picking up bikes from only some stations, rather than visiting all, and then delivering them to the demanded areas.

Compared with the PDP, the selectability of pickup nodes in the SPDP permits unequal amounts of total supply and total

demand and enables all delivery nodes to be supplied efficiently with an adequate number of commodities collected from

some pickup nodes by using a single vehicle. 

This study extends the SPDP in the number of vehicles to improve transportation efficiency. Specifically, we propose a

novel problem formulation, called the multi-vehicle selective pickup and delivery problem (MVSPDP), aiming to minimize the

transportation cost for multiple vehicles to supply all delivery nodes with commodities obtained from some selected pickup

nodes, given that each vehicle exhibits identical limits on vehicle capacity and travel distance. Using multiple vehicles can

effectually enhance transportation efficiency; however, this extension induces additional constraints, objectives, and logistic

characteristics and, therefore, poses considerable challenges to solving the problem. First, two additional constraints must be

addressed in the MVSPDP: one constraint requires the vehicle load to be nonnegative and lower than the vehicle capacity

along the route; the other constraint imposes the maximum travel distance for workload balance or the refueling require-

ments of each vehicle. Second, the number of vehicles in use plays an essential role in the resultant routes. Determining the

appropriate number of vehicles to use and arranging their routes are key issues in solving the MVSPDP. Third, the selectabil-

ity of pickup nodes can substantially reduce the cost of the route but increase the problem complexity [61] . An increase in

the number of vehicles, nevertheless, compounds the difficulty in selecting suitable pickup nodes for optimal routes. 

To solve the MVSPDP, we develop three metaheuristic algorithms: tabu search (TS) [29] , genetic algorithm (GA) [39] ,

and scatter search (SS) [28] . These three algorithms have been proved to be effective in resolving numerous search and

optimization problems [15,30,46,49] . The key challenge in these algorithms is to design effective operators that select pickup

nodes, organize visiting orders, and allocate multiple vehicles to minimize the total transportation cost in accordance with

the two constraints. In this study, we design the components and operators for the three metaheuristic algorithms to solve

the MVSPDP: 

• The representation for candidate solutions enables indicating the varying number of vehicles used and the selection of

pickup nodes by using a fixed-length string. 

• An evaluation function considering the solution feasibility is proposed to handle the constraints. 

• An initialization method based on the sweep algorithm is developed to improve search efficiency. 

• Four operators are devised to deal with route planning, the selection of pickup nodes, and the number of vehicles

adopted. 

In this study, a series of experiments is conducted to examine and compare the performance of the three metaheuristic

algorithms in solving the MVSPDP. In addition, the experiments are conducted to investigate the effects of deterministic

and adaptive control on the probability of performing a specific operator. The remainder of this paper is organized as fol-

lows: Section 2 presents the formulation of the MVSPDP; Section 3 elucidates the proposed TS, GA, and SS methods; and

Section 4 provides the experimental results. Finally, Section 5 draws the conclusions of this study. 

2. The multi-vehicle selective pickup and delivery problem 

This study presents a novel variant of the PDP, called the multi-vehicle selective pickup and delivery problem (MVSPDP).

The MVSPDP aims for the shortest routes for a fleet of vehicles that transport commodities from some pickup nodes to all

delivery nodes, subject to the constraints on vehicle capacity and travel distance. The vehicles are regulated to start from

and return to the depot. The following subsection presents the problem formulation of the MVSPDP. In addition, we derive

a bound of solution values for the MVSPDP. 

2.1. Problem formulation 

Let G = ( V, E ) be an undirected complete graph with vertex set V = ( v 0 , . . . , v n ) and edge set E ={(
v i , v j 

) | v i , v j ∈ V, v i � = v j 
}
, in which each edge (v i , v j ) has a cost c ij > 0 and c i j = c ji . The MVSPDP involves one de-

pot v 0 and n customer nodes v 1 , . . . , v n . Let d i denote the demand of node v i . According to the demand, the vertex set V is

divided into a set of pickup nodes V + = { v i | v i ∈ V, d i > 0 } , a set of delivery nodes V − = { v i | v i ∈ V, d i < 0 } , and the depot v 0
with d 0 = 0 . All m vehicles are assumed to exhibit the same capacity Q and maximal travel distance permitted R . 

Resolving the MVSPDP requires selecting pickup nodes and arranging visiting orders such that multiple vehicles supply

all delivery nodes with sufficient commodities. Let binary decision variable x i jk = 1 if the k th vehicle travels from v i to v j in a
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Fig. 1. An example representation for an MVSPDP instance with n = 16 customer nodes and m = 4 vehicles. The number inside circles denotes demand d i . 

The solid, dashed, and dotted lines represent the routes of three vehicles. 

 

 

 

 

 

 

 

 

 

 

 

 

directed path; otherwise, x i jk = 0 . Another binary variable y ik is associated with the visiting of a vehicle to a particular node:

y ik = 1 if the k th vehicle visits v i , and y ik = 0 otherwise. Let V ± = V + ∪ V −, the objective and constraints of the MVSPDP are

formulated as follows: 

min 

m ∑ 

k =1 

∑ 

v i , v j ∈ V 
c i j x i jk (1) 

s.t. ∑ 

v j ∈ V 
x i jk = 

∑ 

v j ∈ V 
x jik = y ik , ∀ v i ∈ V, k ∈ { 1 , . . . , m } (2) 

m ∑ 

k =1 

y ik = 1 , ∀ v i ∈ V 

− (3) 

m ∑ 

k =1 

y ik ≤ 1 , ∀ v i ∈ V 

+ (4) 

m ∑ 

k =1 

y 0 k ≤ m (5) 

∑ 

v i , v j ∈ V 
c i j x i jk ≤ R, ∀ k ∈ { 1 , . . . , m } (6) 

y sk ≤
∑ 

v i ∈ S 

∑ 

v j / ∈ S 
x i jk , ∀ S ⊆ V 

±, v s ∈ S, k ∈ { 1 , . . . , m } (7) 

z Sk = 	 
∑ 

v i , v j ∈ S x i jk ∑ 

v i ∈ S y ik − 1 


 ∑ 

v j ∈ S 
x 0 jk , ∀ S ⊆ V 

±, k ∈ { 1 , . . . , m } (8) 

0 ≤ z Sk 

∑ 

v i ∈ S 
d i y ik ≤ Q, ∀ S ⊆ V 

±, k ∈ { 1 , . . . , m } (9) 

Constraint (2) restricts incoming and outgoing flows to be equal and gives the value of decision variable y ik . Constraint

(3) guarantees that each delivery node can be visited exactly once, and constraint (4) enables selectability of pickup nodes.

The number of available vehicles is limited to m as specified in (5) . Constraint (6) further limits the maximal travel distance

R permitted for each vehicle. The subtour elimination for each route is presented in constraint (7) , which requires that each

subset of customers assigned to a vehicle has at least one flow going out of that subset. Regarding (8) , the floor part con-

siders the connection of nodes in the subset S ; that is, the number of traversed edges in a route equals the number of

visited nodes minus one, i.e., 
∑ 

v i , v j ∈ S x i jk = 

∑ 

v i ∈ S y ik − 1 . Hence, the variable z Sk = 1 if there exists an incoming flow issued

from v 0 to the subsequent connected route of the k th vehicle; otherwise, z Sk = 0 . For example, considering the route of the

third vehicle in Fig. 1 , i.e., v 0 →v 6 →v 10 →v 13 →v 16 →v 0 , the connected nodes S = { v 6 , v 10 } , { v 6 , v 10 , v 13 } , and { v 6 , v 10 , v 13 , v 16 }
have 

∑ 

v i , v j ∈ S x i j3 = 

∑ 

v i ∈ S y i 3 − 1 = 1 , 2, and 3, respectively, which give z S3 = 1 in that x 063 = 1 . By contrast, the unconnected
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nodes in the route, e.g. S = { v 10 , v 16 } , result in z S3 = 0 due to 
∑ 

v i , v j ∈ S x i j3 < 

∑ 

v i ∈ S y i 3 − 1 as well as 
∑ 

v j ∈ S x 0 j3 = 0 . Accord-

ingly, constraint (9) confines the vehicle load within capacity Q . 

