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Abstract
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sorting algorithm is divided into two steps. First, a single-fault sorting operation
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merging operation is presented to recursively merge two sorted subsequences into
one sorted sequence. Our generalized sorting algorithm can be applied to any prod-
uct network only if the factor graph of the product graph can be embedding in a
ring. Further, we also show the time complexity of our sorting operations on a grid,
hypercube, and Petersen cube. Performance analysis illustrates that our generalized
sorting scheme is a truly efficient fault-tolerant algorithm.
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1 Introduction

A product network defines a class of topologies that are very often used.
Much research on product networks has been reported in the recent litera-
ture [6][8][10][12][13]. These networks have interesting topological properties
that make it especially suitable for parallel algorithms. Examples of product
networks include hypercubes, grids, and tori. Many other product networks
have been recently proposed, such as products of de Bruijn networks [10][18],
products of Petersen graphs [14], and mesh-connected trees. A considerable
amount of research has been done on product networks. Routing properties
of product networks were studied in [3] and [5]. Topological and embedded
properties of product networks were analyzed in [10]. Further, a reliable rout-
ing problem was proposed in [13]. Optimal fault-tolerant communication in a
product network was considered in [12]. In addition, the VLSI complexity of
product networks was analyzed in [9].

Many algorithms have been developed for the special case of product networks.
Examples can be found in hypercubes and grids. The drawback of these al-
gorithms is that there is no portability for different topologies. For example,
a fault-tolerant sorting algorithm developed for a hypercube in [4] and [19]
will not work on a grid, even though both hypercubes and grids are prod-
uct networks. Recently, Fernández and Efe [8] proposed a generalized sorting
algorithm for product networks. The main function of their algorithm is to
propose a multiway-merging operation. However, their algorithm does not
have fault-tolerant capability. The main contribution of this paper is to de-
velop a generalized fault-tolerant sorting algorithm for product networks. Our
fault-tolerant sorting algorithm is developed, which is based on Fernández and
Efes’ sorting algorithm [8]. The fault-tolerant sorting operation is achieved by
offering a new fault-tolerant multiway-merging operation. By using this fault-
tolerant multiway-merging operation, the fault-tolerant sorting algorithm is
thus developed for product networks.

Our generalized sorting algorithm is divided into two steps. First, a single-
fault sorting operation is presented to be correctly performed on each faulty
subgraphs, each of which contains at most one fault. Second, each subgraph
is considered a supernode. A fault-tolerant multiway merging operation is
presented to recursively merge two sorted subsequences into one sorted se-
quence. Our generalized sorting algorithm can be applied to any product
network under the constraint that the factor graph of the product graph
can at least be embedding in a ring. Two basic sorting operations, odd-even
and bitonic sorting operations, are used as the primitive operations. Note
that using odd-even or bitonic sorting operations as primitive operations de-
pends on the ability of embedding the factor graph of the product graph in
a ring or hypercube. Let N be the number of nodes of the factor graph and
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L the number of elements that each non-faulty node contains. For any r-
dimensional product graph with N r nodes, the time complexity is bounded by
O(r2N2L log L), when using the odd-even sorting as the primitive operation.
In the case when each node contains only one key (L = 1), the time com-
plexity is O(r2N2). When using bitonic sorting as the primitive operation, the
time is bounded by O(r2L log L(log2 N2)2 + r2N2 + rNL log L(log2 N)2). In
the case when each node contains only one key (L = 1), the time complexity is
O(r2(log2 N2)2 + r2N2 + rN(log2 N)2). The performance study on hypercubes
and Petersen cubes illustrates that the time complexity of our generalized
fault-tolerant sorting algorithm is the same as that of the generalized sort-
ing algorithm proposed by Fernández and Efes [8] when L = 1. Observe that
Fernández and Efes’ sorting algorithm [8] does not provide the fault-tolerant
capability. This indicates that our proposed fault-tolerant scheme is a truly
efficient algorithm.

The rest of this paper is organized as follows. In Section 2, we describe the
definitions and notations used in this paper. In Section 3, we present our
fault-tolerant sorting algorithm. In Section 4, the time complexity of the pro-
posed algorithm is analyzed using several well-known product networks. The
conclusions of this paper are drawn in Section 5.

2 Preliminary

In this section, we first define some notations. In Section 2.1, we formally
define the product network. In Section 2.2 we define the partitioning property
of a product network. Finally, we present the snake ordering method for a
product network in Section 2.3.

The assumption here logically treats some processors as faulty nodes and
assigns no unsorted element to them; the faulty nodes, as a result, can run
idle. The fault model can be classified into two types. The most serious fault
would be one that completely destroys a processor and all links incident to
it. Hastad [11] called such faults total. A less-serious fault, named a partial
fault [11], is one that destroys just the computational portion of a processor,
leaving the communication portion of the processor as well as the incident
links intact. The faults total properties can be achieved by rewriting a router
to handle the fault-tolerant routing of message passing. The execution time
will exceed that of the partial fault. Observe that, for simplicity, this paper
assumes the partial-fault model.
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Fig. 1. Examples of product graphs.

