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ABSTRACT
Current methods cannot synthesize real-time embedded software
applications when the global deadline of a task is shorter than the
total of all local deadlines along a critical path in the task. This
creates unnecessary modeling limitations which directly affect the
types of systems synthesizable. We propose a quasi-dynamic sched-
uling algorithm for simultaneously guaranteeing both local and global
deadlines, while satisfying all precedence constraints among sub-
tasks and among tasks. Through this scheduling procedure, we are
able to formally synthesize real-time embedded software from a
network of Real-Time Petri Netsspecification. Application exam-
ples, including a driver for the Master/Slave role switch in Blue-
tooth wireless communication devices, are given to illustrate the
feasibility of the scheduling algorithm.

Categories and Subject Descriptors
C.3 [Special Purpose and Application-Based Systems]: Real-
time and embedded systems; D.2.2 [Software Engineering]: De-
sign tools and techniques—Petri nets

General Terms
Design, Algorithms

Keywords
real-time embedded software, Real-Time Petri Nets, quasi-dynamic
scheduling, software synthesis, code generation

1. INTRODUCTION
A real-time embedded system task is composed of some con-

stituent subtasks, each of which has its own local deadline, while
the task itself has a global deadline. Current scheduling algorithms
do not explicitly consider such multilevel deadlines leading to the
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Figure 1: Modular Mobile Dispatching System

necessity for work-around efforts. We propose a scheduling algo-
rithm to resolve this issue and show how it can be used for synthe-
sizing real-time embedded software specifications into actual pro-
gram code.

As a motivating example depicted in Fig. 1, consider the Modu-
lar Mobile Dispatching System(MMDS) [16], which consists of a
GPS receiver, a GIS database, a GSM communication module, and
other I/O peripherals for dispatching of vehicles through a call cen-
ter. Besides the local deadlines on each GPS, GIS, and GSM task,
there is also a global deadline on each scenario which is composed
of several tasks with precedence and concurrency relationships. A
typical scenario would be that of a vehicle driver encountering an
emergency situation, in which the driver uses MMDS and expects
to get help within 4 minutes from the time a call is made from
the vehicle to the call center. Within this time span, MMDS must
get GPS location information, transmit it to the call center through
GSM communication, the call center must plot the driver’s location
on a digital map using GIS, locate the nearest help on the map, dis-
patch help (such as an ambulance) to the location by notifying the
target help through GSM, while providing navigation guidelines
through an active GIS database.

There are several issues involved in such a typical real-time sce-
nario, as detailed in the following.

• How to determine which subtasks are concurrently enabled
at any point of execution?

• How to check if each subtask completes execution within
its local deadline, while satisfying all precedence constraints
among the subtasks?

• How to check if each task completes execution within its
global deadline?

• How to obtain an optimal schedule of all system tasks such
that shortest execution time is guaranteed, if one exists?
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• How to estimate the amount of memory space required for
the execution of a real-time embedded software system?

Corresponding to each of the above issues, we propose a set of
solutions in the form of a scheduling method called Quasi-Dynamic
Scheduling(QDS), which incorporates the respective solutions as
briefly described in the following.

• Concurrently Enabled Group: We maintain a group of con-
currently enabled subtasks, while the system’s behavior is
statically simulated to satisfy all precedence relationships.

• Tentative Schedulability Check: Since the group of concur-
rently enabled subtasks changes dynamically with system ex-
ecution, its schedulability can be checked only tentatively for
the current group.

• Global System Timer: A global system timer is maintained
that keeps count of the current total amount of processor time
taken by the execution of all tasks.

• Pruned Reachability Tree: Because schedulability checks are
only tentative for a group of subtasks, a reachability tree is
created so that an optimal schedule can be found. The tree is
pruned for efficiency without affecting optimality.

• Maximum Memory Estimation: Using various memory esti-
mation techniques, both static and dynamic memory space
allocations are statically counted, including memory spaces
for both local and global variables.

