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Abstract. Often real-time embedded software is specified as a set of interacting
tasks that have local deadlines on subtasks and global deadlines on each task. Cur-
rently available scheduling algorithms guarantee only a single level of deadlines,
either all local or all global, but not both. We propose a quasi-dynamic scheduling
algorithm for simultaneously guaranteeing both types of deadlines, while satis-
fying all precedence constraints among subtasks and among tasks. Through this
scheduling procedure, we are able to formally synthesize real-time embedded
software from a network of Periodic Time Petri Nets specification. Application
examples, including a driver for the Master/Slave role switch in Bluetooth wire-
less communication devices, are given to illustrate the feasibility of the schedul-
ing algorithm.
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1 Introduction

Often a real-time embedded system task is composed of some constituent subtasks, each
of which has its own local deadline, while the task itself has a global deadline. Current
scheduling algorithms do not explicitly consider such multilevel deadlines leading to
the necessity for work-around efforts. We propose a scheduling algorithm to resolve
this issue and show how it can be used for synthesizing real-time embedded software
specifications into actual program code.

As a motivating example depicted in Fig. 1, consider the Modular Mobile Dispatch-
ing System (MMDS) [19], which consists of a GPS receiver, a GIS database, a GSM
communication module, and other I/O peripherals for dispatching of vehicles through a
call center. Besides the local deadlines on each GPS, GIS, and GSM task, there is also
a global deadline on each scenario which is composed of several tasks with precedence

1 This work was supported in part by a project grant NSC91-2213-E-194-008 from the National
Science Council, Taiwan.



GIS enabled

Vehicle

GPS

MMDT

Vehicle

Vehicle

(DC)
Dispatching Center

GPS

MMDT

GPS

MMDT

Fig. 1. Modular Mobile Dispatching System

and concurrency relationships. A typical scenario would be that of a vehicle driver en-
countering an emergency situation, in which the driver uses MMDS and expects to get
help within 4 minutes from the time a call is made from the vehicle to the call center.
Within this time span, MMDS must get GPS location information, transmit it to the call
center through GSM communication, the call center must plot the driver’s location on
a digital map using GIS, locate the nearest help on the map, dispatch help (such as an
ambulance) to the location by notifying the target help through GSM, while providing
navigation guidelines through an active GIS database.

There are several issues involved in such a typical real-time scenario, as detailed in
the following.

– How to determine which subtasks are concurrently enabled at any point of execu-
tion?

– How to check if each subtask completes execution within its local deadline, while
satisfying all precedence constraints among the subtasks?

– How to check if each task completes execution within its global deadline?
– How to obtain an optimal schedule of all system tasks such that shortest execution

time is guaranteed, if one exists?
– How to estimate the amount of memory space required for the execution of a real-

time embedded software system?

Corresponding to each of the above issues, we propose a set of solutions in the form
of a scheduling method called Quasi-Dynamic Scheduling (QDS), which incorporates
the respective solutions as briefly described in the following. Details will be given when
the algorithm is described in Section 4.

– Concurrently Enabled Group: We maintain a group of concurrently enabled sub-
tasks, while the system’s behavior is statically simulated to satisfy all precedence
relationships.



– Tentative Schedulability Check: Since the group of concurrently enabled subtasks
changes dynamically with system execution, its schedulability can be checked only
tentatively for the current group.

– Global System Timer: A global system timer is maintained that keeps count of the
current total amount of processor time taken by the execution of all tasks.

– Pruned Reachability Tree: Because schedulability checks are only tentative for a
group of subtasks, a reachability tree is created so that an optimal schedule can be
found. Heuristics are applied to prune the tree on-the-fly while it is being created.

– Maximum Memory Estimation: Using various memory estimation techniques, both
static and dynamic memory space allocations are statically counted, including mem-
ory spaces for both local and global variables.

Basically, quasi-dynamic scheduling is a combination of quasi-static scheduling and
dynamic scheduling. Data dependent branch executions are statically decomposed into
different behavior configurations and quasi-statically scheduled [20]. For each quasi-
statically decomposed behavior configuration, dynamic scheduling is employed to sat-
isfy all local deadlines of each subtask, all precedence constraints among subtasks, and
all global deadlines of each task.