The MVSPDP relaxes the requirement for visiting all pickup nodes and uses multiple vehicles. This problem formula-

tion is pertinent to real-world logistic applications, particularly for enabling some suppliers (pickup nodes) to satisfy the

demands of all customers (delivery nodes) by using multiple vehicles. Furthermore, the selectability of pickup nodes can

substantially reduce the transportation cost in the PDP. Some problems are related to but differ from the SPDP. The single-

commodity vehicle routing problem with pickup and delivery service (1-VRPPD) [43] uses multiple vehicles to solve the

one-commodity pickup-and-delivery problem [37] . The 1-VRPPD involves locating minimum-cost routes to transport homo-

geneous commodities among unpaired customers, according to the constraints that each node must be visited exactly once

and the depot can balance the total demand. Falcon et al. [25] applied this problem to manage carrier-based coverage repair

in wireless sensor networks, in which pickup nodes are optional. The principal difference between these problems and the

MVSPDP lies in the depot capability and unitary demand. The linehaul-feeder vehicle routing problem with virtual depots

[12] enables selectability of reloading spots; virtual depots refer to public parking lots in which a large vehicle dispatches

commodities to small vehicles for relaying delivery in narrow streets. By contrast, in the MVSPDP, each node is visited at

most once to collect a sufficient number of commodities and serve all of the delivery customers. 

Furthermore, the MVSPDP can be viewed as a combination of the SPDP and the vehicle routing problem (VRP); therefore,

the properties of both the SPDP and VRP must be considered in resolving the MVSPDP. For example, the VRP accounts for

the number of vehicles and depots [23,40] , time windows [6,32,42,59,66] , workload balance [36] , and dynamics [44] . In 1-1

transportation, the precedence constraint guarantees that a requested pickup node is visited before reaching the designated

destination [4,47] . Additional constraints on the duration of a single route and the number of passengers disembarking at

a site exist in some industries; for example, oil companies are subject to refueling requirements and security concerns on

the production platform [63] . The multiple requests in emergency transportation operations and the control of automated

guided vehicle dispatching in manufacturing create additional constraints or objectives regarding the passenger ride time,

occupancy rate, and resource required for service quality [26,48,52] . In addition to load splitting, which allows multiple ve-

hicles to serve mutual customers in the VRP, pairing transportation with transfer opportunity enables goods to be stored

temporarily in transshipment nodes, which are visited several times by multiple vehicles to satisfy requests [20,53] . The

1-M-1 PDP is a generalization of the capacitated vehicle routing problem and presents various limitations on solution types

[7] , including Hamiltonian [5,13,31] , delivery-first pickup-second [62,65] , and lasso tours [38] . Zhu et al. [67] recently con-

sidered the 1-M-1 PDP with three objectives and dynamic requests. Regarding intermodal shipments using containers, in-

dividual trips are permitted when containers are fully loaded, and a delivery trip and a pickup trip can be merged if the

time and container size are compatible [58] . Noteworthily, compensation for the travel cost is considered when selecting

pickups in the 1-M-1 structure [35] , whereas selection of pickups is executed in the MVSPDP to collect a sufficient number

of commodities for supplying delivery nodes. 

2.2. Bound from the minimum k-degree center tree 

This subsection attempts to bound the values of solutions to the MVSPDP. Christofides et al. [16] derived a bound for

the multiple traveling salesman problem (M-TSP), which can also serve as a lower bound for the VRP because the VRP can

be viewed as an M-TSP with additional constraints. In light of the fact that MVSPDP is a generalization of the VRP, we use

their method to compute the bound for the MVSPDP. Specifically, a solution to the M-TSP is decomposed into three sets,

i.e., S t , S 0 , and S 1 , where S t consists of the edges forming a k -degree center tree ( k -DCT) in the solution, and S 0 and S 1
comprise the remaining edges connected to v 0 and those between customer nodes, respectively. A k -DCT is a tree whose

branches connect to all vertices in G and the degree of v 0 is k . The number of available vehicles limits the maximal number

of edges in S 0 , i.e., | S 0 | ≤ m , leading to k = 2 m − | S 0 | . Let binary decision variable ξ t 
i j 

= 1 if (v i , v j ) is in the edge set S t , and

ξ t 
i j 

= 0 otherwise; in addition, let ξ 0 
i j 

and ξ 1 
i j 

denote such binary decision variables for S 0 and S 1 , respectively. According to

Christofides et al. [16] , the M-TSP can be formulated as follows: 

min 

∑ 

v i , v j ∈ V 
c i j (ξ

t 
i j + ξ 0 

i j + ξ 1 
i j ) (10)

s . t . ∑ 

v i ∈ S, v j / ∈ S 
ξ t 

i j ≥ 1 , ∀ S ⊂ V, S � = ∅ (11)

∑ 

v j ∈ V 
ξ t 

0 j = 2 m − y (12)

∑ 

v i , v j ∈ V 
ξ t 

i j = n (13)

∑ 

v j ∈ V 
ξ 0 

0 j = y, y ∈ Z 

∗ (14)



150 C.-K. Ting et al. / Information Sciences 406–407 (2017) 146–169 

Fig. 2. An example initialization for an MVSPDP instance with n = 16 , ˆ m 

′ = 3 , and δ = 7 . 67 . The number inside circles denotes demand d i . The grounds of 

the circles indicate respective partitions. The solid, dashed, and dotted lines represent the routes of three vehicles. 

Fig. 3. Example of relocation. The dotted circles indicate the node and target place chosen for relocation. 

Fig. 4. Example of inversion. The dotted circle indicates the part to be inverted. 

 

 

 

 

 

 

 

∑ 

v i , v j ∈ V ±
ξ 1 

i j = m − y (15) 

∑ 

v j ∈ V 
(ξ t 

i j + ξ 0 
i j + ξ 1 

i j ) = 2 , ∀ v i ∈ V 

± (16) 

Constraint (11) guarantees the connectivity of the k -DCT, in which the degree of v 0 is limited by constraint (12) . Constraints

(13), (14) , and (15) specify the numbers of edges required for S t , S 0 , and S 1 , respectively. Constraint (16) confines the degree

of each vertex in an M-TSP to two, except for v 0 . 
The Lagrangian relaxation produces three decomposed problems P t , P 0 , and P 1 for each candidate value of latent variable

y and introduces constraint (16) into a general objective: 

g κ (p, y ) = 

∑ 

v i , v j ∈ V 
(c i j + p i + p j ) ξ

κ
i j − 2 

∑ 

v i ∈ V ±
p i , (17)

where p = (p 1 , . . . , p n ) represents the non-negative penalties associated with the n customer nodes, and κ ∈ { t , 0, 1} denotes

the index of ξ t 
i j 
, ξ 0 

i j 
, and ξ 1 

i j 
. For a given value of y , let g t ( p , y ) be the value of optimal solution to P t defined by (17), (11),

(12) , and (13) ; let g 0 ( p , y ) be the value of optimal solution to P defined by (17) and (14) ; and let g 1 ( p , y ) be the value of
0 
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Fig. 5. Example of selection: a) selecting a pickup node; b) unselecting a pickup node. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

optimal solution to P 1 defined by (17) and (15) . A lower bound to the M-TSP can be computed by 

max 
y ≤m 

max 
p≥0 

(
g t (p, y ) + g 0 (p, y ) + g 1 (p, y ) 

)
. (18)

Note that this lower bound is valid for the VRP and the MVSPDP, albeit omitting the constraints on the vehicle load and

travel distance. Restated, the values of feasible solutions to these two problems must be no smaller than this lower bound;

otherwise, contradiction will occur during the approximation of the decomposed problems. 

3. Metaheuristics for the MVSPDP 

This study develops three metaheuristic algorithms for the MVSPDP: tabu search (TS), genetic algorithm (GA), and scatter

search (SS). A fixed-length representation is presented for the three algorithms to accommodate the MVSPDP. TS is initialized

using the modified sweep algorithm, whereas GA and SS are initialized by combining the modified sweep algorithm with

random initialization to increase the population diversity. 

In addition, we propose four operators serving as the neighborhood functions in TS, mutation operators in GA, and im-

provement operators in SS. Using multiple search operators in metaheuristic algorithms has shown to be helpful for explor-

ing different structures in a problem and achieved considerable successes [14,54,57,60] . In view of the benefits, this study

devises four operators for the three algorithms to deal with the visiting order, selection of pickup nodes, and the number of

vehicles adopted. 

The designs of the proposed algorithms are detailed in the subsequent sections. 