Basically, quasi-dynamic scheduling is a combination of quasi-
static scheduling and dynamic scheduling. Data dependent branch
executions are statically decomposed into different behavior con-
figurations and quasi-statically scheduled [17]. For each quasi-
statically decomposed behavior configuration, dynamic scheduling
is employed to satisfy all local deadlines of each subtask, all prece-
dence constraints among subtasks, and all global deadlines of each
task.

To illustrate the importance of this research result, consider how
existing scheduling approaches must be applied to a system with
both local and global deadlines. In this case, there is a need for
work-around methods such as making global deadline the sum of
all local deadlines in a critical path of the task. The user is burdened
with the responsibility of analyzing a task and finding the critical
path, a non-trivial task in some cases, apriori to scheduling. Fur-
ther, this work-around method only works if the global deadline is
not smaller than the sum of all local deadlines in a critical path of
a task, because otherwise it would amount to restraining each local
deadline, thus making an otherwise schedulable system unschedu-
lable. In summary, the work presented here is not only a flexibility
enhancement to current scheduling methods, but also a necessary
effort in checking schedulability for real systems.

This article is organized as follows. In Section 2, we delve
on some previous work in quasi-static scheduling and real-time
scheduling related to the synthesis of real-time embedded software.
In Section 3, we formulate our target problem to be solved, our
system model, and give an illustrative example. In Section 4, we
present our quasi-dynamic scheduling algorithm and how it is ap-
plied to the running example. Section 6 concludes the article giving
some future work.

2. PREVIOUS WORK
Since our target is formally synthesizing real-time embedded

software, we will only discuss scheduling algorithms that have been
used for this purpose.

Due to the importance of ensuring the correctness of embedded
software, formal synthesishas emerged as a precise and efficient
method for designing software in control-dominated and real-time
embedded systems [11, 9, 17, 18]. Partial software synthesis was
mainly carried out for communication protocols [15], plant con-
trollers [14], and real-time schedulers [1] because they generally
exhibited regular behaviors. Only recently has there been some
work on automatically generating software code for embedded sys-
tems [2, 13, 17], including commercial tools such as MetaH from
Honeywell. In the following, we will briefly survey the existing
works on the synthesis of real-time embedded software, on which
our work is based.

Previous methods for the automatic synthesis of embedded soft-
ware mostly do not consider temporal constraints [13, 17, 18],
which results in temporally infeasible schedules and thus incorrect
systems. Some recently proposed methods [9, 12] explicitly take
time into consideration while scheduling, but have not solved the
multilevel deadlines issue. Details of each method are given in the
rest of this section.

Lin [13] proposed an algorithm that generates a software pro-
gram from a concurrent process specification through intermediate
Petri-Net representation. This approach is based on the assumption
that the Petri-Nets are safe, i.e., buffers can store at most one data
unit, which implies that it is always schedulable. The proposed
method applies quasi-static schedulingto a set of safe Petri-Nets
to produce a set of corresponding state machines, which are then
mapped syntactically to the final software code.

A software synthesis method was proposed for a more general
Petri-Net framework by Sgroi et al. [17]. A quasi-static scheduling
(QSS) algorithm was proposed for Free-Choice Petri Nets(FCPN)
[17]. A necessary and sufficient condition was given for a FCPN
to be schedulable. Schedulability was first tested for a FCPN and
then a valid schedule generated by decomposing a FCPN into a
set of Conflict-Free(CF) components which were then individually
and statically scheduled. Code was finally generated from the valid
schedule.

Later, Hsiung integrated quasi-static scheduling with real-time
scheduling to synthesize real-time embedded software [9]. A syn-
thesis method for soft real-time systems was also proposed by Hsi-
ung [10]. The free-choice restriction was first removed by Su and
Hsiung in their work [18] on extended quasi-static scheduling (EQSS).
Recently, Gau and Hsiung proposed a more integrated approach
called time-memory scheduling [11] based on reachability trees.

A recently proposed timed quasi-static scheduling(TQSS) method
[12] extends two previous works: (1) the QSS [17] method by han-
dling non-free choices (or complex choices) that appear in system
models, and (2) the EQSS [18] by adding time constraints in the
system model. Further, TQSS also ensures that limited embedded
memory constraints and time constraints are also satisfied. For fea-
sible schedules, real-time embedded software code is generated as a
set of communicating POSIX threads, which may then be deployed
for execution by a real-time operating system.