To illustrate the importance of this research result, consider how existing schedul-
ing approaches must be applied to a system with both local and global deadlines. In
this case, there is a need for work-around methods such as making global deadline the
sum of all local deadlines in a critical path of the task. The user is burdened with the
responsibility of analyzing a task and finding the critical path, a non-trivial task in some
cases, apriori to scheduling. Further, this work-around method only works if the global
deadline is not smaller than the sum of all local deadlines in a critical path of a task,
because otherwise it would amount to restraining each local deadline, thus making an
otherwise schedulable system unschedulable. In summary, the work presented here is
not only a flexibility enhancement to current scheduling methods, but also a necessary
effort in checking schedulability for real systems.

This article is organized as follows. In Section 2, we delve on some previous work
in quasi-static scheduling and real-time scheduling related to the synthesis of real-time
embedded software. In Section 3, we formulate our target problem to be solved, our
system model, and give an illustrative example. In Section 4, we present our quasi-
dynamic scheduling algorithm and how it is applied to the running example. Section 6
concludes the article giving some future work.

2 Previous Work

Since our target is formally synthesizing real-time embedded software, we will only
discuss scheduling algorithms that have been used for this purpose.

Due to the importance of ensuring the correctness of embedded software, formal
synthesis has emerged as a precise and efficient method for designing software in control-
dominated and real-time embedded systems [6, 11, 20, 21]. Partial software synthesis
was mainly carried out for communication protocols [18], plant controllers [17], and



real-time schedulers [1] because they generally exhibited regular behaviors. Only re-
cently has there been some work on automatically generating software code for embed-
ded systems [2, 16, 20], including commercial tools such as MetaH from Honeywell. In
the following, we will briefly survey the existing works on the synthesis of real-time
embedded software, on which our work is based.

Previous methods for the automatic synthesis of embedded software mostly do not
consider temporal constraints [15, 16, 20, 21], which results in temporally infeasible
schedules and thus incorrect systems. Some recently proposed methods [11, 14] explic-
itly take time into consideration while scheduling, but have not solved the multilevel
deadlines issue. Details of each method are given in the rest of this section.

Lin [15, 16] proposed an algorithm that generates a software program from a con-
current process specification through intermediate Petri-Net representation. This ap-
proach is based on the assumption that the Petri-Nets are safe, i.e., buffers can store at
most one data unit, which implies that it is always schedulable. The proposed method
applies quasi-static scheduling to a set of safe Petri-Nets to produce a set of correspond-
ing state machines, which are then mapped syntactically to the final software code.

A software synthesis method was proposed for a more general Petri-Net framework
by Sgroi et al. [20]. A quasi-static scheduling (QSS) algorithm was proposed for Free-
Choice Petri Nets (FCPN) [20]. A necessary and sufficient condition was given for a
FCPN to be schedulable. Schedulability was first tested for a FCPN and then a valid
schedule generated by decomposing a FCPN into a set of Conflict-Free (CF) compo-
nents which were then individually and statically scheduled. Code was finally generated
from the valid schedule.

Later, Hsiung integrated quasi-static scheduling with real-time scheduling to syn-
thesize real-time embedded software [11]. A synthesis method for soft real-time sys-
tems was also proposed by Hsiung [12]. The free-choice restriction was first removed by
Su and Hsiung in their work [21] on extended quasi-static scheduling (EQSS). Recently,
Gau and Hsiung proposed a more integrated approach called time-memory scheduling
[6, 13] based on reachability trees.

A recently proposed timed quasi-static scheduling (TQSS) method [14] extends
two previous works: (1) the QSS [20] method by handling non-free choices (or com-
plex choices) that appear in system models, and (2) the EQSS [21] by adding time
constraints in the system model. Further, TQSS also ensures that limited embedded
memory constraints and time constraints are also satisfied. For feasible schedules, real-
time embedded software code is generated as a set of communicating POSIX threads,
which may then be deployed for execution by a real-time operating system.

Balarin et al. [2] proposed a software synthesis procedure for reactive embedded
systems in the Codesign Finite State Machine (CFSM) [3] framework with the POLIS
hardware-software codesign tool [3]. This work cannot be easily extended to other more
general frameworks.

Besides synthesis of software, there are also some recent work on the verification
of software in an embedded system such as the Schedule-Verify-Map method [8], the
linear hybrid automata techniques [7, 9], and the mapping strategy [5]. Recently, system
parameters have also been taken into consideration for real-time software synthesis
[10].



3 Real-Time Embedded Software Synthesis

Our target is the formal synthesis of real-time embedded software, with local and global
deadlines, using scheduling techniques. A system is specified as a set of concurrent
tasks, where each task is composed of a set of subtasks, with precedence relationships.
Time constraints are classified into two categories: local deadlines and global deadlines.
A local deadline is imposed on the execution of a subtask, whereas a global deadline is
imposed on the execution of a task in a system model [6, 13].