3.1. Tabu search 

Tabu search is a metaheuristic algorithm known for its effectiveness in combinatorial optimization problems. This meta-

heuristic algorithm uses an explicit memory structure to record the search trajectory. Based on recorded information, TS

guides the search considering both intensification and diversification. In TS, the search is processed using a series of moves

from a solution to its neighbor, where the neighborhood is generally defined by a distance function, such as the Ham-

ming distance. The tabu-versus-aspiration strategy controls the moves: On the one hand, TS uses the tabu list to record the

forbidden moves and prevents the search from being mired in the local optima by indicating certain moves as tabu . The

tabu tenure affects the level of restriction on choosing the forbidden moves; long tabu tenure guides the search to explore
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Fig. 6. Example of addition/deletion. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

unvisited territory, encouraging diversification. On the other hand, the aspiration criterion provides the opportunity to over-

ride the tabu restriction. That is, the aspiration criterion enables superior neighboring solutions to be chosen, despite the

restriction of tabu moves. This criterion supports the ability of intensification for the search. 

Designing TS involves solution representation, an evaluation function, initialization, a neighborhood function, and an 

adaptive search phase. The following subsections describe our designs of TS for the MVSPDP . 

3.1.1. Representation and evaluation function 

This study presents a representation for candidate solutions to the MVSPDP based on the chromosome representation

of Tan et al. [57] . In addition to indicating the visiting orders of nodes for vehicles, the proposed representation considers

selecting pickup nodes in the MVSPDP. Specifically, the representation consists of two parts: The first part comprises m + 1

nonnegative integers, of which the first m integers indicate the number of nodes for m vehicles to visit, and the final integer

provides the number of unselected pickup nodes. In the example representation in Fig. 1 , the first value “5” indicates that

the first vehicle must visit five nodes, while the fourth value “0” signifies that the fourth vehicle is unused and, therefore,

has no corresponding route. The second part of the representation indicates the visiting order of nodes for each vehicle.

The final sequence records the unselected pickup nodes, which are not visited by any vehicle. Noteworthily, although the

m + 1 sequences are variable-length, the sum of their lengths is fixed to the number of nodes n . Hence, the proposed

representation applies a fixed-length encoding, which is capable of indicating the varying number of vehicles used and the

selection of pickup nodes. 

In TS, the evaluation function determines the promising directions and guides the search toward the optima. The pro-

posed evaluation function considers the objective of the MVSPDP and deals with infeasible solutions. Formally, the evalua-

tion function for a solution x is defined as 

f (x ) = 

m ∑ 

k =1 

∑ 

v i , v j ∈ V 
c i j x i jk + αp d + β c̄ p l , (19) 

where c̄ is the average cost among all edges, and α and β denote the weights for penalizing the constraint violation on

loading and distance; both weights are set to 2 in this study. The penalty for violating load constraint p l counts the number

of times that vehicles are overloaded or have insufficient commodities on board, and penalty p accounts for the travel
d 
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Fig. 7. Crossover for the proposed GA: whole arithmetic crossover for the first part and order crossover for the second part. The gray squares denote 

the unselected pickup nodes, and the dashed lines indicate the cut points for order crossover. The green numbers in the resultant offspring highlight the 

changes in the number of visited nodes. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 

this article.) 

Fig. 8. Example of SS creating a solution from a and b . The dotted line indicates the cut point. 
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Table 1 

MVSPDP test instances. 

Instance Modified from m Q R #customers 

Pickup | V + | Delivery | V −| 
mvspdp50a vrpnc01 6 85 180 26 24 

mvspdp50b vrpnc06 7 85 260 27 23 

mvspdp75a vrpnc02 12 85 190 39 36 

mvspdp75b vrpnc07 13 85 230 41 34 

mvspdp100a vrpnc03 10 105 280 49 51 

mvspdp100b vrpnc08 10 95 290 44 56 

mvspdp100c vrpnc12 14 140 300 46 54 

mvspdp100d vrpnc14 11 115 1100 46 54 

mvspdp150a vrpnc04 16 130 280 69 81 

mvspdp150b vrpnc09 16 100 300 73 77 

mvspdp199a vrpnc05 22 110 300 96 103 

mvspdp199b vrpnc10 22 105 300 91 108 

mvspdp120a vrpnc11 10 110 350 62 58 

mvspdp120b vrpnc13 13 65 800 65 55 

mvspdp200 kelly05 6 450 30 0 0 98 102 

mvspdp240 kelly01 13 366 1083 128 112 

mvspdp280 kelly06 11 450 2500 142 138 

mvspdp320 kelly02 13 350 1500 172 148 

mvspdp360 kelly07 12 450 2166 188 172 

mvspdp400 kelly03 13 450 2400 202 198 

mvspdp440 kelly08 15 600 20 0 0 231 209 

mvspdp480 kelly04 14 500 2666 238 242 

Table 2 

Parameter setting. 

Parameter Value 

(a) Tabu search. 

Representation Integer + order 

Initialization Modified sweep algorithm 

Neighborhood function Relocation, inversion, selection, addition/deletion 

Neighborhood search Random 

Tabu tenure Adaptive 

Neighborhood Size 200 

Termination 1500 iterations 

#Evaluations per iteration 200 

Total #evaluations 30 0,0 0 0 

(b) Genetic algorithm. 

Representation Integer + order 

Initialization Modified sweep algorithm (50%), random (50%) 

Recombination ( p c ) Whole arithmetic (0.9), order crossover (0.9) 

Mutation ( p m ) Relocation (0.6), inversion (0.6), selection ( 1 / | V + | ), addition/deletion (1/ m ) 

Parent selection 2-tournament 

Survival selection μ + λ

Population size 100 

Termination 30 0 0 generations 

#Evaluations per generation 100 

Total #evaluations 30 0,0 0 0 

(c) Scatter search. 

Representation Integer + order 

Initialization Modified sweep algorithm (50%), random (50%) 

Population size 25 

Reference size 5 

Improvement method Hill climbing (HC) 

HC neighborhood function Relocation, inversion, selection, addition/deletion 

HC neighborhood size 100 

HC termination 10 iterations 

Termination 60 generations 

#Evaluations per generation 5010 

Total #evaluations 325,625 
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Table 3 

The average route length (avg.), feasible rate (feas.), and average running time (time) for the TS, GA, and SS using the 

fixed probability of applying the four operators on the MVSPDP instances with γ = 0 . Boldface marks the best result in 

each instance. 

Instance TS-fixed GA-fixed SS-fixed 

Avg. Feas. (%) Time (s) Avg. Feas. (%) Time (s) Avg. Feas. (%) Time (s) 

mvspdp50a 473 90 0.16 475 93 2.15 473 73 0.19 

mvspdp50b 434 93 0.21 4 4 4 93 3.12 4 4 4 87 0.24 

mvspdp75a 622 93 0.19 642 77 4.95 668 83 0.22 

mvspdp75b 568 97 0.23 572 90 6.15 601 97 0.25 

mvspdp100a 723 83 0.28 757 53 8.35 810 80 0.29 

mvspdp100b 716 93 0.30 739 93 8.53 745 90 0.33 

mvspdp100c 656 87 0.34 629 90 9.34 625 93 0.58 

mvspdp100d 529 100 0.40 500 100 8.51 522 100 0.61 

mvspdp150a 833 87 0.34 921 80 17.51 995 87 0.47 

mvspdp150b 853 97 0.35 886 87 17.40 985 83 0.47 

mvspdp199a 938 97 0.40 1090 83 28.85 1169 50 0.84 

mvspdp199b 978 90 0.40 1142 87 29.21 1149 87 0.85 

mvspdp120a 1186 97 0.25 1623 50 11.98 1372 37 0.46 

mvspdp120b 693 93 0.50 825 80 12.12 800 90 0.76 

mvspdp200 8440 17 0.77 11,109 3 24.16 – 0 –

mvspdp240 6584 90 0.40 – 0 – – 0 –

mvspdp280 10,518 100 0.63 – 0 – – 0 –

mvspdp320 10,359 100 0.52 – 0 – – 0 –

mvspdp360 12,745 97 0.59 – 0 – – 0 –

mvspdp400 14,954 97 0.70 – 0 – – 0 –

mvspdp440 15,751 93 0.58 – 0 – – 0 –

mvspdp480 17,798 90 0.64 – 0 – 24,690 3 5.43 

Table 4 

The average route length (avg.), feasible rate (feas.), and average running time (time) for the TS, GA, and SS using the fixed 

probability of applying the four operators on the MVSPDP instances with γ = 32 . Boldface marks the best result in each 

instance. 