2.1 Product Network

An interconnected network is usually modeled as an undirected graph G =
(V, E) with the node-set V and edge-set E. |G| (or |V |) denotes the number
of nodes in G. Let G0 = (V0, E0) and G1 = (V1, E1) be two finite undirected
graphs. The product of G1 and G0 is defined as G = (V, E) = G1 × G0 with
the node-set V = V1 × V0 = {(x, y) | x ∈ V1, y ∈ V0}. There is an edge
{(x, y), (u, v)} in E if either x = u and {y, u} ∈ E0, or {x, u} ∈ E1 and y = v.
The graphs G1 and G0 are called the factors or component network of G. The
product network G consists of |V0| copies of G1, namely subgraphs of G1y with
the node-set{(x, y) | x ∈ V1} and edge-set {{(x, y), (x

′
, y)} | {x, x′} ∈ E1}.

Analogously, G has |V1| copies xG0 of G0 induced by the node-set{(x, y) |
y ∈ V0}. For instance, Fig. 1(a) and Fig. 1(b) illustrate two product networks
constructed by the product of G0 and G1 and that of G0 and G0, respectively.

Definition 1 [8] The product network G = G1 × G0 of two undirected con-
nected graphs G1 = (V1, E1) and G0 = (V0, E0) is the undirected graph G =
(V, E), where V and E are given by:

1) V = V1 × V0 = {(x, y) | x ∈ V1, y ∈ V0}, and
2) an edge {(x, y), (u, v)} in E if either x = u and {y, u} ∈ E0, or {x, u} ∈ E1

and y = v.

This definition can be generalized to a product of n graphs as G = (V, E) =
Gn−1 × · · · × G0 where Gi = (Vi, Ei), 0 ≤ i ≤ n − 1, such that V =
Vn−1 × · · · × V0; E = {((xn−1 · · ·x0), (yn−1 · · · y0)) | (xi, yi) ∈ Ei; and xj = yj

, ∃i ∈ {0, · · · , n − 1}, for i �= j}. The value i is called the dimension of the
edge {(xn−1, · · · , x0), (yn−1, · · · , y0)}. An interconnected topology derived from
several factor networks by the product operation will henceforth be called a
product network. In this paper, we consider only one-factor graphs under the
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Fig. 2. Recursive construction of a multidimensional product network. (a) Factor
graph; (b) two-dimensional product; (c) three-dimensional product.

self-product operation since most popular networks, such as grids, tori, and
cubes, are generated by one-factor graphs. This is because the popular in-
terconnected graphs have regular topologies and properties to design efficient
parallel algorithms.

Let PG1 = G. We can use the lower-dimensional product graph PGr−1 to
construct the higher-dimensional product graph PGr. The construction of
PGr from PGr−1, where PG1 = G, is shown in Fig. 2. Let x be a node
of PGr−1, lx be the label of node x, and N be the number of nodes of PG1.
Symbol [u]PGr−1 denotes the product graph obtained by putting an additional
digit u before the label lx of every vertex x in PGr−1, for u = 0, 1, · · · , N − 1.
The label lx of every vertex x ∈ PGr−1becomes ulx. We logically describe the
construction of PGr from PGr−1. First, arrange all vertices of PGr−1 one by
one along the horizontal (or vertical) direction. Then, make N copies of PGr−1

along the vertical (or horizontal) direction such that vertices with identical
labels fall in the same column. Next, relabel the uth copy of PGr−1 to obtain
[u]PGr−1, for u = 0, 1, · · · , N − 1. Finally, connect the corresponding nodes
of [u]PGr−1 and [u′]PGr−1 if (u, u′) ∈ EG. Fig. 2 illustrates this construction
process for two- and three-dimensional product graphs. The factor graph G is
shown in Fig. 2(a). Nodes in the ith row of Fig. 2(b) are labeled by putting
an additional digit i before their labels. Thus, the ith row in Fig. 2(b) can be
viewed as [i]PG1. In a similar way, PG3 is constructed in Fig. 2(c). Since the
operations described above are logically the same as the product operation
” × ” defined in Definition 1, the PGr generated by PGr−1 is also a product
network.
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2.2 Network Partitioning

To perform the fault-tolerant sorting operation on PGr, we begin by describing
the partitioning of PGr into N copies of PGr−1. The j-split operation on PGr

is defined by partitioning PGr along dimension j into N copies of PGj
r−1. Let

D = (d1,d2,...,dn), n < r. The D-split on PGr is the operation to apply d1-split,
d2-split, ..., and dn-split operations on PGr. For instance, the six-dimensional
hypercube is partitioned along dimensions 1, 4, and 5 by a D-split operation,
where D = (1, 4, 5).

