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A B S T R A C T  

Due to rapidly increasing system complexity, shortening time-to- 
market, and growing demand for hard real-time systems, formal 
methods are becoming indispensable in the synthesis of embedded 
systems, which must satisfy stringent temporal, memory, and en- 
vironment constraints. There is a general lack of practical formal 
methods that can synthesize complex embedded real-time software 
(ERTS). In this work, a formal method based on TJrne Free-Choice 
Petri Nets (TFCPN) is proposed for ERTS synthesis. The syn- 
thesis method employs quasi-static data scheduling for satisfying 
limited embedded memory requirements and uses dynamic real- 
time scheduling for satisfying hard real-time constraints. Software 
code is then generated from a set of quasi-statically and dynami- 
cally scheduled TFCPNs. Finally, an application example is given 
to illustrate the feasibility of the proposed TFCPN-based formal 
method for ERTS synthesis. 
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Embedded rcal-time software, Petri Nets, scheduling, code genera- 
tion 

1.  I N T R O D U C T I O N  

Recently, there has been a proliferation of embedded real-time 
systems in the form of home appliances, internet appliances, per- 
sonal assistants, wearable computers, telecommunication gadgets, 
and transportation facilities among numerous others. In the near 
future, we will see a continuing escalation of system complexity, 
shortening of time-to-market, and growing demands for hard real- 
time. All these factors, coupled with the need to satisfy stringent 
temporal, memory, and environment conswaints, have propelled the 
requirement of  practical formal methods for the efficient synthesis 
of such systems, which usually have both embedded hardware and 
embedded software. In contrast tO the maturity of  hardware design 
methodologies [10], software design techniques are still relatively 
immature and sparse. Thus, there is a need for practical formal syn- 
thesis techniques targeted at embedded real-time software (ERTS). 

In light of  the above-mentioned need, a formal synthesis method 
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based on Tune Free.Choice Petri Nets (TFCPN) is proposed, which 
employs quasi-static data scheduling for satisfying limited embed- 
ded memory restrictions and uses dynamic real-tir~ scheduling for 
satisfying hard real-time constraints. Software code is then gener- 
ated from a set of  scheduled TFCPNs. An application example will 
illustrate the feasibility and benefits of our proposed method. 

An embedded real-time system is a computation unit, installed 
in a larger environment system, such that it helps the environment 
accomplish some dedicated set of  tasks. Some examples include 
avionics flight control, vehicle cruise control, washing machine 
fuzzy control, and network-enabling devices in home appliances 
such as embedded web servers. In general, an embedded system 
has both hardware and software parts. Hardware is fabricated as 
one or more ASICs, ASIPs, or PLDs. Software is executed on one 
or more microprocessors, with or without an operating system. Em- 
bedded real-time software (ERTS) is a piece of program code that 
must satisfy real-time constraints such as response time, deadlines, 
and periods. ERTS communicates with the embedded hardware 
either through an interface or through direct connections. 

Two main issues involved in the design of ERrS are: 

• Bounded Memory Execution: A processor cannot have infi- 
nite amount of  memory space for the execution of  any soft- 
ware process. This fact is even m ~ e  emphasized in an em- 
bedded system, which generally has only a few hundreds of 
kilobytes memory installed. 

• Real-Tune Constraints: A processor may have to execute 
several concurrent tasks with precedence and temporal con- 
straints. Thus, an ERrS is generally composed of several 
concurrent, computation, real-time tasks. 

In solution to the above two issues, a synthesis method for ERrS 
must generate program code that can be executed in a bounded 
amount of  memory, while satisfying all given real-time constraints. 
The proposed solutions to the above two issues are as follows: 

• Quasi-Static Data Scheduling: The bounded memory exe- 
cution issue can be solved by quasi-static data scheduling 
(QSDS), which guarantees that, for all possible outcomes 
in a non-deterministic data-depandent execution choice, the 
memory utilized for computation is always bounded and the 
execution of the softwexe is periodic, that is it always returns 
to its initial status. 

• Dynamic Real-Time Scheduling: The renl-time constraints is- 
sue can be solved by dynamic real-time scheduling (DRTS), 
which guarantees that a set of  concurrent real-time software 
tasks can be executed on a processor, while satisfying all pre- 
cendence and temporal constraints. 
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This article is organized as follows. Section 2 gives some previ- 
ons work related to ERTS synthesis. Section 3 formulates, models, 
and solves the ERTS synthesis problem. Section 4 illustrates the 
proposed problem solution through an application example. Sec- 
tion 5 concludes the article giving some future work. 