Instance TS-fixed GA-fixed SS-fixed 

Avg. Feas. (%) Time (s) Avg. Feas. (%) Time (s) Avg. Feas. (%) Time (s) 

mvspdp50a 404 97 0.15 406 93 2.36 407 97 0.17 

mvspdp50b 365 100 0.20 363 100 3.08 373 100 0.21 

mvspdp75a 496 93 0.19 500 93 6.07 510 87 0.22 

mvspdp75b 442 93 0.23 453 93 6.07 448 87 0.25 

mvspdp100a 564 100 0.27 558 100 8.61 570 93 0.31 

mvspdp100b 603 100 0.28 602 93 7.94 611 100 0.33 

mvspdp100c 515 97 0.43 514 97 8.51 503 90 0.45 

mvspdp100d 464 100 0.49 452 100 7.90 461 100 0.44 

mvspdp150a 666 100 0.34 690 97 17.33 673 100 0.43 

mvspdp150b 664 100 0.37 690 90 17.02 679 93 0.43 

mvspdp199a 781 97 0.39 814 90 28.96 797 97 0.55 

mvspdp199b 812 100 0.39 862 93 27.93 837 90 0.58 

mvspdp120a 775 100 0.25 807 93 12.00 793 93 0.34 

mvspdp120b 563 100 0.55 579 100 12.62 625 100 0.49 

mvspdp200 6190 100 0.70 7112 93 21.64 6982 97 0.84 

mvspdp240 4529 97 0.38 5804 83 30.53 6943 63 1.18 

mvspdp280 7560 97 0.82 10,074 90 37.50 9841 90 1.30 

mvspdp320 6512 97 0.57 9354 73 50.43 10,825 53 1.95 

mvspdp360 8643 93 0.54 13,725 70 61.40 13,602 10 2.48 

mvspdp400 9299 100 0.76 15,611 87 73.16 24,569 23 3.24 

mvspdp440 10,066 97 0.64 17,579 57 89.72 11,913 93 3.37 

mvspdp480 12,320 93 0.82 21,865 57 99.08 15,179 93 3.42 

 

 

distance exceeding the limitation R . That is, 

p l = 

m ∑ 

k =1 

∑ 

S⊆V ±
	 Sk , (20)

p d = 

m ∑ 

k =1 

max 

{ 

0 , 
∑ 

v i , v j ∈ V 
c i j x i jk − R 

} 

, (21)
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Table 5 

The average route length (avg.), feasible rate (feas.) in percentage, and average running time (time) in seconds, for the 

TS, GA, and SS using the adaptive probability of applying the four operators, in comparison with CPLEX, on the MVSPDP 

instances with γ = 0 . Boldface marks the best result in each instance. 

Instance TS-adaptive GA-adaptive SS-adaptive CPLEX 

Avg. Feas. Time Avg. Feas. Time Avg. Feas. Time Length Time 

mvspdp50a 477 73 0.15 468 97 1.84 482 87 0.17 480 289408 

mvspdp50b 433 100 0.20 437 100 2.99 447 97 0.23 428 321872 

mvspdp75a 623 77 0.17 688 73 3.57 667 83 0.22 760 1218342 

mvspdp75b 562 93 0.21 635 80 5.50 590 93 0.24 767 1345694 

mvspdp100a 720 73 0.24 815 17 8.15 806 80 0.29 – –

mvspdp100b 715 93 0.25 778 100 7.99 747 93 0.35 – –

mvspdp100c 621 87 0.46 714 37 7.99 614 90 0.46 – –

mvspdp100d 508 100 0.65 499 100 8.16 519 100 0.70 – –

mvspdp150a 827 97 0.29 1207 23 16.19 1080 77 0.48 – –

mvspdp150b 808 100 0.31 1258 10 16.54 911 73 0.68 – –

mvspdp199a 898 100 0.35 1636 10 26.96 1232 43 0.85 – –

mvspdp199b 927 97 0.36 1713 13 26.33 1291 57 1.03 – –

mvspdp120a 1152 100 0.30 1680 10 11.66 1565 57 0.54 – –

mvspdp120b 629 100 0.76 1336 30 11.84 767 100 0.77 – –

mvspdp200 8288 17 0.46 – 0 – – 0 – – –

mvspdp240 6490 93 0.40 – 0 – – 0 – – –

mvspdp280 10,367 100 0.45 – 0 – – 0 – – –

mvspdp320 10,112 93 0.49 – 0 – – 0 – – –

mvspdp360 12,373 100 0.53 – 0 – – 0 – – –

mvspdp400 14,296 100 0.55 – 0 – – 0 – – –

mvspdp440 15,228 100 0.55 – 0 – – 0 – – –

mvspdp480 17,357 97 0.65 – 0 – 22,260 3 4.07 – –

Table 6 

The average route length (avg.), feasible rate (feas.) in percentage, and average running time (time) in seconds, for the TS, GA, 

and SS using the adaptive probability of applying the four operators, in comparison with CPLEX, on the MVSPDP instances 

with γ = 32 . Boldface marks the best result in each instance. 

Instance TS-adaptive GA-adaptive SS-adaptive CPLEX 

Avg. Feas. Time Avg. Feas. Time Avg. Feas. Time Length Time 

mvspdp50a 405 90 0.14 399 97 3.43 407 90 0.18 361 298319 

mvspdp50b 369 100 0.18 363 100 3.45 373 100 0.22 343 327830 

mvspdp75a 496 90 0.18 536 97 6.11 509 90 0.23 458 1376643 

mvspdp75b 453 100 0.18 471 97 6.33 458 97 0.25 392 1485938 

mvspdp100a 560 93 0.24 596 97 9.36 574 93 0.31 – –

mvspdp100b 595 97 0.24 629 93 9.05 609 100 0.33 – –

mvspdp100c 515 93 0.31 561 83 9.10 505 90 0.61 – –

mvspdp100d 459 100 0.44 456 100 9.50 458 100 0.64 – –

mvspdp150a 654 93 0.29 824 100 18.41 685 97 0.41 – –

mvspdp150b 645 90 0.31 804 100 19.04 679 97 0.41 – –

mvspdp199a 761 90 0.34 1078 100 31.78 801 100 0.55 – –

mvspdp199b 793 93 0.36 1157 97 30.83 829 100 0.61 – –

mvspdp120a 785 100 0.24 1041 93 14.82 784 100 0.45 – –

mvspdp120b 528 100 0.43 847 100 15.42 605 100 0.61 – –

mvspdp200 5937 100 0.54 7164 100 30.26 6758 97 0.76 – –

mvspdp240 4481 97 0.37 5849 93 45.25 6433 63 1.29 – –

mvspdp280 7297 90 0.60 10,034 100 57.91 8730 80 1.21 – –

mvspdp320 6341 97 0.39 8674 100 78.93 9713 47 1.88 – –

mvspdp360 8391 97 0.50 13,333 100 98.19 16,780 3 2.64 – –

mvspdp400 8938 97 0.63 14,025 97 112.96 24,180 30 3.23 – –

mvspdp440 9677 97 0.54 17,557 67 147.43 10,976 93 3.03 – –

mvspdp480 12,017 100 0.70 20,471 73 134.87 13,348 90 2.75 – –

 

where 

	 Sk = 

{ 

0 0 ≤ z Sk 

∑ 

v i ∈ S 
d i y ik ≤ Q, 

1 otherwise . 

(22) 

The evaluation function (19) considers route length as well as the penalties for violating the constraints on vehicle load and

maximal travel distance. Accordingly, TS tends to locate the shortest feasible routes for a fleet. 
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3.1.2. Initialization 

Beyond random initialization, this study proposes an improved initialization method based on the sweep algorithm. The

sweep algorithm has been widely used for dispatching vehicles [27] . It assigns disjoint sets of customers to vehicles accord-

ing to the polar-coordinate angle, and the routes are subsequently improved by the Lin-Kernighan algorithm [41] , yielding a

near-optimal solution to the single-depot vehicle-dispatch problem. Given that the number of pickup nodes is variable due

to their selectability in the MVSPDP, we perform such an assignment on only the delivery nodes. In addition, we estimate

the delivery requests served for a vehicle. First, the number ˆ s of selected pickup nodes can be approximated as follows: 

ˆ s = 

(
1 −

∑ 

v i ∈ V d i ∑ 

v j ∈ V + d j 

)
| V 

+ | , (23)

where 

∑ 

v i ∈ V d i ∑ 

v j ∈ V + 
d j 

is the ratio of surplus commodities to the total supply. The number of required vehicles ˆ m can then be

estimated by 

ˆ m = 

⌊
( ̂  s + | V 

−| ) · c̄ 

R − c̄ 
+ 0 . 5 

⌋
, (24)

where the numerator ( ̂ s + | V −| ) · c̄ provides an approximate travel distance for visiting the selected pickup nodes and all

delivery nodes, and the denominator (R − c̄ ) represents the maximal travel distance permitted for a vehicle, where c̄ is

subtracted because the route in the numerator omits one edge (i.e., the edge from the final node to the depot). Accordingly,

the estimated number of delivery requests served by a vehicle can be determined using 

δ = 

∑ 

v i ∈ V − | d i | 
ˆ m 

′ , (25)

where ˆ m 

′ ∈ [ min { ̂  m , m } , m ] is randomly chosen to diversify the initial state. 

