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1 Introduction

Let G = (V, E,w) be an undirected graph with positive weight w(e) on each edge e ∈ E.

Given a starting vertex s ∈ V and a subset U ⊂ V as the demand vertex set, the minimum

latency problem (MLP) asks for a tour P starting at s and visiting each demand vertex

at least once such that the total latency of all demand vertices is minimized, in which the

latency of a vertex is the length of the path from s to the first visit of the vertex. The MLP

is an important problem in computer science and operations research, and is also known as

the delivery man problem or the traveling repairman problem.

Similar to the well-known traveling salesperson problem (TSP), in the MLP we are asked

to find an “optimal” way for routing a server passing through the demand vertices. The

difference is the objective functions. The latency of a vertex can be thought of as the delay

of the service. In the MLP we care about the total delay (service quality), while the total

length (service cost) is concerned in the TSP. The MLP on a metric space is NP-hard and also

MAX-SNP-hard [4]. Polynomial time algorithms are only known for very special graphs, such

as paths [1, 6], edge-unweighted trees [9], trees of diameter 3 [4], trees of constant number

of leaves [8], or graphs with similar structure [12]. Even for caterpillars (paths with edges

sticking out), no polynomial time algorithm has been reported. In a recent work, it is shown

that the MLP on edge-weighted trees is NP-hard [11]. Due to the NP-hardness, many works
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have been devoted to the approximation algorithms [2, 3, 4, 7, 8], and the current best

approximation ratio is 3.59 [5]. More references to exact and approximation algorithms can

be found in those papers.

“Dynamic programming” (DP) and “branch-and-bound” (B&B) are two popular strate-

gies used to exactly solve NP-hard problems without exhaustive search. As pointed out in

[12], the MLP can be exactly solved by a dynamic programming algorithm. However, the

algorithm is still very time-consuming. By designing non-trivial lower bound functions and

using a technique combining the advantages of both DP and B&B, we developed a series of

exact algorithms for the MLP. Experimental results on both random and real data are also

reported in this paper. The results show that our algorithm is much more efficient than the

DP algorithm and the B&B algorithm, and we believe that the technique can be also applied

to some other problems.

2 Preliminaries

In this paper, a graph is a simple and connected graph with a nonnegative weight on each

edge. Throughout this paper, the input graph is G, and n is the number of nodes of graph

G. An origin (starting vertex) is a given vertex of G. A tour is a route from the origin and

visiting each vertex at least once. A subtour is a partial or a complete tour starting at the

origin. Let H be a subgraph or a subtour. The set of vertices of H is denoted by V (H). For

u, v ∈ V (G), we use dG(u, v) to denote the length of the shortest path between u and v on

G. For a subtour P , dP (u, v) denotes the distance from the first visit of u to the first visit of

v in P , and w(P ) denotes the length of P .

Definition 1: Let P be a subtour starting at s on graph G. For a demand vertex v visited

by P , the latency of v is defined as dP (s, v), which is the distance from the origin to the first

visit of v on P . The latency of a tour P is defined by L(P ) =
∑

v∈U dP (s, v), in which U is

the demand vertex set.

In general, the input graph of a MLP may be any simple connected graph with nonnegative

edge weights, and the demand vertex set does not necessarily include all the vertices. A
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metric graph is a complete graph with edge weights satisfying the triangle inequality. By a

simple reduction, we may assume that the input graph is always a metric graph and all the

vertices are the demand vertices. Let G = (V, E, w) be the underlying graph and U ⊂ V be

the demand vertex set. We first compute the metric closure Ḡ = (U,U ×U, w̄) of G, in which

the weight on each edge is the shortest path length of the two endpoints in G. For any tour

P̄ on Ḡ, we can construct a corresponding tour P on G by simply replacing each edge in P̄

with the corresponding shortest path on G. It is easy to see that L(P ) ≤ L(P̄ ). Conversely,

given any tour P on G, we can obtain a tour P̄ on Ḡ by eliminating all vertices not in U .

Since the edge weight is the shortest path length, we have L(P̄ ) ≤ L(P ). Consequently the

minimum latencies of the two graphs are the same. Furthermore, if there exists an O(T (n))

time exact or approximation algorithm for the MLP on metric graphs, the MLP on general

graphs can be solved in O(T (n)+f(n)) time with the same performance guarantee, in which

f(n) is the time complexity for computing the all-pairs shortest path length. In the remaining

paragraphs, we assume that the input graph G is a metric graph and each vertex is a demand

vertex. It should also be noted that the optimal tour never visits the same vertex twice in a

metric graph.

3 Algorithms

3.1 Pure dynamic programming

To find the optimal tour of a MLP, a brute force algorithm checking all permutations of the

vertices except for the origin will take Ω((n − 1)!) time. In [12], it was pointed out that

the MLP can be solved in O(n22n) time by a dynamic programming algorithm. For the

completeness, we briefly explain the algorithm in the following.