Balarin et al. [2] proposed a software synthesis procedure for
reactive embedded systems in the Codesign Finite State Machine
(CFSM) framework with the POLIS hardware-software codesign
tool. This work cannot be easily extended to other more general
frameworks.

Besides synthesis of software, there are also some recent work
on the verification of software in an embedded system such as the
Schedule-Verify-Mapmethod [6], the linear hybrid automata tech-
niques [5, 7], and the mapping strategy [4]. Recently, system pa-
rameters have also been taken into consideration for real-time soft-
ware synthesis [8].
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3. SOFTWARE SYNTHESIS
Our target is the formal synthesis of real-time embedded soft-

ware, with local and global deadlines, using scheduling techniques.
A system is specified as a set of concurrent tasks, where each task
is composed of a set of subtasks, with precedence relationships.
Time constraints are classified into two categories: local deadlines
and global deadlines. A local deadline is imposed on the execution
of a subtask, whereas a global deadline is imposed on the execution
of a task in a system model [11].

Previous work on software synthesis were mainly based on a
subclass of the Petri net model (introduced later in Section 3.1).
We also adopt the Petri net model for software requirements spec-
ification, but we associate explicit semantics to the firing time in-
tervals, which will be explained when the system model Real-Time
Petri Net(RTPN) is defined. Just like Time Complex-Choice Petri
Nets(TCCPN) used in [12], RTPN places no free-choice restric-
tion on the model expressivity and adds timing constraints on each
transition, which represents a subtask. Thus, a wider domain of ap-
plications can be precisely modeled by RTPN. Details on the RTPN
system model, our target problem, and an illustrative example will
be described in Sections 3.1, 3.2, and 3.3, respectively.

3.1 System Model
The requirements for real-time embedded software are modeled

by a set of RTPNs. Graphically, an RTPN can be depicted as shown
in Fig. 2, where circles represent places, vertical bars represent
transitions, arrows represent arcs, black dots represent tokens, and
integers labeled over arcs represent the weights as defined by F .
A place with more than one outgoing transition is called a choice
place and the transitions are said to be conflicting. For example, p0
is a choice place and t1 and t2 are conflicting transitions in Fig. 2.
We define RTPN as follows, where N is the set of positive integers.

DEFINITION 1. Real-Time Petri Nets (RTPN)
A Real-Time Petri Net is a 5-tuple(P,T,F,M0,τ), where: P is a
finite set of places. T is a finite set of transitions, P∪T �= /0, P∩T =
/0, and some of the transitions aresource transitions, which fire
periodically. F: (P×T)∪(T×P)→ N is a weighted flow relation
between places and transitions, represented by arcs, such that: (a)
Synchronization at a transition is allowed between a branch arc
from a choice place and another arc, and (b) A self-loop from a
place back to itself is allowed only if there is an initial token in
one of the places in the loop. M0 : P → N is the initial marking
(assignment of tokens to places).τ : T → N× (N∪∞), i.e.,τ(t) =
(α,β), where t∈ T, α is theworst case execution time (WCET) of
t, andβ is thedeadline for t, which will be denoted asτα(t) and
τβ(t), respectively. ‖

3.2 Problem Formulation
A user specifies the requirements for a real-time embedded soft-

ware by a set of RTPNs. The problem we are trying to solve here is
to find a construction method by which a set of RTPNs can be made
feasible to execute on a single processor as a piece of software code,
running under given finite memory space and time constraints. The
following is a formal definition of the real-time embedded software
synthesis problem.