Theorem 2 We can obtain Nk copies of PGi1,···,ik
r−k by partitioning PGr along

k dimensions i1, i2, · · · , ik, where k < r, and N is the number of nodes of the
factor graph.

The notation [u]PGi
r−1 defines an ordering for subgraphs PGr−1. In general,

[u]PGi
r−1 is the uth copy of the PGr−1 subgraph at dimension i. The subgraph

ordering rule can be applied to the general case of [u1, · · · , uk]PGi1,···,ik
r−k in a

number of different ways. We define a particular subgraph ordering method,
say snake ordering, with certain useful properties for data sorting.

Definition 3 [8] The snake order for the r-dimensional product graph PGr

is defined as follows:

1) If r = 1, the snake order is the same as the order used for labeling the nodes
of G.

2) Assume that the snake order has already been defined for PGr−1, r > 1.
Then

(a) [u]PGr
r−1has the same order as PGr−1 if u is even, and the reverse order

if u is odd; and
(b) if u < v then the order of all vertices in [u]PGr

r−1precedes the order of all
vertices in [v]PGr

r−1.

Example 4 Let N = 4. The snake order sequences Qr of product graph PGr,
for r = 1, 2, and 3 are listed as follows:

• for r = 1, Q1 = {0, 1, 2, 3},
• for r = 2, Q2 = {00, 01, 02, 03, 13, 12, 11, 10, 20, 21, 22, 23, 33, 32, 31, 30},
• for r = 3, Q3 = {

000, 001, 002, 003, 013, 012, 011, 010, 020, 021, 022, 023, 033, 032, 031, 030,

130, 131, 132, 133, 123, 122, 121, 120, 110, 111, 112, 113, 103, 102, 101, 100,

200, 201, 202, 203, 213, 212, 211, 210, 220, 221, 222, 223, 233, 232, 231, 230,
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Fig. 3. The snake order of the product network PG3 whose factor graph is a 4-node
ring.

330, 331, 332, 333, 323, 322, 321, 320, 310, 311, 312, 313, 303, 302, 301, 300}.

Fig. 3 gives the snake order for product graph PG3 considered in Fig. 2(c).
As we mentioned before, if the factor graph of a product network can be
embedded in a ring, the odd-even sorting operation is used as a single-fault
algorithm executed on each PG2. This covers most cases. Further, if the factor
graph can be embedded in a hypercube, then a bitonic-like sorting operation
is adopted as a single-fault sorting algorithm executed on each PG2.

3 Generalized Fault-Tolerant Sorting Algorithm

In our algorithm, a faulty product graph PGr is partitioned into several sub-
graphs PG2, where each PG2 contains at most one faulty node. This is helpful
for carrying out executing the single-fault sorting algorithm. In this section,
we offer a generalized partition scheme for a faulty PGr. The partition scheme
partitions the faulty PGr into N r−2 copies of PG2 in which each PG2 con-
tains at most one faulty node. To tolerate one faulty node, we propose two
single-fault sorting operations for each PG2 to ensure to obtain the correct
sorting order for elements on each PG2. However, we still need to merge all
elements node by node. For this purpose, we modified the well-known multi-
way merging operation [2] which originally had no fault-tolerant capability. By
putting together the proposed single-fault sorting operation and the modified
multiway merging operation as a basic operation, we developed a generalized
multi-fault sorting algorithm for a faulty product network. We outline our
generalized fault-tolerant sorting algorithm as follows.
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3.1 Partitioning Scheme for Faulty Product Networks

To tolerate up to r − 1 faults, we partition faulty PGr into N r−2 copies of
PG2 by executing a feasible D-split operation on PGr such that each PG2

contains at most one faulty node. Based on a similar partition scheme in a
star graph [20], we have the following property.

Lemma 5 In a PGr, r ≥ 4, with f ≤ r − 1 faulty nodes, there always exists
a D-split, |D| = r − 2, such that PGr can be partitioned into PG2 by D-split
and each partitioned PG2 contains at most one faulty node.

The maximum number of faults that can tolerated in this paper is r − 1.
For the condition of f �= r − 1, there exist some partitioned PG2 with no
faulty node. Due to the regular operation and balancing of the workload of
each PG2, we determine a dangling node [19] in each nonfaulty PG2. A node
is said to be a dangling node if the node is a healthy node but is assigned
to no job or data [19]. Nodes in a nonfaulty PG2 with the same position of
most faulty nodes in all other faulty PG2s will be selected as a dangling node.
We logically consider the dangling node as a faulty node and assign no data
to it. For example, assume that PG3, shown in Fig. 2(c), has the faulty set
F = {023,212}. A three-split operation is applied to PG3 since the digit in
dimension three of the address of faulty nodes differs. A D-split with D = {3}
will partition PG3 with F into N copies of PG2, while two PG′

2s contain sets
F1 = {023} and F2 = {212}. The dangling node must be determined for every
healthy PG2.