2 .  P R E V I O U S  W O R K  
Currently, software synthesis is a hot topic of research in the field 

of hardware-software codesiga of embedded systems [6]. Previ- 
ously, a large effort was directed towards hardware synthesis and 
comparatively little attention paid to software synthesis. Partial 
software synthesis was mainly carried out for communication pro- 
tecols [14], plant controllers [13], and real-time schedulers [1] be- 
cause they generally exhibited regular behaviors. Only recently has 
there been some work on automatically generating software code 
for embedded systems [11, 16, 17, 2]. Except for MetaH from 
Honeywell, no other automatic software synthesis method is avail- 
able for concurrent embedded real-time sof~are. In the following, 
we will briefly survey the existing works on the synthesis of non 
real-time software, on which our work is based. 

Lin [11] proposed an algorithm that generates a software pro- 
gram from a concurrent process specification through intermediate 
Petri-Net representation. This approach is based on the assumption 
that the Pctri-Nets are safe, Le., buffers can store at most one data 
unit, which implies that it is always schedulable. The proposed 
method applies quasi-static scheduling to a set of  safe Petri-Nets 
to produce a set of  corresponding state machines, which are then 
mapped syntactically to the final software code. Later, Zhu and Lin 
[17] proposed a compositional version of the synthesis method that 
reduced the generated code size and was thus more efficient. 

A software synthesis method was proposed for a more general 
Petri-Net framework by Sgroi et ai. [16]. A quasi-static scheduling 
algorithm was proposed for Free.Choice Petri Nets (FCPN) [16]. 
A necessary and sufficient condition was given for a FCPN to be 
schedulable. Schedulability was first tested for a FCPN and then 
a valid schedule generated by decomposing a FCPN into a set of  
Confiict-Free (CF) components which were then individually and 
statically scheduled. Code was finally generated from the valid 
schedule. 

Baiadn et al. [2] proposed a software synthesis procedure for 
reactive embedded systems in the Codesign Finite State Machine 
(CFSM) [3] framework with the POLLS hardware-software code- 
sign tool [3]. This work cannot be easily extended to other more 
general frameworks. 

Besides synthesis of software, there are also some recent work 
on the verification of software in an embedded system such as the 
Schedule-Verify-Map method [7], the linear hybrid automata tech- 
niques [5, 8], and the mapping strategy [4]. Recently, system pa- 
ramcters have also been taken into consideration for real-time soft- 
ware synthesis [9]. 

3 .  E M B E D D E D  R E A L - T I M E  S O F T W A R E  

S Y N T H E S I S  

A formal synthesis method for embedded real-time software is 
presented in this section. Its basic features are that the software 
code generated by the proposed synthesis method executes in hounded 
memory and satisfies all user-given real-time constraints. Before 
going into the details of  this method, the system model and related 
terminologies are presented first. 

An embedded real-time software is specified as a set of  T#ne 
Free-Choice Petri Nets (TFCPN), which are time extensions of 
Frce-Choice Petri Nets (FCPN) [16]. As mentioned in Section 2, 

t2(1 ,  4 )  

tt(o, 2) 

t3(5,  lO)  P3  

Figure 1: A T ime  Free-Choice  Petri Net  

FCPN was used for the quasi-static scheduling of embedded real- 
time software. But, there was. no concept of  time in the FCPN 
model, which makes it an inconvincing model for real.time soft- 
ware. Hence, we propose a time extension of FCPN, just a s / Ime  
Petri Nets (TPN) are a time extension of standard Petri Nets, which 
was proposed by Merlin and Father [15]. 

In the rest of this section, we first define TFCPN, its properties, 
and explain why TFCPN are used for modeling ERTS. Then, the 
problem formulation is given. Finally, our proposed synthesis al- 
gorithm is described, along with code ganeration. 