DEFINITION 2. Real-Time Embedded Software Synthesis
Given a set of RTPNs, an upper-bound on available memory space,
and a set of real-time constraints such as periods and deadlines
for each RTPN, a piece of real-time embedded software code is to
be generated such that: (a) it can be executed on a single proces-
sor, (b) it satisfies all the RTPN requirements, including precedence
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Figure 2: Illustration Example

constraints and local deadlines, (c) it satisfies all global real-time
constraints, including RTPN (task) periods and deadlines, and (d)
it uses memory no more than the user-given upper-bound. ‖

As described in Section 1, there are five issues involved in solv-
ing this problem and the solutions to these issues are integrated
into a quasi-dynamic scheduling method, which will be presented
in Section 4. Due to page-limit, we leave out the code generation
part of software synthesis, which has a multi-threaded architecture
based on PThreads [18].

3.3 Illustration Example
This is a simple toy example to illustrate how our proposed schedul-

ing method works. The RTPN model for this example is shown
in Fig. 2, which consists of two nets N1 = (P1,T1,F1,M01,τ1) and
N2 =(P2,T2,F2,M02,τ2), where P1 = {p0, p1}, P2{p2, p3, p4}, T1 =
{t0, t1, t2, t3}, T2 = {t4, t5, t6}, the flow relations F1, F2, and the
firing intervals τ1, τ2 are obvious from the numbers on the arcs
and transitions, respectively. The initial markings M01, M02 are all
empty.

4. QUASI-DYNAMIC SCHEDULING
To solve the several issues raised in Section 1 for synthesizing

real-time embedded software, a Quasi-Dynamic Scheduling(QDS)
method is proposed. QDS employs both quasi-static and dynamic
scheduling techniques. Details of the QDS algorithm are presented
in Tables 1, 2, 3. Rather than going into the details of each step of
the algorithms, we present the main ideas as follows.

• Data dependent branch executions are statically decomposed
into different behavior configurations and quasi-statically sched-
uled using EQSS [17, 18]. (Step 1 of Table 1)

• For each quasi-statically decomposed behavior configuration,
dynamic scheduling is employed to satisfy the local deadline
of each subtask, all precedence constraints among subtasks,
and the global deadline of each task as follows.

– A set G of concurrently enabled transitionsis used to
represent the state of the system (corresponding to an
RTPN marking in the model). A global system clock
(STime) and a global memory usage (SMem) are used
to record the absolute global time and memory for each
group, respectively.

– To find a feasible optimal schedule, a reachability tree
is constructed in a depth-first search manner (Step 15
of Table 2), where each node represents a marking with
a corresponding set of concurrently enabled transitions
and each edge represents the firing of a selected transi-
tion. Exhaustive construction of the tree is avoided by
pruning it under appropriate conditions as described in
the following. It can be proved that optimality of the
feasible solution is not affected by such pruning condi-
tions.
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Table 1: Quasi Dynamic Scheduling
QDS(S,µ,ψ)
S= {Ai | Ai = (Pi ,Ti ,Fi ,Mi0,τi ), i = 1,2, . . . ,n};
µ: integer; // maximum memory
ψ: global real-time constraints; // periods, deadlines, etc.
{

m= EQSS(S,µ,H); // m= |H|, H: EQSS schedules [18] (1)
for( j = 0; j < m; j ++) { (2)

G = initial group(H, j); (3)
if(scheduletree(H,G,S,ψ,µ)) output(H, j); (4)
else return Unschedulable Error; (5)

}
}

∗ Negative Laxity: There is not enough time left for
at least one of the enabled transitions to execute
until completion. (Steps 4, 5 of Table 3)

∗ Local Deadline Violation Forecast: After a simulation-
based analysis of the group of enabled transitions,
if it is found that none of the transitions can be
executed last in the group, then that group of tran-
sitions is not schedulable. (Steps 6–11 of Table 3)

∗ Global Deadline Violation: The system clock has
exceeded the global deadline of at least one of the
RTPN. (Steps 4, 5 of Table 2)

∗ Memory Bound Violation: The memory usage has
exceeded a user-given upper bound. (Steps 6, 7 of
Table 2)

– For each node in the tree, not all successor nodes are
generated. Some nodes are not generated under various
conditions as described in the following. (Steps 12–24
of Table 3)

∗ If there is at most only one urgent transition, with
execution time (τα(t)) same as its remaining time
(ρ(t)) (i.e., τα(t) = ρ(t): zero laxity), then only
one successor node is generated.