Definition 2: Let P be a subtour on graph G. Define a cost function c(P ) = L(P ) +

(n − |V (P )|)w(P ), i.e., c(P ) is the total latency of the visited vertices plus the length of P

multiplied by the number of vertices not been visited.

Let P1 and P0 be two routes such that the last vertex of P1 is the first vertex of P0. We

use P1//P0 to denote the route obtained by concatenating P1 and P0. For a subtour P ,
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we say that P has configuration (R, v), in which R = V (P ) and v is the last vertex of P .

The dynamic programming algorithm is based on the following property which can be easily

shown by definition. It also explains the reason why we define the cost function c in such a

way.

Claim 1: Let P1 and P2 be subtours with the same configuration and c(P1) ≤ c(P2). If

Y2 = P2//P0 is a complete tour, i.e., P0 is a route starting at the last vertex of P2 and

visiting all the remaining vertices, then Y1 = P1//P0 is also a tour and L(Y1) ≤ L(Y2).

To find the minimum latency, by Claim 1, we only need to keep one subtour for each possible

configuration. The dynamic programming algorithm starts at the subtour containing only

the origin and computes the best subtour for each configuration in the order that the number

of the visited vertex is from small to large. The time complexity then follows that there are

O(n2n) configurations and we generate O(n) subtours when a subtour is extended by one

vertex.

3.2 Dynamic programming with pruning

To make the program more efficient, we introduce a pruning technique in the DP algorithm,

which is similar to the one used in a typical branch-and-bound algorithm. While the program

is running, we always record an upper bound (UB) of the optimal, which is the latency of

some feasible tour. For each generated subtour P , we compute a lower bound of P , which

is an under estimate of any complete tour containing P as a prefix. If the lower bound of a

subtour is no less than UB, we can prune the subtour without affecting the optimality of the

final solution. The key points are how we compute the UB and how we estimate the lower

bound of a subtour.

A pure DP algorithm does not generate any complete tour until it reaches the configura-

tions consisting of the set of all vertices. To get an upper bound, we employ a simple greedy

algorithm to build a tour. The greedy algorithm uses the “nearest vertex first” strategy.

Beginning with a subtour containing only the origin, we repeatedly augment the subtour by

one vertex until all vertices are included. At each iteration, we choose the vertex which is
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nearest to the stopping vertex of the subtour and has not been visited. Obviously, such a

tour can be computed in O(n2) time. In addition to the initial stage, our algorithm uses the

greedy method to build a tour whenever a new subtour is generated, and keep the current

best solution.

Algorithm DPwP MLP
Input: A metric graph G = (V, E,w) and an origin s ∈ V .
Output: The latency of the optimal tour.
// Qi is a queue for storing the generated subtours consisting of i vertices.
1: Initiate Q1, and insert subtour (s) into Q1.
2: Get an upper bound UB of the optimal.
3: For i ← 1 to n− 1 do
4: For each subtour P in Qi do
5: compute an upper bound UB′ from P ;
6: if UB′ < UB
7: UB ← UB′;
8: For each vertex v not in V (P ) do
9: generate a subtour P ′ = P//(v);
10: if there exists a subtour with the same configuration in Qi+1

11: keep the one with better c(·) value;
12: else
13: compute a lower bound LB of P ′;
14: if LB < UB then insert P ′ into Qi+1;
15: Output UB as the minimum latency.

At Step 10, we need to search a configuration in Qi+1. In a typical DP algorithm,

such a step can be implemented by employing an array, of which each element is for one

configuration. By suitably encoding the configurations, the search can be done in only one

memory access. However, such a simple method is not suitable for our algorithm since it

requires to check every configuration, and this is what we want to avoid. Because of the large

size of the queue, a good data structure should be used. In our program, we use an AVL

tree. In the next section, we shall present the experimental results, and it shows that the

improvement is very significant, compared to a link list implementation.

As in a typical B&B algorithm, the lower bound function is a key point to the efficiency

of the algorithm. The running time depends heavily on two factors: the number of the

generated subtours and the time to compute a lower bound of a subtour. A lower bound

function eliminating many subtours may be bad if it suffers from a long computation time.
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In the following, let G = (V, E,w) be the input metric graph and s be the origin. Let P be a

subtour stopping at a vertex r and Y = P//P0 be the best tour consisting of P as its prefix.

Let V̄ = V − V (P ), n̄ = |V̄ |, and P0 = (v0 = r, v1, v2 . . . , vn̄). Remember that the best tour

never visits a vertex twice in a metric graph. A function is a LB function of P if the latency

of Y is lower bounded by the value of the function. We begin with a simple observation.

For any 1 ≤ i ≤ n̄, by the triangle inequality, we have

dY (s, vi) = w(P ) + dY (r, vi) ≥ w(P ) + w(r, vi).