Previous work on software synthesis were mainly based on a subclass of the Petri
net model (introduced later in Section 3.1). We also adopt the Petri net model for soft-
ware requirements specification, but we associate explicit semantics to the firing time
intervals, which will explained when our system model Periodic Time Petri Net (PTPN)
is defined. Just like Time Complex-Choice Petri Nets (TCCPN) used in [14], PTPN
places no free-choice restriction on the model expressivity and adds timing constraints
on each transition, which represents a subtask. Thus, a wider domain of applications can
be precisely modeled by PTPN. Details on the PTPN system model, our target problem,
and an illustrative example will be described in Sections 3.1, 3.2, and 3.3, respectively.

3.1 System Model

We define PTPN as follows, where N is the set of positive integers.

Definition 1. Periodic Time Petri Nets (PTPN)
A Periodic Time Petri Net is a 5-tuple (P, T, F, M0, τ), where:

– P is a finite set of places,
– T is a finite set of transitions, P ∪ T �= ∅, P ∩ T = ∅, and some of the transitions

are source transitions, which fire periodically,
– F : (P × T ) ∪ (T × P ) → N is a weighted flow relation between places and

transitions, represented by arcs. The flow relation has the following characteristics:
• Synchronization at a transition is allowed between a branch arc of a choice

place and another independent concurrent arc.
• Synchronization at a transition is not allowed between two or more branch arcs

of the same choice place.
• A self-loop from a place back to itself is allowed only if there is an initial token

in one of the places in the loop.
– M0 : P → N is the initial marking (assignment of tokens to places), and
– τ : T → N × (N ∪ ∞), i.e., τ(t) = (α, β), where t ∈ T , α is the transition

execution time, and β is transition local deadline. We will use the abbreviations
τα(t) and τβ(t) to denote the transition execution time and deadline, respectively.

�	
Graphically, a PTPN can be depicted as shown in Fig. 2, where circles represent

places, vertical bars represent transitions, arrows represent arcs, black dots represent
tokens, and integers labeled over arcs represent the weights as defined by F . A place
with more than one outgoing transition is called a choice place and the transitions are
said to be conflicting. For example, p0 is a choice place and t1 and t2 are conflicting
transitions in Fig. 2.
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Fig. 2. Illustration Example

3.2 Problem Formulation

A user specifies the requirements for a real-time embedded software by a set of PTPNs.
The problem we are trying to solve here is to find a construction method by which a set
of PTPNs can be made feasible to execute on a single processor as a piece of software
code, running under given finite memory space and time constraints. The following is a
formal definition of the real-time embedded software synthesis problem.

Definition 2. Real-Time Embedded Software Synthesis
Given a set of PTPNs, an upper-bound on available memory space, and a set of real-
time constraints such as periods and deadlines for each PTPN, a piece of real-time
embedded software code is to be generated such that:

– it can be executed on a single processor,
– it satisfies all the PTPN requirements, including precedence constraints and local

deadlines,
– it satisfies all global real-time constraints, including PTPN (task) periods and dead-

lines, and
– it uses memory no more than the user-given upper-bound. �	

As described in Section 1, there are five issues involved in solving this problem and
the solutions to these issues are integrated into a quasi-dynamic scheduling method,
which will be presented in Section 4. Due to page-limit, we leave out the code genera-
tion part of software synthesis [21].

3.3 Illustration Example

This is a simple toy example to illustrate how our proposed scheduling method works.
The PTPN model for this example is shown in Fig. 2, which consists of two nets
N1 = (P1, T1, F1, M01, τ1) and N2 = (P2, T2, F2, M02, τ2), where P1 = {p0, p1},
P2{p2, p3, p4}, T1 = {t0, t1, t2, t3}, T2 = {t4, t5, t6}, the flow relations F1, F2, and
the firing intervals τ1, τ2 are obvious from the numbers on the arcs and transitions,
respectively. The initial markings M01, M02 are all empty.



4 Quasi-Dynamic Scheduling

To solve the several issues raised in Section 1 for synthesizing real-time embedded
software, a Quasi-Dynamic Scheduling (QDS) method is proposed. QDS employs both
quasi-static and dynamic scheduling techniques. Details of the QDS algorithm are pre-
sented in Tables 1, 2, 3. Rather than going into the details of each step of the algorithms,
we present the main ideas as follows.