3 . 1  S y s t e m  M o d e l  

DEFINITION 1. : Time Free-Choice Petri Nets (TI~PN) 
A Twne Free-Choice Petri Net is a 5-topic (P, T, F, Mo, 1"), where: 

• P is a finite set of  places, 

• T is a finite set of  Iransitions, P U T  ~ g, a n d P n T  = 0, 

• F : ( P  × T)  U (T × P )  --+ .A/" is a weighted flow re- 
lation between places and transitions, represented by arcs, 
such that every arc from a place is either a unique outgoing 
arc or a unique incoming arc to a transition (this is called 
Free-Choice), where.N" is a set of  nonnegative integers, 

• M0 : P --+ N is the initial marking (assignment of  tokens m 
places), and 

• r : T --+ O" x (Q* U oo), i.e., r ( t )  = (a,/5), where t E T,  
a is the earliest firing t/me (EFF), and/5 is latest firing time 
(LFI3. II 

Graphically, a TFCPN can be depicted as shown in Fig. 1, where 
circles represent places, vertical bars represent transitions, arrows 
represent arcs, black dots represent tokens, and integers labeled 
over arcs represent the weights as defined by F ,  Here, F ( z ,  y) > 0 
implies there is an are from x to y with a weight of  F (x ,  y), where 
z and y can be a place or a transition. Conflicts are allowed in a 
TFCPN, where a conflict occurs when there is a token in a place 
with more than one outgoing arc such that only one enabled transi- 
tion can fire, thus consuming the token and disabling all other tran- 
sitions. For example, t2 and t3 are conflicting mmsitions in Fig. 1. 
But, confusions are not allowed in TFCPN, where a confusion is a 
result of coexistence of concmrency and confict. 

Semantically, the behavior of  a TFCPN is given by a sequence 
of markings, where a marking is an assignment of  tokens to places. 
Formally, a marking is a vector M --- (rex, m2, .  • •, mlPi),  where 
m~ is the non-negative number of  tokens in place Pi E P.  Starting 
from an initial marking Mo, a TFCPN may transit to another mark- 
ing through the firing of an enabled transition and re-assignment 
of tokens. A transition is said to he enabled when all its input 
places have the required number of tokens for the required amount 
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of time, where the required number of tokens is the weight as de- 
fined by the flow relation F and the required amount of time is the 
earliest starting time a as defined by ~-. An enabled transition need 
not necessarily fire. But upon firing, the required number of tokens 
are removed from all the input places and the specified number of 
tokens are placed in the output places, where the specified number 
of tokens is that specified by the flow relation F on the connecting 
arcs. An enabled transition may not fire later than the latest firing 
time 8. 

ERTS has both data-dependent executions, as well as, time-dependent 
specifications. Both of these characteristics are well-captared by 
TFCPN. TFCPN can distinguish clearly between concurrency and 
choice, hence they are good models of  data-dependent and con- 
current computations. Further, TFCPN can also distinguish clearly 
between data-dependent and time-dependent choices, thus TFCPN 
are well-defined models for our target ERTS. 

Some properties of  Petri Nets (PN) can be defined as follows. 
Reachability: a marking M '  is reachable from a marking M if there 
exists a firing sequence o starting at marking M and finishing at 
M'. Boundedness: a PN is said to be k-bounded if the number 
of tokens in every place of a reachable marking does not exceed a 
finite number k. A safe PN is one that is l-bounded. Deadlock- 
free: a PN is deadlock-free if there is at least one enabled transition 
in every reachable marking. Liveness: a PN is live if for every 
reachable marking and every transition t it is possible to reach a 
marking that enables t. 

3.2 P r o b l e m  F o r m u l a t i o n  
A user specifies the requirements for the design an embedded 

real-time soRware by a set of  TFCPNs. The problem we are try- 
ing to solve here is to find a construction method by which a set 
of TFCPNs can be made feasible to execute as a software code, 
running under given limited memory space and satisfying all given 
real-time constraints. The following is a formal definition of the 
ERTS synthesis problem. 

DE~NITION 2. : ERTSSynthesls  
Given a set of  TFCPNs, an upper-hound on memory use, and a set 
of real-time constraints, a software code is to be generated such that 
(1) it can be executed on a single processor, (2) it uses memory less 
than or equal to the upper-bound, and (3) it satisfies all the real-time 
constraints. II 

3.3 S y n t h e s i s  A l g o r i t h m  
As introduced in Section I and formulated in Definition 2, there 

are two objectives for our ERrS synthesis algorithm, namely hounded 
memory execution and real-time constraints satisfaction. The al- 
gorithm proposed here is thus intuitively divided into two phases 
corresponding to the two objectives. 