∗ All transitions whose execution can be deferred
such that even if they are the last ones to execute
among the currently enabled transitions, they will
still satisfy their respective deadlines, then their
corresponding nodes are not generated. This heuris-
tic is applied provided there is some node to be
generated.

Some advantageous features of QDS are as follows.

• No need of system-wide WCET analysis: After quasi-dynamic
scheduling, we have total execution time for each system
schedule, which may be smaller than the sum of worst-case
execution times of all the transitions in that schedule.

• Optimal schedules: QDS always generates a set of optimal
schedules because all feasible schedules are explored using
the reachability tree. Due to page limits, the optimality of
generated schedules and the time/space complexity of the
QDS algorithm are given without proofs in this Section.

• Efficient scheduling: QDS uses several different heuristics to
avoid searching exhaustively in the solution space and these
heuristics are proven to be helpful, but harmless, that is, they
do not eliminate any optimal schedule.

• Multi-objective optimizations: Since both time and memory
constraints are considered during scheduling, QDS allows a

Table 2: Schedule Tree Construction in QDS
scheduletree(H,G,S,ψ,µ)
H: set of EQSS schedules;
G: group of concurrently enabled transitions;
S: set of RTPN;
ψ: global real-time constraints; // periods, deadlines, etc.
µ: integer; // maximum memory
{

if(chooseschedulable(G,G′) == False) return False; (1)
for each transition t ∈ G′ { (3)

STime= t → exec+G → STime; (4)
if (STime> deadline(ψ)) continue; (5)
SMem= t → mem+G→ SMem; (6)
if (SMem> µ) continue; (7)
G′′ = copy(G); (8)
G′′ → STime= STime; G′′ → SMem= SMem; (9)
fire trans(t); (10)
if (last firing (t)) G′′ = G′′\{t}; (11)
for each transition t′ ∈ successor(t,S) (12)

G′′ = G′′ ∪{t ′}; // add newly enabled transitions (13)
if(G′′ == NULL) return True; // end of schedule (14)
if(scheduletree(H,G′′,S,ψ,µ)) return True; (15)

}
return False; (16)

}

user to easily optimize the resulting schedules in terms of ei-
ther shortest schedule time or smallest memory usage. Trade-
offs are inevitable between these two objectives, and QDS
leaves such trade-off analysis to the user.

• All issues solved: All the issues presented in Section 1 are
solved by QDS.

The following lemma and theorem show the correctness of the
QDS algorithm.

LEMMA 1. RTPN transitions that are eliminated from succes-
sor node generation by thechooseschedulablealgorithm given in
Table 3 cannot be in a feasible schedule.

THEOREM 1. The schedule generated by the QDS algorithm
given in Table 1 is optimal in terms of shortest execution time.

Instead of the exponential complexity in terms of the total num-
ber of transitions in a system configuration, the QDS algorithm in-
duces a multiplicative factor reduction through the careful selection
of successor nodes to generate (Table 3). Details are omitted.

Limitations of QDS are as follows.

• Transition parameters: Worst case execution time of each
transition and local deadlines must be user given or derived
from some analysis of the software code represented by a
transition.

• Interrupt handling: QDS must be extended to handle inter-
rupts. This part of the work is still ongoing and the basic idea
is to include the set of allowable interrupts to the parameters
of each transition and to consider the worst-case of interrupts
arriving during the execution of each transition.

• Periods and deadlines: Currently, in QDS it is assumed that
all RTPN have the same periods and deadlines. This restric-
tion can be easily removed by scheduling a time slot that
spans the least common multiple of all periods.