To generate an initial solution, we sort the vertices according to the polar-coordinate angle and randomly select one

vertex as the starter. Following the sorting order, delivery nodes are sequentially assigned to a vehicle until the number of

required commodities exceeds δ. The final node is then randomly determined to be included in the route or a new route

served by the next vehicle. This assignment separates the sorted vertices into partitions. Accordingly, each vehicle begins at

the first pickup node in its partition and adds subsequent nodes (pickup or delivery) in ascending order of polar-coordinate

angle. The pickup nodes are stacked in the waiting list according to the sorting order. Given that a nonnegative vehicle

load must be maintained, a pickup node is popped from the waiting list whenever a negative vehicle load occurs. Fig. 2

illustrates the proposed initialization, where v 4 in Fig. 2 a is selected as the starter, producing sorted vertices as shown in

Fig. 2 b. Fig. 2 c presents three partitions, namely { v 1 , . . . , v 5 } , { v 6 , . . . , v 10 } , and { v 11 , . . . , v 16 } , in which v 5 and v 11 are the

final nodes assigned: v 5 is included in the first route, but v 11 is allocated to the subsequent vehicle. Additionally, v 12 is

the first pickup node of the third partition, but its supply is insufficient before visiting v 13 ; therefore, we pop v 8 from the

stack to keep the vehicle load nonnegative, causing crosses in the initial routes. Although it may bring about infeasible

solutions for the travel distance and vehicle load, using δ and polar-coordinate sorting can effectively generate promising

initial solutions. 

3.1.3. Neighborhood functions 

In this study, we devise four operators to construct the neighbors of the current solution. The four operators address

different aspects of the MVSPDP: The relocation operator and the inversion operator account for inter-route and intra-route

variations, respectively. The selection operator processes the selection of pickup nodes in the MVSPDP. Furthermore, the

addition/deletion operator adjusts the number of vehicles used. 

For generating the neighbors, the proposed TS randomly performs one of the four operators on the current solution and

repeats this procedure until the predetermined neighborhood size is achieved. Two methods are proposed for determining

the probability of an operator being selected: fixed probability and adaptive probability control. More details on the four

operators are presented below. 

Relocation. This operator produces an inter-route variation by moving a randomly chosen node to a previous or subsequent

route. The destination is limited to keep the sequence of the polar angles of nodes as complete as possible. Fig. 3 illustrates

an application of the relocation operator in which node v 9 is randomly chosen and relocated to the subsequent route. 

Inversion. The inversion operator produces an intra-route variation that inverts a random partial route to alter the visiting

order. An example of this operator is presented in Fig. 4 . The chosen partial route v 5 → v 9 → v 12 is inverted into v 12 → v 9 →
v 5 . 

Selection. The selection operator addresses the key factor in the MVSPDP: the selection of pickup nodes. The operator is

designed to randomly move a pickup node among the m + 1 sequences. The selection operator randomly chooses a pickup

node from the final sequence and then inserts this node into one of the first m routes as a selected pickup node. In addition,
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Fig. 9. Comparison of average route length, feasible rate, and average running time for the TS, GA, and SS using the fixed probability of applying the four 

operators on the MVSPDP instances with γ = 0 (left) and 32 (right). 

 

 

 

 

 

 

 

 

 

 

 

 

 

this operator may unselect a pickup node by moving it from the first m routes to the final sequence. Note that in the

representation, the first m sequences indicate the routes for m vehicles while the last sequence consists of the unselected

pickup nodes. As illustrated in Fig. 5 , node v 1 is selected and inserted between v 2 and v 7 ; by contrast, pickup node v 13 is

unselected as it is moved to the final sequence. 

Addition/Deletion. The number of vehicles used affects the routes and total distance traveled by all vehicles in the MVSPDP.

This study develops the addition/deletion operator to adjust the number of vehicles used; whether vehicles are added or

deleted is determined at uniform random. When adding a vehicle, the operator randomly selects a vehicle and then splits

its route into two parts: the first part is the route for the selected vehicle, and the second part is separated as a route for a

new vehicle. For example, the new route in Fig. 6 a is separated from the second route. 

When deleting a vehicle, the operator merges a randomly selected route with its adjacent route in the first part of

the representation. However, the merger may be infeasible because of vehicle overload. To address this issue, we propose a

heuristic to trim unnecessary pickup nodes. More specifically, this method iteratively removes the last visited pickup node by

moving it to the sequence of unselection if this elimination can keep the number of remaining commodities nonnegative. In

other words, the demand of removed pickup nodes must be less than or equal to 
∑ 

v i ∈ V d i y ik . Fig. 6 b illustrates the deletion

operation. Since the merged route has five remaining commodities, the deletion operator removes v with d = 3 to reduce
13 13 
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Fig. 10. Comparison of average route length, feasible rate, and average running time for the TS, GA, and SS using the adaptive probability of applying the 

four operators, in comparison with CPLEX, on the MVSPDP instances with γ = 0 (left) and 32 (right). 

 

 

 

 

 

 

 

 

 

the number of unnecessary pickup nodes. This procedure terminates at v 6 because d 6 = 3 , which exceeds 
∑ 

v i ∈ V d i y ik = 2 at

that time. The proposed method reduces the probability of overload and implicitly shortens the merged route. 

3.1.4. Adaptive search phase 

The proposed TS comprises two search phases: normal and intensification phases. Each phase manipulates the recency-

based short-term memory to achieve a particular strategy. In the TS, the tabu list records only the edges added or removed

by neighborhood functions instead of the entire solution. The list is used to forbid the change of these edges during tabu

tenure to increase diversification. The tabu tenure is randomly initialized within { 5 , . . . , 15 } in this study. Additionally, the

intensification phase halves the tabu tenure for the TS to exploit the neighborhood of elite solutions. 

The search phase is adaptively controlled according to variable φ. The TS conducts intensification only if φ is below the

threshold θ ; otherwise, it performs a normal search. The intensification phase empties tabu list and halves the tabu tenure,

and then restarts the search with the best-so-far solution. The value of φ is adjusted according to counter r , which increases

as the best solution improves, and decreases otherwise. Specifically, φ is varied by 

φ = 

{ 

φ · κ if r = −15 and φ > 0 . 2 

φ/κ if r = 20 and φ < 0 . 8 

φ otherwise 
(26)
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Fig. 11. Anytime behavior of the average route length over 30 runs of TS, GA, and SS using the adaptive probability, in comparison with CPLEX and its 

bound, on four MVSPDP instances with γ = 0 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As the search stagnates so long that r reaches −15 , the value of φ decreases due to the positive coefficient κ < 1. If this

situation consecutively occurs τ times, then the search is regarded as frozen, and thus we inactivate r and φ for t f gen-

erations. In addition, the tabu tenure is doubled in subsequent iterations to encourage exploring the unvisited regions and

escape from the local optima. In this study, the coefficients κ and φ are empirically set to 0.8 and 0.4, respectively; θ is

fixed to 0.2; τ = max { 2 , 	 n/ 50 + 0 . 5 
} ; and the frozen time t f is 50 generations. 

In summary, the adaptive search phase adjusts tabu tenure in response to the search progress for a balance between

exploitation and exploration. Algorithm 1 shows the procedure of the proposed TS. 

3.2. Genetic algorithm 

Genetic algorithm is well known for its effectiveness in global optimization. Generally, GA uses a set (population) of

candidate solutions (individuals or chromosomes) that can exchange information with each other by using genetic opera-

tors to explore the solution space. The operations in GA include selection, crossover, and mutation. The selection operator

chooses individuals from the population to generate new candidate solutions (offspring) through crossover and mutation.

The crossover operator exchanges and recombines the genetic information of selected individuals to produce offspring, and

the mutation slightly changes offspring to provide diversity. In GA, the ‘survival of the fittest’ principle is applied in selecting

individuals with highest fitness values to survive into the next generation. 

This study involves developing a GA for the MVSPDP. The designs focus on representation, fitness function, and genetic

operators. The details on the proposed GA are described in the subsequent sections. 