3.2 Distributing Unsorted Keys

The next step is to distribute unsorted keys into all nonfaulty nodes. Assume
that there are M � N r unsorted elements. Since the total number of nonfaulty
nodes is N r−N r−2, each nonfaulty node contains M/(N r−N r−2) = M/((N2−
1)N r−2) keys. In the next subsection, we present the execution of the single-
fault sorting operation for each PG2.

—————————————————————————————————–

/* Fault-Tolerant Sorting Algorithm on Product Network PGr */

Fault Tolerant Sorting (G, r, F, M) /* Sorts M keys on PGr (or
r-dimensional product graph G) with F faulty nodes */ {

Partition PGr { /* Partitions PGr into PG2 */
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Step 1. Perform a D-split operation to partition PGr into N r−2 copies of

PG2 such that each PG2 contains at most one faulty node.

Step 2. Assign one dangling node in each healthy PG2. The

dangling node is logically considered to be a faulty node.}

Distribute Data{ /* Distributes unsorted keys into all nonfaulty nodes

*/

Distribute M elements to the nonfaulty nodes.

Each nonfaulty node will thus contain L keys where

L = M/(N r − N r−2) = M/((N2 − 1)N r−2). }

Single Fault Sorting{ /* Applying a single-fault-sorting algorithm to each

PG2 */

For each PG2,

if (G can be embedded in an n-cube structure) then

{ Step 1. Perform the processor numbering operation

according to the original labeling order.

Step 2. Execute the bitonic-like sorting operation. }

else { Step 1. Perform the processor numbering operation

according to the snake order.

Step 2. Execute the odd–even-like sorting operation. }}

Fault-Tolerant Multiway Merge Operation{

Recursively performs our fault-tolerant multiway merging

operation to merge unmerged keys from PGi into PGi+1,

where 2 ≤ i ≤ r − 1. } }

—————————————————————————————–
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Fig. 4. Generalized fault-tolerant sorting algorithm for r-dimensional product net-
work.

Fig. 5. GRelabeling the processor number for a sub-product network according to
the snake order. (a) The original labels of graph; (b) Relabeling the faulty node to
position 00; (c) Relabeling the processor number for each node according to snake
order.

3.3 Single-Fault Sorting Operation

Two single-fault sorting operation algorithms are given here for PG2 to sort
M/N r−2 keys into ASCEND/DESCEND order. If a hypercube, where n =
log2 |G|, can be embedded into factor graph G, we perform the single-fault
bitonic sorting operation on each PG2. Otherwise, we perform the single-fault
odd-even sorting operation on each PG2. For the ease of presentation, we first
present the single-fault odd-even sorting operation. The single-fault bitonic
sorting operation is then discussed.

Initially, a simple rotation operation is performed based on the address of
the faulty node. The purpose of the rotation operation is to reset the logical
address of nodes such that the logical address of the faulty node or dangling
node can be considered P0. For example, consider PG2 containing a faulty
node whose label is 23 as shown in Fig. 5(a). After performing the rotation
operation, the faulty node’s address is 00 as shown in Fig. 5(b). Noted that
the addresses of all nodes were changed by the rotation operation shown in
Fig. 5(b). According to snake order, we assign each node a processor number
as shown in Fig. 5(c). The rotation operation logically makes the faulty node
of each PG2 to be P0.

Before executing the single-fault sorting operation, all nodes in PG2 should be
assigned a processor number. If the odd-even sorting operation is determined
to apply to PG2, which is dependent on the topology of the factor graph,
the processor is numbered according to the snake order. On the other hand,
if the bitonic sorting operation is determined to apply to PG2, the processor
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Fig. 6. Relabeling the processor number for a sub-product network according to the
original order. (a) The original labels of graph; (b) Relabeling the faulty node to
00; (c) Relabeling the processor number according to the original labels’ order.

is numbered according to the original labels’ order. Relabeling of the original
order is the same as that for the snake order. We illustrate this with an example
in Fig. 6. Fig. 6(a) displays the original label sequence. In Fig. 6(b), we treat
the faulty node as having the logical address of P0. The labeling shown in
Fig. 6(b) is the same as that shown in Fig. 5(b). Finally, we relabel each node
with a processor number according to the original order of their labels. The
processor number of each node is shown in Fig. 6(c).