As shown in Table 1, given a set of  TFCPNs S = {A~ ] At = 
(Pi, Ti, Fi, Mio, n ) ,  i = 1, 2 . . . .  , n},  a maximum bound on mem- 
ory p, and a set ofperieds E = {~ri [ 7q E .A/',i = 1 , 2 , . . . , n } ,  
where lri is the period of Ai, a software code is generated after the 
following two phases: 

1. Quasi-Static Data Scheduling (QSDS): The basic concept 
here is to employ net decomposition such that firing choices 
that exists in a TFCPN are segregated into individual Conflict- 
Free (CF) components. The CF components are not distinct 
decompositions as a transition may occur in more than one 
component. Starting from an initial marking for each com- 
ponent, a finite complete cycle is constructed, where a finite 
complete cycle is a sequence of transition firings that returns 
the net to its initial marking. A CF component is said to be 

Table 1: Embedded Real .Time Software Synthesis Algorithm 

rarrs.synth(s,  l,, E) 
S = {Ai  I A, = ( P ~ , T , , F ~ , M ~ o , n ) , i  = 1,2 . . . . .  n}; 
integer/~; / /Maximum memory 
E={~n [ ~r, E N ' , i  = 1,2 . . . . .  n } ; {  

//Quasi-Static Data Scheduling (QSDS) 
for each A~ in S { (1) 

B~ = C¥_generate(Ai);//Bi: set of CF components (2) 
for each CF component Ai~ in Bi { O) 

QSSi j  = quasi..statlc..schedule(A~j,p); (4) 
ifQS,.q~j = NULL { (5) 

print "QSDS failed for A~j';  (6) 
return QSDS_Error; } (7) 

else QSS, = QSS, u {QSS(j}; }} (8) 
/I Dynamic Real-Time Scheduling (DRTS) 
RT S = real.thne.schedule( Q S S1, . . . , Q S S, , 

S,, S2,..., S,, E); (9) 
if R T S  = NULL { (10) 

print "DRTS failed for S"; (11) 
return DRTS_Error;  } (12) 

else gunerate.code(S, Q S S , , . . . ,  QSSn, RT,S~; (13) 
return Synthesized; (14) 

schedulable if a finite complete cycle can be found for it and 
it is deadlock-free. Once all CF components of  a TFCPN are 
scheduled, a valid quasi-static data schedule for the TFCPN 
can be generated as a set of  the finite complete cycles. The 
reason why this set is a valid schedule is that since each com- 
ponent always returns m its initial marking, no tokens can get 
collected at any place. Some details of  this procedure can be 
found in [ 16]. Satisfaction of memory bound can be checked 
by observing if the memory space represented by the max- 
imum number of tokens in any place does not exceed the 
bound. Here, each token represents some amount of  buffer 
space (i.e., memory) required after a computation (transition 
firing). Hence, the total amount of  actual memory required 
is the memory space represented by the maximum number of 
tokens that can get collected at a place during its transition 
from the initial marking back to its initial marking. 

2. Dynamic Real-Time Scheduling (DR]S): The basic concept 
here is to find if all the TFCPNs can be scheduled for ex- 
ecutiun along a single time axis (because we are consider- 
ing only single processor systems). From QSDS, each CF 
component has a corresponding finite complete cycle, thus 
the execution time interval for this firing sequence can be 
calculated by summing up all the EFT and LFT values, re- 
spectively, of each transition in the sequence. Among all 
the execution time intervals of  CF components belonging 
to the same TFCPN, the maximum LFT is selected as the 
worst-case execution time of that TFCPN. Then, a real-time 
scheduling algorithm such as Rate-Monotonic or Earliest- 
Deadline First is employed to scheduled all the TFCPNs with 
their worst-cnse execution times and periods from the set E.  

After data and real-time scheduling, the set of  TFCPNs is trans- 
lated into software programs by a code generation procedure as 
shown in Table 2. A real-time process is created for each TFCPN. 
In each process, a task is created for each transition with indepen- 
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Table 2: Code Generation Algorithm 

generate_code(S, Q S S, , Q S S2 , . . . , Q S S. , RT S ) 
S= {A, [ A i  = ( P h T i ,  F ~ , M ~ o , n ) , i  = 1,2 . . . .  ,n}; 
set of finite complete cycles Q S S i ,  i = 1 , . . . ,  n; 
a finite periodic real-time schedule R T S  = (Ai,, Ai~,. • .); { 

fori  = 1 , . . . , n  { (1) 
O ~ = create.proeess( Q S Si ) ; (2) 
fo r j  = 1 . . . . .  I F R ( A O  { (3) 

di# = ~'ente..tnsk(QSS~); (4) 
generate_tesk_cede(dij); (5) 
add_task(d~, DO; } } (6) 

create_main(); (7) 
output"for(i=0, i<length(RTS) ; i++) { "; (8) 
for k = 1 .... , IRTSI (9) 

output.code(D~ ); ( I O) 
output "}"; (11) 