3.2.1. Representation and fitness function 

Individuals in the GA are represented using the representation proposed for the TS. Restated, an individual is composed

of two parts: the first part indicates the use of vehicles, and the second part represents their respective routes, i.e., visit-
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Fig. 12. Anytime behavior of the average route length over 30 runs of TS, GA, and SS using the adaptive probability, in comparison with CPLEX and its 

bound, on four MVSPDP instances with γ = 32 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ing orders of nodes (cf. Fig. 1 ). The half-half strategy is adopted for population initialization: the TS initialization operator

generates half of the initial population; the other half is generated at random to provide diversity. The fitness function uses

(19) , which accounts for the route length and the constraints on vehicle capacity and travel distance in the MVSPDP. 

3.2.2. Genetic operators 

The genetic operators in the GA include selection, crossover, and mutation. The selection operators, including parent

selection and survival selection, are associated with the fitness values of individuals. This study adopts 2-tournament parent

selection because of its recognized performance [2,22] . The 2-tournament selection randomly picks two individuals from the

population and selects the better individual as a parent. Performing this selection twice yields a pair of parents to be used

in subsequent reproduction (i.e., crossover and mutation). 

The crossover operator generates offspring by exchanging the information of two selected candidate solutions. In the

light of the representation of individuals, we adopt the whole arithmetic crossover [45] with α = 0 . 8 on the integer string

of the first part and conduct the order crossover [21] on the merged routes in the second part. Note that the offspring

inherit the selection of pickup nodes from the second part of their parents. However, the sum of resultant integer strings

may exceed or fall short of the total number of customers. To address this issue, the proposed crossover operator entails

selecting a random gene and reducing or increasing its value by 1 until reaching the requirement. The merged route is

then divided among vehicles according to the designated numbers in the integer string. Fig. 7 demonstrates the proposed

crossover operator with which the offspring obtain new routes as well as a diverse selection of pickup nodes. 

Moreover, this study utilizes the four neighborhood functions of TS as the mutation operators for the GA. The relocation

and inversion operators are used to produce inter-route and intra-route variations, respectively. The selection operator alters

the selection of pickup nodes in the MVSPDP. The addition/deletion operator can increase or decrease the number of vehicles
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Algorithm 1: Tabu search for the MVSPDP. 

Input : MVSPDP instance 

Output : solution x ∗

initialize( x ) ; // modified sweep algorithm 

x ∗ ← x ; // x ∗:best-so-far solution 
tenure ← rand ( 5 , 15 ) ; 

phase ← Normal ; 

r, c, t ← 0 , φ ← 0 . 4 ; 

repeat 

N ← neighborhood (x ) ; 

repeat 

x ′ ← best of N; 

N ← N\{ x ′ } ; 
until f (x ′ ) < f (x ∗) or (x x ′ ) / ∈ T abuList; 

adjust tenure according to phase ; 

update T abuList with x x ′ and tenure ; // :symmetric difference 

x ← x ′ ; 
if f (x ) < f (x ∗) then x ∗ ← x , r ← r + 1 ; 

else r ← r − 1; 

adjust φ according to r; // Eq. (26) 

if c = τ then 

t ← t f ; 

tenure ← 2 · tenure ; 

t ← t − 1 ; 

if φ ≤ θ and t < 0 then // intensification phase 

if phase = Normal then 

x ← x ∗; 

T abuList ← ∅ ; 
phase ← Intensification ; 

c ← c + 1 ; 

else // normal phase 

phase ← Normal ; 

c ← 0 ; 

if t = 0 then r ← 0 , φ ← 0 . 4 ; 

until terminated ; 

 

 

 

 

 

used. Each operator has a specific mutation rate, which is predetermined or adapted during the run. Section 4 examines the

effects of these two strategies. 

The selection-crossover-mutation process is repeated until the offspring population is generated. The survival selec- 

tion then picks out the fitter individuals for the subsequent generation. This study uses ( μ + λ) survival selection, in

which the fittest μ individuals are selected from the union of μ parents and λ offspring to survive into the next

generation. 

3.3. Scatter search 

Scatter search manipulates the population of solutions and uses a combination method to create new solutions [30] . The

key components of SS are listed as follows. 

• Diversification generation: A collection of diverse solutions is created using arbitrary or seed solutions. 

• Improvement: A solution is transformed into one or more enhanced solutions. 

• Reference set update: This procedure develops and maintains a reference set containing numerous best solutions

found. 

• Subset generation: A subset of solutions is generated from the reference set as the basis for solution combination. 

• Solution combination: The subset of generated solutions is combined into one or more solutions. 
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Table 7 

The average route length (avg.) and feasible rate (feas.) for the GA using the fixed and adaptive probability of applying the four operators. 

Column “time inc.” lists the increment (or decrement) in the running time of GA-adaptive over GA-fixed. Boldface indicates the higher feasible 

rate and significantly shorter average route length according to a one-tailed t -test with confidence level α = 0 . 05 . The dash indicates that no 

feasible solution is found in 30 runs. 

Instance γ = 0 γ = 32 

GA-fixed GA-adaptive GA-fixed GA-adaptive 

Ave. Feas. (%) Ave. Feas. (%) Time inc. (%) Ave. Feas. (%) Ave. Feas. (%) Time inc. (%) 

mvspdp50a 475 93 468 97 −14.42 406 93 399 97 45.34 

mvspdp50b 4 4 4 93 437 100 −4.17 363 100 363 100 12.01 

mvspdp75a 642 77 688 73 −27.88 500 93 536 97 0.66 

mvspdp75b 572 90 635 80 −10.57 453 93 471 97 4.28 

mvspdp100a 757 53 815 17 −2.40 558 100 596 97 8.71 

mvspdp100b 739 93 778 100 −6.33 602 93 629 93 13.98 

mvspdp100c 629 90 714 37 −14.45 514 97 561 83 6.93 

mvspdp100d 500 100 499 100 −4.11 452 100 456 100 20.25 

mvspdp150a 921 80 1207 23 −7.54 690 97 824 100 6.23 

mvspdp150b 886 87 1258 10 −4.94 690 90 804 100 11.87 

mvspdp199a 1090 83 1636 10 −6.55 814 90 1078 100 9.74 

mvspdp199b 1142 87 1713 13 −9.86 862 93 1157 97 10.38 

mvspdp120a 1623 50 1680 10 −2.67 807 93 1041 93 23.50 

mvspdp120b 825 80 1336 30 −2.31 579 100 847 100 22.19 

mvspdp200 11,109 3 – 0 7112 93 7164 100 39.83 

mvspdp240 – 0 – 0 5804 83 5849 93 48.21 

mvspdp280 – 0 – 0 10,074 90 10,034 100 54.43 

mvspdp320 – 0 – 0 9354 73 8674 100 56.51 

mvspdp360 – 0 – 0 13,725 70 13,333 100 59.92 

mvspdp400 – 0 – 0 15,611 87 14,025 97 54.40 

mvspdp440 – 0 – 0 17,579 57 17,557 67 64.32 

mvspdp480 – 0 – 0 21,865 57 20,471 73 36.12 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.3.1. Diversification generation and improvement 

The representation and evaluation function of SS follow those of the proposed TS and GA. In addition, the diversification

generation method uses the half-half strategy, in which both the modified sweep algorithm and random initialization are

adopted, as the proposed GA does. The improvement method is based on hill climbing (HC), for which the neighborhood

function employs the four operators of TS presented in Section 3.1.3 . 

3.3.2. Solution combination 

The combination method exchanges the information collected during the search. The proposed combination method is

used to create two solutions from a pair of routes in the reference set to retain their characteristics. Fig. 8 illustrates the

procedure for creating a solution. The solution c 1 inherits the first segment (i.e., the route of the first vehicle) from solution

a and sequentially fills the remaining genes without duplicates from solution b . The split procedure is then applied to cut

the solution and determine the number of nodes that each vehicle serves. The other solution is generated similarly but in

an opposite direction, that is, by copying the first segment of b and filling the remainder from a . 

In this study, the split procedure is based on the saving heuristic [17] . The cost (distance) before linking two nodes v i
and v j is c 0 i + c i 0 + c 0 j + c j0 , whereas the cost after linking them is c 0 i + c i j + c j0 . Thus, the benefit s from aggregation of v i
and v j is 

s i j = c i 0 + c 0 j − c i j . (27)

The edges are linked according to the amount of saved cost. However, the constraints on travel distance (6) and vehicle

capacity (9) may cause an individual to be cut into too many segments when using the split procedure; consequently, the

generated solutions become too similar. To address this problem, the split procedure uses two alternative constraints, 

2 

⌊ ∑ 

v i ∈ V −

d i 
| V 

−| 

⌋ 

≤ z Sk 

∑ 

v i ∈ S 
d i y ik ≤ Q (28)

∑ 

v i , v j ∈ V 
c i j x i jk ≤ R − n · c̄ 

50 

(29)

to relax the lower bound of the vehicle load and tighten the upper bound of the travel distance, respectively. 