3.3.1 Single-Fault Odd-Even Sorting Operation

The single-fault odd-even sorting operation consists of n comparison-exchange
stages for n adjacent elements. As mentioned before, we apply the single-
fault odd-even sorting operation to each PG2 if the factor graph G can be
embedded in a Hamiltonian cycle. The proposed odd-even sorting algorithm
with one fault is now described as follows. First, we apply the sequential
sorting algorithm, e.g., quick sorting or heap sorting, on each node for sorting
its M/((N2−1)N r−2) elements. Then, in the odd step of the odd-even sorting
algorithm, each pair of nodes, Pn and Pn−1, where n is odd, is compared to
its sorted sequence element by element. Since P0 is the faulty node, there is
not need for either P0 or P1 to undergo any comparison-exchange. In the even
step, each pair of nodes Pn and Pn−1, where n is even, is compared to its sorted
sequence element by element. No node will perform the comparison-exchange
with P0. After each step of the odd-even sorting algorithm, we also need to
apply the sequential sorting algorithm to each node. Because the faulty node
P0 is at the first position, we consider that the faulty node does not exist. The
odd-even sorting algorithm is only performed for nodes from P1 to PN2−1.
After the odd-even sorting, the data will be kept in an ASCEND/DESCEND
order from P1 to PN2−1.
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3.3.2 Single-Fault Bitonic Sorting Operation

The bitonic sorting algorithm [1][15][16][17] can also work correctly on PG2

when the faulty node is at P0. This result was indicated by Sheu et al. [19]. If
the number of the factor’s node is N = 2k (k is a constant) and the factor graph
contains a log2 N -dimensional hypercube, then the bitonic sorting algorithm
can be applied. The bitonic sorting algorithm consists of

∑log2n
i=1 i comparison-

exchange stages for n elements.

First, the M/N r−2 unsorted elements are uniformly distributed to N2 − 1
healthy nodes. The faulty node P0 in PG2 is treated as a dead node. We
apply the sequential sorting algorithm, e.g., quick sorting or heap sorting, on
each healthy node for sorting its M/((N2 − 1)N r−2) elements. By applying
the bitonic sorting algorithm, all M/N r−2 unsorted elements will be sorted at
each node of PG2 in order of their the addresses. Because the factor graph
has a hypercube structure, the bitonic sorting algorithm can work correctly.
The key concept of the bitonic sorting algorithm is to recursively execute
the comparison-exchange operations on each pair of sorted subcubes such
that the first half of the elements are located in one subcube and the last
half of the elements are located in another subcube. During execution of the
bitonic sorting operation, no node needs to perform any operation to P0. One
can assume that elements in PG1 and PG′

1 are now respectively sorted in
ascending and descending order after executing the bitonic sorting algorithm.

Now, we have proposed two sorting algorithms which can work correctly on
PG2 when the faulty node is P0. The odd-even sorting algorithm can be per-
formed when the factor graph contains a ring graph. The bitonic sorting al-
gorithm can also be performed when the number of nodes N = 2k in the
factor graph, and the factor graph has a log2 N -dimension hypercube struc-
ture. However, irregardless of which of the proposed two single fault sorting
operations are applied, we can only ensure that elements are sorted in order in
each PG2. In the next step, we perform the fault-tolerant multiway merging
operation such that elements can be sorted among all PG2s.

3.4 Fault-Tolerant Multiway Merging Operation

Fernández and Efe proposed a generalized parallel sorting algorithm in [8]. The
kernel function is the multiway merging operation [2]. Before discussing the
fault-tolerant multiway merging operation, we first define a fundamental op-
eration, namely the fault-tolerant comparison-exchange operation. Our fault-
tolerant merging operation is built based on the fault-tolerant comparison-
exchange operation.
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3.4.1 Fault-Tolerant Comparison-Exchange Operation

Here we present the fault-tolerant comparison-exchange operation between
two adjacent subgraphs, PGi and PG′

i, where i < r. The main function of the
fault-tolerant comparison-exchange operation is to perform the comparison-
exchange operation between each pair of adjacent nodes, x and y, when x ∈
PGi and y ∈ PG′

i, if PGi and PG′
i are both faulty.

The fault-tolerant comparison-exchange operation is a recursive operation. Let
FCE(PG2) denote the fault-tolerant comparison-exchange operation on any
pair of copies of PG2. We describe the fault-tolerant comparison-exchange
operation as follows. Every PG2 has exactly one faulty or dangling node.
Three possible cases are discussed depending on the location of the faulty
nodes: f ∈ PG2 and f ′ ∈ PG′

2. A column/row of a product network is said to
be a faulty column/row if it contains a faulty node. Based on the property of
the product network, each pair of nodes, x and y, located in the same location
can logically connect to each other by a path with length �N

2
�, where x ∈ PG2

and y ∈ PG′
2. Now we discuss these cases.

Case 1. Nodes f and f ′ are located in the same physical location: Each node
x �= f sends its data to adjacent nodes y �= f ′ by a physical link and performs
the comparison-exchange operation. The time complexity for sending data to
adjacent node is O(�N

2
�).

Case 2. Nodes f and f ′ are located in the same physical row : Two phases are
needed in this case.