To illustrate how QDS works, we use the running illustration
example given in Fig. 2. First of all, EQSS is applied to the two
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Table 3: Selection of Schedulable Transitions in QDS
chooseschedulable(G,G′)
G: set of concurrently enabled transitions
G′: empty set of transitions
{

G′ = copy(G); G′
old = NULL; (1)

while(True) { (2)
Glast = Gtmp = NULL; (3)
for each transition t ∈ G′ { (4)

if(t → remain< t → exec) return False; (5)
Gtime+= t → exec; } (6)

for each transition t ∈ G′ { (7)
if(t → remain>= Gtime) Glast = Glast∪{t}; (8)
else G′ = G′\{t}; } (9)

if (empty(Glast)) { (10)
if empty(G′

old) return False; (11)
else return True; } (12)

else if (empty(G′)) { (13)
G′ = Glast; return True; } (14)

else { (15)
Gtime= 0; (15)
for each transition t ∈ G′ Gtime+= t → exec; (16)
for each transition t ∈ Glast { (17)

Gtime′ = Gtime+ t → exec; (18)
for each transition t′ ∈ G′ (19)

if (t′ → remain>= Gtime′) { (20)
Gtmp = Gtmp∪{t}; break; } (21)

}
G′ = G′ ∪Gtmp; (22)
if (equal(G′,G′

old)) return True; (23)
G′

old = G′; } // end else (24)
} // end of while

}

RTPN. The resulting conflict-free components and corresponding
schedule for each of those components are given in Fig. 3. There
are totally three such components: R11 and R12 for N1 and R21
for N2. But, the EQSS schedule for each component has some de-
gree of choices in the repeated firings, for example in the schedule
for R11, 〈t4

0 , t2
1 , t3

3 〉, it can also be scheduled as 〈t20 , t1, t2
3 , t2

0 , t1, t3〉,
where the exponents represent number of firings. QDS explores
this degree of choices for satisfying the local deadlines and global
deadlines of each system configuration, where a system configu-
ration is a combination of one conflict-free component from each
RTPN. Thus, there are totally two system configurations for this
example, namely {R11, R21} and {R12, R21}.

On applying QDS to this example, we found that it is indeed
schedulable and satisfies all local and global deadlines. Though
there are two reachability trees for the two system configurations,
we present only one of them for illustration. The reachability tree
for {R12,R21} is presented in a tabular form in Table 4. The first
column is the index of the nodes in the tree and the last column
gives the child nodes of the corresponding node from the first col-
umn. G is the group of concurrently enabled transitions in the
marking represented by that node. α is the execution time of each
transition. ρ is the time left before the deadline β is reached and it
is calculated from the time the transition was enabled. STimeand
SMemare the current global records of system time and memory,
respectively. G′ ⊆ G is the subset transitions that are chosen in the
generation of successor nodes. The 8th column consists of the ac-
tual transitions that are fired and thus also gives the schedule that
is generated by QDS. At the end of Table 4, it is found that the
system configuration is schedulable. The total time and memory
used for the schedule 〈t30 , t4, t2, t4, t3, t5, t2

6 〉 are 19 time units and 14
memory units, respectively. Similarly, when QDS is applied to the
other system configuration {R11,R21}, it is schedulable and the to-
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Figure 3: EQSS schedules for Illustration Example

Table 4: QDS scheduling for R12 and R21
n G α ρ STime SMem G′ fire next

0 t0 1 3 0 0 Y t0 1
t4 1 4 Y

1 t0 1 3 1 1 Y t0 2
t4 1 3 Y

2 t0 1 3 2 2 Y t0 3
t4 1 2 Y

3 t2 2 4 3 3 N
t4 1 1 Y t4 4

4 t2 2 3 4 4 Y t2 5
t4 1 4 Y

5 t3 3 9 6 3 N
t4 1 2 Y t4 6

6 t3 3 8 7 4 Y t3 7
t5 3 8 Y

7 t5 3 5 10 2 Y t5 8
8 t6 3 8 13 14 Y t6 9
9 t6 3 8 16 7 Y t6 Found!
Time & Memory 19 14 〈t3

0 ,t4 ,t2,t4 ,t3,t5 ,t2
6 〉

n: node, ρ: time left before deadline, Y: Yes, ∈ G′, N: No, /∈ G′

tal time and memory used are 28 time units and 18 memory units,
respectively, for the schedule 〈t3

0 , t4, t0, t1, t4, t1, t3, t5,(t3, t6)2〉.