3.3.3. Reference set 

The reference set is updated through an operation similar to the selection operation of GA, which chooses solutions to

generate new solutions. In SS, the reference set Ref is updated half from the original solutions and half from the newly
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Table 8 

The average route length (avg.) and feasible rate (feas.) for the TS using the fixed and adaptive probability of applying the four operators. Column 

“time inc.” lists the increment (or decrement) in the running time of TS-adaptive over TS-fixed. Boldface indicates the higher feasible rate and 

significantly shorter average route length according to a one-tailed t -test with confidence level α = 0 . 05 . The dash indicates that no feasible 

solution is found in 30 runs. 

Instance γ = 0 γ = 32 

TS-fixed TS-adaptive TS-fixed TS-adaptive 

Ave. Feas. (%) Ave. Feas. (%) Time inc. (%) Ave. Feas. (%) Ave. Feas. (%) Time inc. (%) 

mvspdp50a 473 90 477 73 −6.25 404 97 405 90 −6.67 

mvspdp50b 434 93 433 100 −4.76 365 100 369 100 −10.00 

mvspdp75a 622 93 623 77 −10.53 496 93 496 90 −5.26 

mvspdp75b 568 97 562 93 −8.70 442 93 453 100 −21.74 

mvspdp100a 723 83 720 73 −14.29 564 100 560 93 −11.11 

mvspdp100b 716 93 715 93 −16.67 603 100 595 97 −14.29 

mvspdp100c 656 87 621 87 35.29 515 97 515 93 −27.91 

mvspdp100d 529 100 508 100 62.50 464 100 459 100 −10.20 

mvspdp150a 833 87 827 97 −14.71 666 100 654 93 −14.71 

mvspdp150b 853 97 808 100 −11.43 664 100 645 90 −16.22 

mvspdp199a 938 97 898 100 −12.50 781 97 761 90 −12.82 

mvspdp199b 978 90 927 97 −10.00 812 100 793 93 −7.69 

mvspdp120a 1186 97 1152 100 20.00 775 100 785 100 −4.00 

mvspdp120b 693 93 629 100 52.00 563 100 528 100 −21.82 

mvspdp200 8440 17 8288 17 −40.26 6190 100 5937 100 −22.86 

mvspdp240 6584 90 6490 93 0.00 4529 97 4481 97 −2.63 

mvspdp280 10,518 100 10,367 100 −28.57 7560 97 7297 90 −26.83 

mvspdp320 10,359 100 10,112 93 −5.77 6512 97 6341 97 −31.58 

mvspdp360 12,745 97 12,373 100 −10.17 8643 93 8391 97 −7.41 

mvspdp400 14,954 97 14,296 100 −21.43 9299 100 8938 97 −17.11 

mvspdp440 15,751 93 15,228 100 −5.17 10,066 97 9677 97 −15.63 

mvspdp480 17,798 90 17,357 97 1.56 12,320 93 12,017 100 −14.63 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

generated solutions. Specifically, from the original solutions, the b 1 best and 

| Re f | 
2 − b 1 randomly-selected solutions are in-

cluded in the reference set. Similarly, the remaining half of the reference set is composed of the b 2 best and 

| Re f | 
2 − b 2 

randomly-selected solutions generated by the combination method. 

4. Experimental results 

This study conducts a series of experiments to evaluate the proposed TS, GA, and SS for the MVSPDP. The test instances

are modified from the Capacitated VRP Instances [11] , ranging from 50 to 480 customer nodes. In modifying these instances

for the MVSPDP, we change the demands of some random nodes to be negative, subject to the total demand being non-

negative. Table 1 lists the information of instances used in the experiments, where the total number of customers is indi-

cated in the instance name. In addition, we introduce parameter γ as a gain in supply for each pickup node, i.e., d ′ 
i 
= d i + γ

for all v i ∈ V + , to investigate the influence of the selectability of pickup nodes, where the vehicle capacity is increased by 2 γ
as well. The test instances can be downloaded via http://cilab.cs.ccu.edu.tw/MVSPDP.zip . Table 2 lists the parameter setting

for TS, GA, and SS in the experiments. Each algorithm is tested with 30 independent runs, considering its stochastic nature.

The experiments are performed on Windows 7 platform and Intel i7-920 machines. 

First, we investigate the performance of each algorithm using fixed and adaptive control strategies for the probabil-

ity of executing four operations, namely relocation, inversion, selection, and addition/deletion. In the experiments of fixed

probability, the neighborhood function of TS and SS randomly conducts one of the four proposed operations with equal

probability, whereas GA uses commonly suggested mutation rates for the four operators and enables more than one oper-

ator to be used in a mutation operation. Tables 3 and 4 list the results of TS, GA, and SS on the MVSPDP instances with

γ = { 0 , 32 } , where the dash indicates that no feasible solution is found in 30 runs. The feasible rate represents the per-

centage of runs achieving feasible solutions among the 30 runs. Boldface on the feasible rate marks the best result for the

instance, whilst boldface on the average route length denotes that the algorithm significantly outperforms the second best

method according to a one-tailed t -test with confidence level α = 0 . 05 , and multiple boldfaced results infer a nonsignificant

difference between them. Fig. 9 further compares the results of the three metaheuristic algorithms. The experimental results

show that, as the number of nodes increases, TS outperforms both GA and SS in the average route length and feasible rate.

Precisely, TS excels with statistical significance in 17 and 11 out of 22 instances for γ = 0 and 32 , respectively. Compared

with TS, GA and SS hardly yield feasible solutions for the MVSPDP instances with > 200 nodes and γ = 0 . Furthermore, TS

uses lowest computation time, whereas GA requires more than 10 times computation time of TS and SS. These outcomes

indicate the effectiveness and efficiency of the proposed TS for resolving the MVSPDP. 

Second, this study proposes adaptive control over the probability of performing each operator. For TS and SS, this proba-

bility is determined according to the proportion of times that a particular operator is selected as the neighborhood function

http://cilab.cs.ccu.edu.tw/MVSPDP.zip
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Table 9 

The route length (avg.) and feasible rate (feas.) for the SS using the fixed and adaptive probability of applying the four operators. Column “time 

inc.” lists the increment (or decrement) in the running time of SS-adaptive over SS-fixed. Boldface indicates the higher feasible rate and signifi- 

cantly shorter average route length according to a one-tailed t -test with confidence level α = 0 . 05 . The dash indicates that no feasible solution is 

found in 30 runs. 

Instance γ = 0 γ = 32 

SS-fixed SS-adaptive SS-fixed SS-adaptive 

Ave. Feas. (%) Ave. Feas. (%) Time inc. (%) Ave. Feas. (%) Ave. Feas. (%) Time inc. (%) 

mvspdp50a 473 73 482 87 −10.53 407 97 407 90 5.88 

mvspdp50b 4 4 4 87 447 97 −4.17 373 100 373 100 4.76 

mvspdp75a 668 83 667 83 0.00 510 87 509 90 4.55 

mvspdp75b 601 97 590 93 −4.00 448 87 458 97 0.00 

mvspdp100a 810 80 806 80 0.00 570 93 574 93 0.00 

mvspdp100b 745 90 747 93 6.06 611 100 609 100 0.00 

mvspdp100c 625 93 614 90 −20.69 503 90 505 90 35.56 

mvspdp100d 522 100 519 100 14.75 461 100 458 100 45.45 

mvspdp150a 995 87 1080 77 2.13 673 100 685 97 −4.65 

mvspdp150b 985 83 911 73 44.68 679 93 679 97 −4.65 

mvspdp199a 1169 50 1232 43 1.19 797 97 801 100 0.00 

mvspdp199b 1149 87 1291 57 21.18 837 90 829 100 5.17 

mvspdp120a 1372 37 1565 57 17.39 793 93 784 100 32.35 

mvspdp120b 800 90 767 100 1.32 625 100 605 100 24.49 

mvspdp200 – 0 – 0 6982 97 6758 97 −9.52 

mvspdp240 – 0 – 0 6943 63 6433 63 9.32 

mvspdp280 – 0 – 0 9841 90 8730 80 −6.92 

mvspdp320 – 0 – 0 10,825 53 9713 47 −3.59 

mvspdp360 – 0 – 0 13,602 10 16,780 3 6.45 

mvspdp400 – 0 – 0 24,569 23 24,180 30 −0.31 

mvspdp440 – 0 – 0 11,913 93 10,976 93 −10.09 

mvspdp480 24,690 3 22,260 3 −25.05 15,179 93 13,348 90 −19.59 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

during the search process. The lower bound of the probability is set at 0.05 to prevent stagnation, and the probability for

each operator is 0.25 during the frozen time in TS. As for GA, after an offspring is generated, we adaptively adjust the prob-

ability by multiplying the mutation rate by the ratio of its fitness to the less fit parent. Additionally, the mutation rates of

relocation and inversion operators are limited within [0.3, 0.9], and the rates for the selection and addition/deletion opera-

tors are [1 / 2 | V + | , 2 / | V + | ] and [1/2 m , 2/ m ], respectively. Tables 5 and 6 summarize the performance of TS, GA, and SS with

the adaptive probability of applying each operator on the MVSPDP instances with γ = { 0 , 32 } . 
Fig. 10 compares the route length, feasible rate, and average running time of the three metaheuristic algorithms. Sim-

ilar to the tendency observed regarding fixed probability, TS significantly outperforms GA and SS in 14 and 17 out of 22

instances for γ = 0 and 32 , respectively. Moreover, the experimental results indicate the considerable advantages of TS over