1. Data-moving phase: Without loss of generality, let Pi in PG2 and P ′
j

in PG′
2 be faulty nodes, where i < j. Processor sequence Pi+1, Pi+2, . . . , Pj

sends data to P ′
i , P

′
i+1, . . . , P

′
j−1 by 2-hop steps as follows. Observe that

this work can be correctly performed since our fault model is assumed to
be the partial-fault one [19]. That is, a faulty node can still perform its
communication operation, and only the computation operation is faulty.
Each node Pk in Pi+1, Pi+2, . . . , Pj communicates with P ′

k, and then every
P ′

k shifts the received data to the neighboring processor P ′
k−1. Therefore,

P ′
i , P

′
i+1, . . . , P

′
j−1acquire data. If i > j, a similar way can be applied. Nodes

Pt not located in the faulty row send data to node P ′
t with the same processor

number in PG′
2. The time complexity of the data-moving phase is thus

O(�N
2
� + 1). Fig. 7 illustrates this operation. Fig. 7(a) shows the processor

numbering of PG2, and Fig. 7(d) illustrates the same PG2 with data which
have been sorted in PG2 in an ascending snake order. Fig. 7(b) illustrates
the data in nodes of the first row (the row is which the faulty node is located)
moving from PG2 to PG′

2. Fig. 7(e) shows the data layout of PG′
2 after the

data-moving operation is performed on each node.
2. Rotation phase: All nodes except the faulty node perform a rotation
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Fig. 7. The FCE(PG2) operation executed on example of case 2 that faulty nodes
of two PG2 are located at the same row. The processor numbering is in snake order.

operation as follows. All nodes in each row repeatedly shift to the right one
position until the node with the smallest processor number arrives at the
position j +1. The time complexity of the rotation phase is then O(N). Fig.
7(c) illustrates the result of the rotation phase, and Fig. 7(f) illustrates the
resultant data layout of Fig. 7(c).

Case 3. Nodes f and f ′ are located in different physical rows: Initially, a
similar data-moving phase as in Case 2 is performed. The only difference
is that the number of faulty rows is greater than one. Fig. 8(a) displays the
processor number of PG2, and Fig. 8(b) shows the result of the data-moving
operation performed from PG2 to PG′

2. The next task is to perform a rotation
operation. This operation is divided into three phases.

1. Horizontal-rotation phase: Assume that the faulty node is located in the
jth-column, and the row number of the first row is labeled 0. A horizontal-
rotation operation is performed on each row as follows. For row numbers
less than the faulty row, all nodes in the row repeatedly shift left/right one
position until the node with the maximum processor number arrives in the
jth-column. If the faulty row number is odd/even, all nodes in the faulty
row except for the faulty node repeatedly shift left/right one position until
a node with the largest/smallest address arrives in the (j + 1)th-column.
For the remaining rows, if the row number is odd/even, all nodes in the
row repeatedly shift left/right one position until the node with the maxi-
mum/minimum address arrives in the jth-column. The time complexity of
the horizontal-rotation phase is O(�N

2
�). Fig. 8(c) shows the result of the
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Fig. 8. TThe FCE(PG2) opeartion executed on example of case 3 that faulty nodes
of two PG2 are not at the same row. The processor numbering is in snake order.

horizontal-rotation operation.
2. Vertical-rotation phase: All nodes repeatedly shift up/down one position

until nodes in the first row arrive in the faulty row. If all nodes repeatedly
shift up one position, then there is no need for nodes in the jth-column
to shift up one position in the first step of the shift. The time complexity
of the vertical-rotation phase is O(�N

2
�). An example of a vertical-rotation

operation is shown in Fig. 8(d).
3. Tuning-rotation phase: Let g denote the gap between the first row and

the faulty row. A tuning operation must be performed in the next g rows
beginning from the faulty row. The task is performed as follows. Assume
that the faulty row is relabeled row 0. If the row number of each row of
these g rows is odd, it shifts to the left one position. The time complexity of
the tuning-rotation phase is O(1). An example of the tuning-rotation phase
is shown in Fig. 8(e).

Lemma 6 The FCE(PG2) operation can be correctly executed within O(�3
2
N�

+ 2) time steps if the processor numbering sequence is in the snake order.

Proof: The time complexity of one PG2 sending data to another PG2 is
O(�N

2
�+ 1). In Case 1, there is no rotation operation. The time complexities

of the rotation phases in Cases 2 and 3 are respectively O(N) and O(N +1).
In total, the time complexity of FCE(PG2) is O(�3N

2
� + 2).

Now we consider the other case as follows. If the factor graph has a hypercube
structure, the processor numbering operation will use the original order of
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each label for each node. In the following, we illustrate how the FCE(PG2)
operation is applied to PG2 if the processors are numbered in the original
order. Similar to the FCE(PG2) operation using the snake order, we also
use three cases to discuss FCE(PG2) using the original order. Basically, the
operation in Cases 1 and 2 is the same as the operation in the snake order. In
Case 3, the data-moving phase is the same as that in Case 2. Additionally,
three rotation operation phases are described as follows.