Therefore,

L(Y ) ≥ L(P ) +
n̄∑

i=1

(w(P ) + w(r, vi))

= L(P ) + n̄w(P ) +
n̄∑

i=1

w(r, vi)

= c(P ) +
∑

v∈V̄

w(r, v).

The following property is obvious, and we omit the proof.

Claim 2: The function B1(P ) = c(P ) +
∑

v∈V̄ w(r, v) is a LB function of P and can be

computed in O(n) time.

Next, we generalize the simple idea. Let li(r, v) be the length of the shortest i-edges path

between vertices r and v. Thereby an i-edges path is a path consisting of exactly i different

edges. We first show the following property.

Lemma 3: For any vertices r and v, li(r, v) ≤ lj(r, v) if i < j.

Proof: It is sufficient to show that li(r, v) ≤ li+1(r, v). Let Q = (r, u1, u2, . . . , ui+1 = v)

be the shortest (i + 1)-edges path. Then Q′ = (r, u2, . . . , ui+1) is an i-edges path, and

w(Q′) ≤ w(Q) since w(r, u2) ≤ w(r, u1) + w(u1, u2) by the triangle inequality. By the

definition of li, we have li(r, v) ≤ w(Q′), and this completes the proof.

Note that l1(r, v) is exactly w(r, v) by definition. By the monotonic property of li, it is natural

to use a more general li as the lower bound function. In the next theorem, we establish a

family of lower bound functions. Note that the function B1 coincides with the one in Claim

2.
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Theorem 4: Let k ≥ 1. The function

Bk(P ) = c(P ) +
∑

v∈V̄

lk(r, v)−
k−1∑

i=1

max
v∈V̄

{lk(r, v)− li(r, v)}

is a LB function of P and can be computed in O(kn) time if the value li(r, v) is available for

any 1 ≤ i ≤ k and any v ∈ V̄ .

Proof: Clearly li(r, vi) ≤ dY (r, vi) since dY (r, vi) is the length of an i-edges path while

li(r, vi) is the minimum among all possible such paths. Furthermore, by Lemma 3, we have

li(r, v) ≤ dY (r, vj) for any j ≥ i, and therefore, for k ≥ 1,

L(Y ) = c(P ) +
n̄∑

i=1

dY (r, vi)

≥ c(P ) +
n̄∑

i=1

li(r, vi)

≥ c(P ) +
k−1∑

i=1

li(r, vi) +
n̄∑

i=k

lk(r, vi) (1)

For i < k, we rewrite

li(r, vi) = lk(r, vi)− (lk(r, vi)− li(r, vi))

in Eq. (1), and obtain

L(Y ) ≥ c(P ) +
n̄∑

i=1

lk(r, vi)−
k−1∑

i=1

(lk(r, vi)− li(r, vi))

≥ c(P ) +
∑

v∈V̄

lk(r, v)−
k−1∑

i=1

max
v∈V̄

{lk(r, v)− li(r, v)}

Finally the time complexity is obviously O(kn).

Although it is very time-consuming to compute lk even for small k, we compute the values

only once in a preprocessing stage. As a subtour is generated, we need only O(kn) time

to obtain a lower bound. We summarize the time complexity of the algorithm in the next

theorem.

Theorem 5: The algorithm DPwP MLP with lower bound function Bk runs in O(nk+1 +

n2T ) time, in which T is the number of generated subtours.
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Proof: To employ Bk as the lower bound function, we compute li(u, v) for any 1 ≤ i ≤ k

and each vertex pair (u, v) in a preprocessing stage. Since li(u, v) is the length of the shortest

i-edges path and an i-edges path containing exactly i−1 intermediate vertices, all these values

can be computed in O(nk+1) time by exhaustively checking all possible permutations.

For each generated subtour, at Step 5–7, we compute a feasible tour and update the upper

bound if necessary, and it takes O(n2) time. For searching the configuration in Qi+1 at Step

10, by employing an AVL tree, we perform O(log |Qi+1|) comparisons of configurations. Since

there are at most n2n configurations, the number of comparisons is O(n). A configuration

consists of a vertex and a set of up to n vertices. Comparing two configurations takes O(n)

time. Therefore, the total time for searching the AVL trees is O(n2T ), in which T is the total

number of generated subtours.

For Step 13, by Theorem 4, the time for computing the lower bounds of all subtours

is O(knT ). For Step 14, since inserting an element into the AVL tree has the same time

complexity as the searching, the total time for all the insertions is also O(n2T ). In summary,

the time complexity of the algorithm is therefore O(nk+1 + n2T ).

4 The experimental results

We implemented the algorithms in C language and investigated their practical performances.