– Data dependent branch executions are statically decomposed into different behavior
configurations and quasi-statically scheduled using EQSS [20, 21]. (Step 1 of Table
1)

– For each quasi-statically decomposed behavior configuration, dynamic scheduling
is employed to satisfy the local deadline of each subtask, all precedence constraints
among subtasks, and the global deadline of each task as follows.
• A global system clock is maintained for each schedule to record the elapse of

time on the execution (firing) of each transition. Similarly, a global memory
usage record is kept for each schedule.

• To find a feasible schedule, a reachability tree is constructed in a depth-first
search manner (Step 15 of Table 2), where each node represents a marking that
is associated with a group of enabled transitions and each edge represents the
firing of a selected transition. Exhaustive construction of the tree is avoided
by pruning it under appropriate conditions (heuristics), which are described as
follows.
∗ Negative Laxity: There is not enough time left for at least one of the en-

abled transitions to execute until completion. (Steps 4, 5 of Table 3)
∗ Local Deadline Violation Forecast: After a simulation-based analysis of

the group of enabled transitions, if it is found that none of the transi-
tions can be executed last in the group, then that group of transitions is
not schedulable. (Steps 6–10 of Table 3)

∗ Global Deadline Violation: The system clock has exceeded the global dead-
line of at least one of the PTPN. (Steps 4, 5 of Table 2)

∗ Memory Bound Violation: The memory usage has exceeded a user-given
upper bound. (Steps 6, 7 of Table 2)

• For each node in the tree, not all successor nodes are generated. Some nodes
are not generated under various conditions as described in the following. (Steps
11–25 of Table 3)
∗ If there is at most only one urgent transition, with execution time (τα(t))

same as its remaining time (ρ(t)) (i.e., τα(t) = ρ(t) → zero laxity), then
only one successor node is generated.

∗ All transitions whose execution can be deferred such that even if they are
the last ones to execute among the currently enabled transitions, they will
still satisfy their respective deadlines, then their corresponding nodes are
not generated. This heuristic is applied provided some successor node can
be generated.

Some advantageous features of QDS are as follows.



Table 1. Quasi Dynamic Scheduling

QDS(S, µ, ψ)
S = {Ai | Ai = (Pi, Ti, Fi,Mi0, τi), i = 1, 2, . . . , n};
µ: integer; // maximum memory
ψ: global real-time constraints; // periods, deadlines, etc.
{
m = EQSS(S,µ,H); // m = |H |, H : EQSS schedules [21] (1)
for(j = 0; j < m; j + +) { (2)
G = initial group(H, j); (3)
if(scheduletree(H,G, S, ψ, µ)) output(H, j); // refer to Table 2 (4)
else return Unschedulable Error; (5)

}
}

– No need of WCET analysis: After quasi-dynamic scheduling, we have total exe-
cution time for each system schedule, which is smaller than the total worst-case
execution time (WCET) of all the transitions in that schedule.

– Optimal schedules: QDS always generates a set of optimal schedules because all
feasible schedules are explored using the reachability tree.

– Efficient scheduling: QDS uses several different heuristics to avoid searching ex-
haustively in the solution space and these heuristics are proven to be helpful, but
harmless, that is, they do not eliminate any optimal schedule.

– Multi-objective optimizations: Since both time and memory constraints are consid-
ered during scheduling, QDS allows a user to easily optimize the resulting sched-
ules in terms of either shortest schedule time or smallest memory usage. Trade-offs
are inevitable between these two objectives, and QDS leaves such trade-off analysis
to the user.

– All issues solved: All the issues presented in Section 1 are solved by QDS.

Limitations of QDS are as follows.

– Predefined transition parameters: Execution time and local deadlines must be user
given or derived from some analysis of the software code represented by a transi-
tion.

– Interrupt handling: QDS must be extended to handle interrupts. This part of the
work is still ongoing and the basic idea is to include the set of allowable interrupts
to the parameters of each transition and to consider the worst-case of interrupts
arriving during the execution of each transition. Some heuristics can be applied
here to avoid obtaining too large an estimate.

– Different periods and deadlines: Currently, in QDS it is assumed that all PTPN
have the same periods and deadlines. This restriction can be easily removed by
scheduling a time slot that spans the least common multiple of all periods.

– Different phases (arrival times): QDS cannot handle different phases or arrival
times of PTPN. Currently, it is assumed that they all arrive at the same time.