1. Horizontal-rotation phase: Assume that the faulty node is located in the
jth-column, and the row number of the first row is labeled 0. A horizontal-
rotation operation is performed on each row as follows. For those rows whose
row number is less than that of the faulty row, all nodes in the row repeat-
edly shift left/right one position until the node with the maximum address
arrives in the jth-column. All nodes in the faulty row except for the faulty
node repeatedly shift left/right one position until the node with the small-
est address arrives in the j +1th-column. For the remaining rows, all nodes
in the row repeatedly shift left/right one position until the node with the
minimum address arrives in the jth-column. The time complexity of the
horizontal-rotation phase is O(�N

2
�).

2. Vertical-rotation phase: All nodes repeatedly shift up/down one position
until the first row arrives in the faulty row. The time complexity of the
vertical-rotation phase is O(�N

2
�).

3. Tuning-rotation phase: The tuning rotation phase is the same as that for
the snake order. The time complexity of the tuning-rotation phase is O(1).

Lemma 7 The FCE(PG2) operation can be correctly executed on PG2, and
its time complexity is bounded by O(�3N

2
� + 2) if the processor numbering is

in the original order.

The following theorem is derived based on results of Lemmas 2 and 3.

Theorem 8 The FCE(PGk) operation can be correctly executed in O(�3N
2
�+

2) time steps if the processor numbering uses the snake order or the original
order, where k < r.

Proof: Recall that the FCE(PG2) operation can work correctly on PG2. For
the purpose of making this operation correctly run on PGk, we partition PGk

and PG′
k into a number of PG2s. Then each PG2 in PGk performs FCE(PG2)

with the corresponding PG2 in PG′
k. Finally, merge PG2 in PGk (or PG′

k) into
PGk (or PG′

k). So FCE(PGk) can also be correctly executed in O(�3N
2
� + 2)

time steps. Fig. 9 illustrates this operation.

16



Fig. 9. The FCE(PGk) operation.

3.4.2 The Fault-Tolerant Multiway Merging Operation

The multiway merging operation was originally used by Fernández and Efe
[8] to perform a generalized sorting algorithm on a product network. The cor-
rectness can be verified by referring to [8]. However, their multiway merging
operation does not have fault-tolerant capability. We present a fault-tolerant
multiway merging operation here. By using the proposed fault-tolerant mul-
tiway merging operation as a basic operation, we thus develop a generalized
fault-tolerant sorting algorithm. The fault-tolerant multiway merging opera-
tion is divided into four phases. The proposed multiway merging operation
is a recursive algorithm. For ease of presentation, a dimension variable k,
2 < k < r, is used to denote the current dimension in the recursive process.

We define the terms of a virtual PG2 and a virtual PG2 sequence as follows.
The virtual PG2 consists of N copies of PG1. Any two PG1s in the virtual
PG2 may not be directly connected. The structure of the virtual PG2 is similar
to that of PG2 except that communication of each pair of neighboring PG1s
may require more than one step since a direct link might not exist between
them. The virtual PG2 sequence is the sequence of a number of virtual PG2s.
Examples of a virtual PG2 and a virtual PG2 sequence are shown in Figs.
10(a) and 10(b).
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Fig. 10. (a) The virutual PG2; (b) the virtual PG2 sequence.

Now we present the fault-tolerant multiway merging operation here.

————————————————————————————————–

Fault-Tolerant Multiway Merge Operation (PGk)

{ /* The PGk is partitioned into N copies of PGk−1 by applying a j-split
operation, where j ∈ D = (d1,d2,...,dn). */

1. Redistribution step: Basically, the redistribution process is the same as
the function of the redistribution phase in [8] except for the operation of
k = 2. The goal of the redistribution step is to collect unmerged data
from different dimensions. In the case of k = 2, we are not only collecting
unmerged data from different dimensions, but also collecting data from all
of the faulty columns of every original PG2 to organize a virtual PG2. All
the remaining virtual PG2s are constructed according to order of the faulty
columns. For example, in Fig. 11(a), the data layout shows that a PG3 has
been partitioned into four PG2s and a single-fault sorting operation has
been performed on each PG2. We partition each PG2 into N copies of PG1,
and collect PG1 in each PG2 into a virtual PG2 as shown in Fig. 11(b).

2. Merging step: If 3 ≤ k < r, for each PGk−1 among N copies of PGk−1, per-
form the Fault-Tolerant Multiway Merge Operation (PGk−1). Note
that if k = 2, single-fault sorting and FCE(PG2) are performed on the
virtual PG2 sequence. Fig. 12(a) illustrates the merging operation of PGk

when 3 ≤ k < r. Fig. 12(b) displays the construction of a number of virtual
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Fig. 11. Redistribution step. (a) Each PG2 performing a single-fault sorting opera-
tion; (b) Construction of virtual PG2 from PG2.