5. APPLICATION EXAMPLE
The QDS method for software synthesis was applied to sev-

eral real-world applications such as ATM virtual private network
scheduling, Bluetooth wireless communication protocol, motor speed
control system, and medic-care system. For purpose of illustra-
tion, we describe one of the examples, which is a real-time embed-
ded software driver for the master-slave role switch between two
wireless Bluetooth devices. In the Bluetooth wireless communi-
cation protocol [3], a piconetis formed of one master device and
seven active slave devices. There are three situations in which a
master device and a slave device would attempt to perform a Mas-
ter/Slave (M/S) role switch. Due to wireless device mobility, M/S
role switches are quite frequent and are accomplished by exchang-
ing some commands between the two devices at the host control
and link manager layers and a time-division duplex switch.

In our RTPN model of an M/S switch between two devices A
and B, there are totally four Petri nets [12]: 2 host devices and 2
Host Control / Link Manager (HC/LM) models. Timings for the
transitions are allocated as follows. A Bluetooth device times out
after 32 slots of 625µseach, which is totally 0.02 second. Thus in
our model, we take 0.01 second as one unit of time.

The proposed QDS algorithm (Table 1), was applied to the given
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Table 5: EQSS Schedules for Bluetooth M/S Role Switch
RTPN H: EQSS Schedules Time
Host A11 = 〈t0,t1,t2 ,t4 ,t5,t6〉, [20,41]
A,B A12 = 〈t0,t1,t2 ,t4 ,t7〉 [8,40]

A13 = 〈t0,t1,t3 ,t5 ,t6〉 [18,34]
A14 = 〈t0,t1,t3 ,t7〉 [6,33]

HC/LM A21 = 〈t0,t1,t2 ,t4 ,t6,t7 ,t10 ,t11,t12 ,t14〉 [17,35]
A,B A22 = 〈t0,t1,t3 ,t5 ,t6,t8 ,t10 ,t14〉 [15,29]

A23 = 〈t0,t1,t2 ,t4 ,t6,t7 ,t10 ,t11,t13 ,t15,t16 ,t18〉 [20,40]
A24 = 〈t0,t1,t2 ,t4 ,t7,t11 ,t13,t15 ,t16 ,t18〉 [18,37]
A25 = 〈t0,t1,t2 ,t4 ,t6,t7 ,t10 ,t11,t13 ,t15,t17 ,t19,t20〉 [21,42]
A26 = 〈t0,t1,t3 ,t5 ,t6,t9 ,t15 ,t17,t19 ,t20〉 [18,35]

system of four RTPN. First, EQSS is applied. The results of EQSS
scheduling are given in Table 5. The last column in Table 5 gives
the best-case and worst-case execution times of each net EQSS
schedule. Further, reachability trees were constructed for all the
24 different configurations. All deadlines and periods are given as
45 time units. For illustration purpose, the application QDS to one
of the configurations {A11,A25} is given partially in Table 6, which
has a schedule time of 41 time units and memory usage of 2 mem-
ory units for the schedule 〈t2,6, t2,10, t1,0, t2,0, t1,1, t2,1, t1,2, t2,2, t2,4,
t1,4, t2,7, t2,11, t2,13, t2,15, t2,17, t2,19, t2,20, t1,5, t1,6〉. It is finally de-
rived that the system is schedulable.

6. CONCLUSION
No more workarounds are needed when both local and global

deadlines are to be satisfied because quasi-dynamic scheduling (QDS)
has solved this problem in the context of real-time embedded soft-
ware synthesis. QDS has integrated static and dynamic scheduling
to efficiently derive an optimal schedule time or memory based on
some simple heuristics. Application examples show that we can
avoid the worst case analysis when QDS can used for scheduling.
Through a real-world example on the master/slave role switch be-
tween two wireless Bluetooth devices, we have shown the feasi-
bility of our approach. In the future, we plan to extend QDS in
several ways: to handle dissimilar periods and deadlines, to handle
interrupts during scheduling, and to estimate transition parameters.
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