Table 2. Schedule Tree Traversal in Quasi Dynamic Scheduling

scheduletree(H,G, S, ψ, µ)
H : set of EQSS schedules;
G: group of concurrently enabled transitions;
S: set of PTPN;
ψ: global real-time constraints; // periods, deadlines, etc.
µ: integer; // maximum memory
{

if(chooseschedulable(G,G′) == False) return False; (1)
for each transition t ∈ G′ { (3)
ST ime = t→ exec+G→ ST ime; (4)
if (ST ime > deadline(ψ)) continue; // Global Deadline Violation (5)
SMem = t→ mem+G→ SMem; (6)
if (SMem > µ) continue; // Memory Bound Violation (7)
G′′ = copy(G); (8)
G′′ → ST ime = ST ime; G′′ → SMem = SMem; (9)
fire trans(t); (10)
if (last firing (t)) G′′ = G′′\{t}; (11)
for each transition t′ ∈ successor(t, S) (12)
G′′ = G′′ ∪ {t′}; // add newly enabled transitions (13)

if(G′′ == NULL) return True; // end of schedule (14)
if(scheduletree(H,G′′, S, ψ, µ)) return True; // DFS traversal (15)

}
return False; (16)

}

To illustrate how QDS works, we use the running illustrative example given in Fig.
2. First of all, EQSS is applied to the two PTPN. The resulting conflict-free compo-
nents and corresponding schedule for each of those components are given in Fig. 3.
There are totally three such components: R11 and R12 for N1 and R21 for N2. But,
the EQSS schedule for each component has some degree of choices in the repeated
firings, for example in the schedule for R11, 〈t40, t21, t33〉, it can also be scheduled as
〈t20, t1, t3, t20, t1, t3〉. QDS explores this degree of choices for satisfying the local dead-
lines and global deadlines of each system configuration, where a system configuration is
a combination of one conflict-free component from each PTPN. Thus, there are totally
two system configurations for this example, namely {R11, R21} and {R12, R21}.

On applying QDS to this example, we found that it is indeed schedulable and satis-
fies all local and global deadlines. Though there are two reachability trees for the two
system configurations, we present only one of them for illustration. The reachability tree
for {R12, R21} is presented in a tabular form in Table 4. The first column is the index
of the nodes in the tree and the last column gives the child nodes of the corresponding
node from the first column. G is the group of concurrently enabled transitions in the
marking represented by that node. α is the execution time (earliest-firing time) of each
transition. ρ is the time left before a transition deadline is reached. ST ime and SMem
are the current global records of system time and memory, respectively. G ′ ⊆ G is the



Table 3. Selection of Schedulable Transitions in Quasi Dynamic Scheduling

chooseschedulable(G,G′)
G: group of concurrently enabled transitions, G′: group pointer
{
G3 = G; G4 = NULL; // G1, G2, G3, G4 : pointers to group of transitions (1)
while(True) { (2)
G1 = G2 = NULL; (3)
for each transition t ∈ G3 { // check remain time > execution time (4)

if(t→ remain < t→ exec) return False; (5)
Gtime += t→ exec; (6)

} // end of for
for each transition t ∈ G3 { // divide G3 into two subgroups: G3 = G1 ∪G2 (7)

if(t→ remain >= Gtime) G1 = G1 ∪ {t}; (8)
else G2 = G2 ∪ {t}; } // end of for (9)

if (G1 == NULL) return False; // no last one to fire, so stop building node (10)
else if (comp group(G1, G3)) { // G1 == G3? (11)
G′ = G3; (12)
return True; } (13)

else { // choose the transitions which will fire next time (14)
G3 = NULL; (15)
Gtime = 0; (16)
for each transition t ∈ G2 Gtime += t → exec; (17)
for each transition t ∈ G1 { (18)
Gtime′ = Gtime+ t→ exec; (19)
for each transition t′ ∈ G2 { (20)

if (t′ → remain >= Gtime′) { G3 = G3 ∪ {t}; break; } } } (21)
G3 = G2 ∪G3; (22)
if (comp group(G3, G4)) { (23)
G′ = G3; return True; } (24)