GA and SS in running time and feasible rate for solving the MVSPDP. Based on the superior performance, the TS with adap-

tive probability is a favorable method for the MVSPDP. Considering the search behavior of metaheuristic algorithms, the

local search methods like TS are good at locating the optima in a region, whereas the global search methods such as GA

excel in identifying the promising regions for global optima. In this regard, the preferable performance of TS implies the ad-

vantage of local search methods to solve the MVSPDP. In addition, the comprehensive survey of Cordeau et al. [19] indicated

that a considerable number of tabu search algorithms have been proposed for the VRP, while the use of adaptive memory

procedure initiated the study of population search heuristics for the VRP [10] . Baker and Ayechew [3] stated that, although

GA performs well, it is inferior to tabu search in terms of solution quality on the VRP. As the proposed MVSPDP is a variant

of the VRP, these empirical validations are referable for the MVSPDP; in fact, our experimental results are consistent with

these findings. 

Next, we compare the anytime behavior of the proposed TS, GA, and SS in terms of route length against time. The

comparison further includes the mixed integer programming solver IBM ILOG CPLEX, which presents a performance baseline

for the MVSPDP. A termination criterion of six million nodes traversed is set for the CPLEX due to long running time. Figs. 11

and 12 depict the progress of route length against running time for the test algorithms on four MVSPDP instances with

γ = { 0 , 32 } . The results show that TS achieves the fastest convergence, and SS converges faster than GA does. In addition,

the three proposed methods, i.e., TS, SS, and GA, are much more efficient than CPLEX. The figures show the closeness of

the obtained route lengths to the gradually increasing lower bound of CPLEX. However, the long running time of CPLEX

( > 400 h) hinders the experiments from getting the optimal solution and lower bound. Tables 5 and 6 compare the route

length obtained from the four test algorithms. According to the results, CPLEX can mostly gain shorter routes than the three

proposed algorithms on the small instances; nonetheless, its running time is at least 10 6 times longer than TS and SS, and

10 5 times longer than GA. By contrast, the three proposed algorithms, especially the TS, can yield competitive results in

reasonable time. 



166 C.-K. Ting et al. / Information Sciences 406–407 (2017) 146–169 

Fig. 13. Anytime behavior of the average route length over 30 runs of TS and SS using the fixed probability (f) and adaptive probability (a) of applying the 

four operators on mvspdp199a with γ = 32 . 

Fig. 14. The average route lengths obtained from TS, GA, and SS using the adaptive probability of applying the four operators at different gain values γ . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tables 7 –9 compare the results of fixed and adaptive probability to investigate their effects on the three algorithms.

According to Table 7 , the GA with fixed probability surpasses that with adaptive probability in route length, but is inferior

in feasible rate. By contrast, Tables 8 and 9 show that adaptively tuning the probability of executing operations for TS and

SS can significantly shorten the route length on instances involving substantial numbers of nodes and high gains. Notably,

TS with adaptive probability is computationally less time-consuming than that with fixed probability in most cases. Both

TS and SS with adaptive probability achieve similar feasible rates to their corresponding versions with fixed probability. In

addition, the anytime behavior of TS and SS, shown in Fig. 13 , demonstrates that adaptive probability effectively improves

the convergence speed of TS. These results validate the benefits of employing adaptive probability in TS and SS, in which

the adaptive control mechanism facilitates selecting promising operators in the course of search process. 

Finally, this study experiments with different gain values to examine the influence of the selectability of pickup nodes.

Fig. 14 presents only the results on mvspdp199a and mvspdp360 due to space limitation. The results indicate that GA and

SS infrequently find feasible solutions on mvspdp360 when γ is low, whereas the proposed TS achieves the shortest routes

and yields the lowest standard deviation among the test algorithms. The route length generally decreases as γ increases,

confirming that the flexibility in selecting pickup nodes intensifies when the commodities outnumber those required. The

selectability of pickup nodes in the MVSPDP expands the search space of VRP. In other words, the sparsity of feasible solu-

tions and the low gain γ raise the difficulty of searching for the optima; however, as γ increases, shorter routes could be

achieved by selecting the required pickup nodes. 

Fig. 15 illustrates the routes obtained from TS on mvspdp199a with γ = { 0 , 32 } . The resultant routes validate the ben-

efits of the MVSPDP: the route length and the number of selected pickup nodes decrease as γ increases. Additionally, the

selectability reduces the number of vehicles used ( Fig. 15 b). These results indicate that relaxing the constraint on visiting

all nodes provides economic solutions for real-world applications that focus on supplying all of the customers demanding
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Fig. 15. The route obtained from TS on mvspdp199a with γ = { 0 , 32 } . The square denotes the depot, solid circles denote pickup nodes, and hollow circles 

denote delivery nodes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

commodities. The solutions may contain “crosses” in routes, which seem to be undesirable in the sense of shortest path.

Nevertheless, the crosses are necessary for the optimal solutions in the SPDP and the MVSPDP because of the constraints

on vehicle capacity and nonnegative vehicle loads. 

5. Conclusions 

This study presents the multi-vehicle selective pickup and delivery problem (MVSPDP), which aims for the shortest routes

for a fleet of vehicles to collect and supply commodities in accordance with constraints regarding vehicle capacity and travel

distance. The problem formulation relaxes the requirement for visiting all nodes and uses multiple vehicles. The MVSPDP is

pertinent to real-world logistic applications that focus on supplying the demands of all customers from a certain number of

providers by using multiple vehicles. 

To resolve the MVSPDP, this study proposed three metaheuristic algorithms: TS, GA, and SS. The fixed-length representa-

tion enables indicating the varying number of vehicles and the selection of pickup nodes. Four neighborhood functions are

introduced to TS, each of which focuses on one critical aspect of solving the MVSPDP. In addition, these functions are used

as mutation operators in GA and as improvement methods for SS. Moreover, we proposed an initialization method based on

the sweep algorithm for the MVSPDP. 

A series of experiments is conducted to examine the proposed TS, GA, and SS. The experimental results indicate the

utility of the four operators in selecting pickup nodes and arranging the visiting order for the MVSPDP, which leads to

shorter routes than does the PDP. In addition, the results validate that the three metaheuristic algorithms can effectively

solve the MVSPDP; in particular, TS outperforms both GA and SS in route length and feasible rate on most of the instances

at various gain values. Moreover, TS requires less running time to achieve the solutions than the other two algorithms do.

According to these outcomes, TS with the adaptive probability of applying the four operators is a preferable method for

resolving the MVSPDP. 

Future studies include some directions. First, this study focuses on design of TS, GA, and SS; nonetheless, other estab-

lished algorithms, such as ant colony optimization (ACO) and particle swarm optimization (PSO), are also promising for the

MVSPDP. Improving the selection of appropriate pickup nodes and arrangement of routes can also be considered. Second,

the MVSPDP can be extended to various transportation scenarios and requirements, such as partial pickup and delivery,

time windows, and multiple objectives. Partial pickup and delivery enables each customer to be served by multiple vehicles.

The MVSPDP with time windows requires customers to be served at their preferred periods. The multi-objective MVSPDP

involves additional objectives, such as the number of vehicles and waiting time. In addition, the costs of unselecting pickup

customers and adding vehicles can be further taken into account. Third, formal analysis on the bound and behavior of

metaheuristic algorithms for the MVSPDP is a challenging yet fruitful topic for future work. 
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