I F R (  Ai ): # transitions in A~ with independent firing rates 

dent firing rate. Here, a transition is said to have an independent fir- 
ing rate if it is a source transition and its firing does not depend on 
any tokens being in any place. This method of task code generation 
optimizes (minimizes) the number of tasks in a process because the 
degree of concurrency in a process is equal to the number of inde- 
pendently firing wansitions [16]. The transitions that constitute a 
task can be either a subset of a single CF component or a union of 
two or more subsets of different CF components. 

Table 3 shows cede generation for a task. A switch-case 
structure is generated whenever a conflicting transition is encoun- 
tered, such that each choice of the conflict is represented by a 
c a s e  statement. Each c a s e  in the structure is constructed by 
scanning parts of the task from different CF components. In the 
case of multi-rate TFCPN, the following three cases hold, where 
NumFim(t) is the number of times a transition t fires in a given 
QSDS schedule: 

1. NumFire(t0 < NumFire(tt_,): a transition t t - ,  may fire 
several times for tokens to accumulate in an output place 
such that some succeeding transition tt that needs more than 
one token is enabled for firing. A c o u n t ( p )  variable is 
used to keep track of tokens accumulated at place p. 

2. NumFire(tt) > NumFire(t~_,): after a transition t#-,  fires 
once, there may be more than enough tokens in one of its 
output places such that a succeeding transition t~ may have 
to fire several times to consume the generated tokens. A 
c o u n t  (p) variable is used to keep track of tokens left un- 
consumed at place p. 

3. NumFire(t~) = NumFire(t~_,): since both successive tran- 
sitions have the same rote, a direct output of the transition 
computation code is performed. 

After all task codes are generated for each process. AmainO 
procedure is generated by constructing a schedule-loop for the real- 
time schedules generated during dynamic reul-time scheduling. 

4.  A P P L I C A T I O N  E X A M P L E  
A 2-process example is given in this section to illustrate the pro- 

posed ERTS synthesis algorithm, including code generation. Fig- 
are 2 shows two ~ N  (F, and F2) and the associated firing in- 

Table 3: Task Code Generation Algorithm 

generate.tesk.code(dii ) 
di#: jth task with independent firing rate in A, where 
dij  = {di jk  I d o k  = (tko, tk* . . . . .  tk . , ) ,k  > 0} { 

OUtput to; H to: source transition (1) 
for each ICF sub-component d i~  in d~ { (2) 

f o r / =  1 , . . .  ,~t~ { (3) 
if t~ is visited continue; (4) 
ift~ is a conflicting transition in 2~ { (5) 

i fp  = in.place(t~) is not yet visited (6) 
output "switch (p) {"; (7) 

else output " b r e a k ;  "; (8) 
output"case tl: call tl;"; (9) 
for all p '  = out.place(t 0 (10) 

output " c o u n t  ( p ' )  +=F ( t ( 1 ) ,  p '  I ;"  (11) 
t i m e s - v i s i t e d  v + +;  } (12) 

ifNumFire(tl) < NumFire(tl_,) { (13) 
OUtpUt "i f (count (p) >=F (p, tl) {"; (14) 
output "call tl ;" (15) 
output "count (p) -= 

NumFire (t ( I-i ) ) ; }"; } (16) 
ifNumFire(tt) > NumFire(tt_,) { (17) 

OUtpUt 'kchile (count (p) 
>=F(p, tl)){ call tl;"; (18) 

for all p = in_place(tt) (19) 
output "count (p) -=F (p, tl ) ;"; (20) 

output "}"; } (21) 
if NumFire(t~) = NumFire(tL_ a ) { (22) 

o u t p u t " c o u n t ( p )  -= F ( p , t l )  ;"; (23) 
output "call tl ; "; (24) 
output"count(p' ) += F(tl,p') ;";} (25) 

i f t i m e s . ~ i s i t e d p  = hum_choice(p) 
output"} "; } } (26) 

tervals, which constitute the ERTS requirements. Our goal is to 
generate feasible scheduled code from the requirements. 

According to our proposed algorithm (Table 1), we apply quasi- 
static data scheduling and dynamic real-time scheduling to the given 
system. 