All the tests were performed on personal computers, each of which is equipped with an Intel

Pentium IV 2.4 GHz CPU and 256M bytes memory. Two types of test data were used:

random data and real data. For each test case, the running time includes all the steps except

for generating or calculating the input distances.

4.1 Random data

The random data were generated artificially with edge weights drawn from uniform distribu-

tion. All the edge weights are integers between 1 and 1024. In Table 1, we summarize the

maximum running time for each program in the tests on random data. Algorithm DPP(i)

denote the algorithm DPwP MLP with lower bound function Bi. For the sake of compari-
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Table 1: The maximum running time in the random data tests (seconds, K=1000)
n 15 16 17 18 19 20 21 22 23
BF 10.5K 165K - - - - - - -
DP 1.45 3.27 8.38 17.7 40.0 96.8 12.5K* - -
DPP L 1.07 2.77 25.2 99.4 367 4.07K 8.41K - -
DPP(1) 0.30 0.50 2.03 4.19 11.3 43.7 81.0 180 11.7K*
DPP(2) 0.22 0.38 1.44 2.94 7.66 29.1 54.6 166 302
DPP(3) 0.17 0.28 0.91 2.03 5.27 17.7 37.2 128 247
DPP(4) 0.25 0.47 1.00 2.06 4.91 11.1 25.8 96.6 176
DPP(5) 1.45 2.56 4.92 8.03 13.7 22.7 40.5 105 165
B&B(1) 1.80 3.91 15.0 55.7 161 1.77K 2.97K 6.50K -

Table 2: The maximum number of generated subtours in random data tests (M=106)
DP DPP(1) DPP(2) DPP(3) DPP(4) DPP(5) B&B(1)

n = 15 114689 25825 17737 11835 7624 5147 0.54M
n = 18 1.1M 0.23M 0.12M 0.11M 78989 69855 14.8M
n = 21 10.5M 2.96M 1.99M 1.32M 0.83M 0.51M 593M
n = 23 - 9.17M 7.35M 6.51M 4.51M 3.26M -

son, we also implemented the brute-force method (labeled by BF) and the branch-and-bound

method (labeled by B&B(1), using the lower bound function B1). The BF computes the op-

timal solution by simply checking all the possible permutations. The B&B(1) program is

similar to DPP(1) except that it does not merge the subtours with the same configuration.

It uses the depth-first strategy to choose the subtour to be extended, and the chosen subtour

is augmented by each of the vertices not been visited yet. In fact, we also implemented the

branch-and-bound method with Bi, i > 1. But their behaviors are similar, and we only

list B&B(1) for comparison. Algorithm DPP L is the same as DPP(1) but using a link list

instead of an AVL tree as the data structure for storing the configurations.

Basically at least one hundred data instances were used for each problem size. But, for

BF and DP, only few instances are tested because their performances almost do not vary

with the input data of the same number of vertices. Some cells in the table are marked with

“-” to indicate that we did not complete the tests on these cases because some data instances

took too long to complete. A “*” in a cell indicates that the long running time is caused

by “disk swap” in the virtual memory system. In Table 2, we list the maximum number of

subtours generated by each program for some typical values of n.
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Table 3: The running time in the real data tests (seconds)
Data name DPP(1) DPP(2) DPP(3) DPP(4) DPP(5) B&B(1)
Ulysses16 0.09 0.08 0.09 0.13 0.33 0.45
Ulysses22 3.40 3.53 3.50 3.42 5.55 54.47
Gr24 54.47 51.54 43.64 34.41 30.23 285.17
Fri26 39.61 37.64 32.75 26.09 27.41 257.60

4.2 Real data

In addition to the random data, we also used real data to test the performances of the

algorithms. The data instances are chosen from TSPLIB [10] for the sake of their problem

sizes. The results are shown in Table 3. Note that the number appeared in the name indicates

the number of vertices for each instance. In fact, we have also performed some other tests

on partial data drawn from larger instances in TSPLIB. The results are similar. Roughly

speaking, problems with 25–26 vertices can be solved in about 100 seconds. Comparing with

the results of random data, the performances are much better. The reason may be that the

real data are more structured and therefore the bad cases rarely happen.

5 Discussion and concluding remarks

By the experimental results and some other observations in our development, we make the

following conclusions.

• The algorithm DPwP MLP takes the advantages of both the dynamic programming

and the branch-and-bound strategies, and significantly improves the performance.

• Using a good data structure such as the AVL tree in our program is very important.

The reason is obvious by knowing the numbers of the generated subtours (Table 2).

• For small integers j > i, DPP(j) is better than DPP(i) when n exceeds some value.

• Theoretically, we can improve the lower bound by restricting that the i-edge path can

only visit the vertices in V̄ . But it suffers from a long computation time and therefore

has a worse performance. In fact, we have tried several other lower bound functions.

Some of them eliminate much more subtours than B1 but has a worse performance.
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