G4 = G3; } // end else (25)
} // end of while

}

subset transitions that are chosen for possible scheduling in the generation of succes-
sor nodes. The 8th column consists of the actual transitions that are fired and thus also
gives the schedule that is generated by QDS. At the end of Table 4, it is found that the
system configuration is schedulable. The total time and memory used are 19 time units
and 14 memory units, respectively. Similarly, when QDS is applied to the other system
configuration {R11, R21}, it is schedulable and the total time and memory used are 28
time units and 18 memory units, respectively.
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Table 4. QDS scheduling forR12 andR21

node G α ρ = β − now ST ime SMem fireable? fired! next node

0 t0 1 3 0 0 Yes t0 1
t4 1 4 Yes

1 t0 1 3 1 1 Yes t0 2
t4 1 3 Yes

2 t0 1 3 2 2 Yes t0 3
t4 1 2 Yes

3 t2 2 4 3 3 No
t4 1 1 Yes t4 4

4 t2 2 3 4 4 Yes t2 5
t4 1 4 Yes

5 t3 3 9 6 3 No
t4 1 2 Yes t4 6

6 t3 3 8 7 4 Yes t3 7
t5 3 8 Yes

7 t5 3 5 10 2 Yes t5 8
8 t6 3 8 13 14 Yes t6 9
9 t6 3 8 16 7 Yes t6 Schedule Found!

Schedule Time & Memory 19 14



5 Application Example

The QDS method for software synthesis was applied to several real-world applications
such as ATM virtual private network scheduling, Bluetooth wireless communication
protocol, motor speed control system, and medic-care system. For purpose of illustra-
tion, we describe one of the examples, which is a real-time embedded software driver
for the master-slave role switch between two wireless Bluetooth devices. In the Blue-
tooth wireless communication protocol [4], a piconet is formed of one master device
and seven active slave devices.

In our PTPN model of an M/S switch between two devices A and B, there are
totally four Petri nets as follows. Host of device A as shown in Figure 4, Host Control /
Link Manager (HC/LM) of device A as shown in Figure 5, host of device B similar to
that for A, and HC/LM of device B similar to that for A. Timings for the transitions are
allocated as follows. A Bluetooth device times out after 32 slots of 625µs each, which
is totally 0.02 second. Thus in our model, we take 0.01 second as one unit of time.
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Table 5. EQSS Schedules for Bluetooth M/S Role Switch

PTPN |T | |P | di πi |Q| EQSS Schedules Time

Host A 7 5 45 45 4 A11 = 〈t0, t1, t2, t4, t5, t6〉, [20, 41]
A12 = 〈t0, t1, t2, t4, t7〉 [8, 40]
A13 = 〈t0, t1, t3, t5, t6〉 [18, 34]
A14 = 〈t0, t1, t3, t7〉 [6, 33]

HC/LM A 21 15 45 45 6 A21 = 〈t0, t1, t2, t4, t6, t7, t10, t11, t12, t14〉 [17, 35]
A22 = 〈t0, t1, t3, t5, t6, t8, t10, t14〉 [15, 29]
A23 = 〈t0, t1, t2, t4, t6, t7, t10, t11, t13, t15, t16, t18〉 [20, 40]
A24 = 〈t0, t1, t2, t4, t7, t11, t13, t15, t16, t18〉 [18, 37]
A25 = 〈t0, t1, t2, t4, t6, t7, t10, t11, t13, t15, t17, t19, t20〉 [21, 42]
A26 = 〈t0, t1, t3, t5, t6, t9, t15, t17, t19, t20〉 [18, 35]

Host B 7 5 45 45 4 Same as for Host A
HC/LM B 21 15 45 45 6 Same as for HC/LM A

|T |: number of transitions, |P |: number of places, di: PTPN deadline,
πi: PTPN period, |Q|: number of EQSS schedules.

The proposed QDS algorithm (Table 1), was applied to the given system of four
PTPN. First, EQSS is applied. The results of EQSS scheduling are given in Table 5.
The last column in Table 5 gives the best-case and worst-case execution times of each
net EQSS schedule. Further, reachability trees were constructed for all the 24 different
configurations. All deadlines and periods are given as 45 time units. For illustration
purpose, the application QDS to one of the configurations {A 11, A25} is given in Table
6, which has a schedule time of 41 time units and memory usage of 2 memory units. It
is finally derived that the system is schedulable.

6 Conclusion

No more workarounds are needed when both local and global deadlines are to be sat-
isfied because quasi-dynamic scheduling (QDS) has solved this problem in the con-
text of real-time embedded software synthesis. QDS has integrated static and dynamic
scheduling to efficiently derive an optimal schedule time or memory based on some
simple heuristics. Application examples show that we can avoid the worst case analysis
when QDS can used for scheduling. Through a real-world example on the master/slave
role switch between two wireless Bluetooth devices, we have shown the feasibility of
our approach. In the future, we plan to extend QDS in several ways: to handle dissimilar
periods and deadlines, to handle interrupts during scheduling, and to estimate transition
parameters such as execution time.
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