QSDS for FI: Since t,2 and t,3 are conflicting transitions, two CF 
components (Rn  and RI2 in Hg. 3) are derived, which are then 
individually scheduled, resulting in the following two schedules, 
with their associated execution time intervals. 

t)11 = ( t n t l a t n t l 2 t l 4 ) ,  11 _< ~'(Vn) _< 22 (I) 

v12 = ( t n t * s h s t x s ) ,  13 < .(v12) _< 26 (2) 

There are two sets of valid schedules for this TFCPN: 

~1 = {t,**,t,ls} (3) 
k 

E2 = {V12 , ( t l l t1~v12 t l l t l~ t14 ,Vk  E.N'U {00})} (4) 

QSDS for Fa: Since t2 and ts are conflicting transitions, two CF 
components (P~, and R22 in Fig. 4) are derived, which are then 
individually scheduled, resulting in the following two schedules, 
with their associated execution time intervals. 

v2, = (t2xt22ta4t24t2st2st2et2ot2st2ot2e),31 _< 1"(v21) _< 68 (5) 

v22 = (t2,t2st2~t2zt2~t2st29t2e), 15 _< ~'(v22) _< 36 (6) 
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FI: 
t12(I, 3) t14(5, 10) 

tl3(3, 5) Ps fis(4, 9) 

F3: t2s(o, 5) t29(1.2) 

t 2 1 ( O ~ '  10) 

pl t 2 3 ~  , , (4, 8) 

P6 

Figure 2: Application Example S -- (FI, F2) 

&,: 

tt2(l, 3) 04(5, 1o) 

Pl 

&3: 
In(2, 3) 

:t3(3, 5) /73 its(4, 9) 

Figure 3: Confllct-Free Comlmnents for F~ 

Table 4: Dynamic Real-Time Scheduling for the Example 
[ Task ]Priori ty[ a', [ "r, no®(Ex) I "rm,,®(Z2) 

i ,, I , i , o o l  ,6 i - 
T2 2 110 68 68 

I Schedulable 
AIg°rithms I [ I Yes RM, EDF[12] [ No 

The set of valid schedules for this TFCPN is as given below. 

Es = {~1,~22} (7) 

DRTS for S: As shown in Table 4, when we used E~ as the set 
of valid QSDS schedules for F1 and applied the rate-monotonic 
scheduling algorithm to S, we found that though the total utiliza- 
tion (0.87818) is above the Liu and Layland's bound of 2(2 x/2 - 
1 = 0.828, yet S is rate-monotonic schedulable. If instead of E~, 
we used E2 as the set of QSDS schedules for F1, the system was 
not schedulable as the utilization is above 1. This example shows 
how the synthesis of an ERTS depends on both QSDS and DRTS. 

Code Generation for ~': After performing QSDS for each TFCPN 
and DRTS for the full system, embedded real-time software cede 
is generated for the system S. Applying our code generation al- 
gorithm (Table 2), the generated cede for task110 of F1 is shown 
in Table 5. Since there is only one source transition in F1, there 
is only one task in the process for this TFCPN. In the case of F'2, 
there are two source transitions with independent firing rates, hence 
there are two tasks, namely task21 and task22, the cedes of which 
are given in Tables 6 and 7. Thus, in total there ere three concurrent 
tasks in the two process code for system 5'. It must be noted that 
calling the transitions in the code, in fact, represents a sequence of 

t2s(0, 5) t~(1, 2) 

t22( t~(5, I0) 

t21(0,1) _ 2 2 
- P2 - p4 

pl 
t2s(0, 5) t2o(l, 2) 

R~: ~ ~ : ~ 5 ,  I0) 

t2,(0, 1) 

pl 
, (4, 8) 

Figure 4: Conflict-Free Components for F~ 

computations as modeled by the transition. The main0 program 
is generated according to the DRTS schedules. A non-preemptive 
version is given in Table 8. Preemption can be added. 

5. CONCLUSION 
The formal automatic synthesis of Embedded Real-Time Soft. 

ware (ERTS) was proposed through an algorithm along with code 
generation that minimizes the number of tasks in a concurrent sys- 
tem. Two phases of scheduling, namely O~asi-Stat~c Data Schedul. 
ing (QSDS) and Dynamic Real-Time Scheduling (DRTS), clearly 
distinguish between data and tirae scheduling, which respectively 
tries to satisfy the limited memory and processor requirements of 
an embedded system. When an ERTS is transferred to a faster pro- 
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holds for DRTS in the case of different processing power. 
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