PG2s when k = 2. Fig. 12(c) displays the virtual PG2 after executing the
single-fault sorting and FCE(PG2).

3. Interleaving step: This task is a restoration operation which is opposite to
the Redistribution step. After executing this operation on PG2 as shown
in Fig. 13(a), we have the result shown in Fig. 13(b).

4. Clear-dirty step: There are three parts of the clear-dirty step. (1) For each
PG2, sort its keys. (2) Perform two odd-even transpositions among the PG2

sequences. (3) For each PG2, sort the keys again. For the correctness of the
clear-dirty step, refer to [8].

}

————————————————————————————————
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Fig. 12. The merge operation. (a) The merge operation performed on PGk; (b)
Construction of the virtual PG2 sequence from PGk; (c) Sorting and FCE(PG2)
operations performed on each virtual PG2.

4 Analysis of the Time Complexity of the Generalized Fault-Tolerant
Sorting Algorithm

In this section, the time complexity of the generalized fault-tolerant sorting
algorithm is given. Furthermore, we discuss the time complexity of a torus,
grid, hypercube, and the Petersen cube using our generalized fault-tolerant
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Fig. 13. Interleave step. (a) Snapshot of the virtual PG2 after executing merge step;
(b) Snapshot of the virtual PG2 after executing the interleave step.

sorting algorithm.

4.1 Generalized Time Complexity

To analyze the time complexity of generalized fault-tolerant sorting algorithm,
we first study the time complexity of the sequential sorting algorithm, the
communication operation, and the merging process for a k-dimensional prod-
uct network. We assume that each nonfaulty node contains L keys, where
L = M/(N r − N r−2) = M/ ((N2 − 1)N r−2). The time cost for the sequential
sorting algorithm to run on a node with L keys is denoted Tss. Let Ts2 denote
the time complexity required for sorting PG2, Ts1 represent the time com-
plexity required for sorting PG in the virtual PG2, and TMk

be the multiway
merging process on a k-dimensional product network. We derive the following
Lemma.

Lemma 9 Merging N sorted sequences of Nk−1 nodes on PGk takes TMk
=

Ts1Tss(N + 1) + (
⌊

3N
2

⌋
+ 2) × N + 2(k − 2)

(
Ts2Tss +

⌊
3N
2

⌋
+ 2

)
time steps.

Proof: Step 1 of the multi-fault sorting operation takes no computation time.
Step 2 is a recursive call to the merging operation for k − 1 dimensions, and
hence requires a time cost of TMk−1

. Step 3 takes no computation time. Finally,
step 4 requires the time for one sorting operation on PG2, two communication
operations for PG2 (the time for FCE(PG2)), and one more sorting operation
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for PG2. Every time the keys are sorted, we need to perform a sequential
sorting algorithm which takes Tss time steps. Therefore, the value of TMk

can
be recursively expressed as:

TMk
= TMk−1

+ 2
(
Ts2Tss + (

⌊
3N

2

⌋
+ 2)

)
.

In the initial condition, for the two-dimensional PG2, we perform the
sorting operation in PG N +1 times, and comparison-exchange in the virtual
PG2 N times. Therefore, TM2 will be

TM2 = Ts1Tss(N + 1) + (
⌊
3N

2

⌋
+ 2) × N.

This yields

TMk
= Ts1Tss(N + 1) + (

⌊
3N

2

⌋
+ 2) × N + 2(k − 2)

(
Ts2Tss + (

⌊
3N

2

⌋
+ 2)

)
.

The time complexity of the fault-tolerant sorting algorithm is FSr(N).

Theorem 10 For any factor graph G, the time complexity of the proposed
fault-tolerant sorting algorithm on PGr with f ≤ r−1 faulty nodes is FSr(N) =
O(r2Ts2L log L+r2N2+rNTs1L log L), where L is the number of elements dis-
tributed on each node.

Proof: By the algorithm of Section 3.3.2, the time complexity for sorting PGr

with f ≤ r − 1 faulty nodes is the sum of the time complexities for sorting
a two-dimensional subgraph and the recursive merging of N sorted sequences
into a higher-dimensional product network in PGr. The derivation of time
complexity is as follows.

FSr(N) =Ts2Tss + TM3 + TM4 + · · · + TMr−1 + TMr

=Ts2Tss + (r − 2)(Ts1Tss(N + 1) + (
⌊
3N

2

⌋
+ 2) × N) +

2(Ts2Tss + (
⌊
3N

2

⌋
+ 2))

r∑
i=3

(i − 2)

= ((r − 1)(r − 2) + 1)Ts2Tss +

(r − 2)(r + N − 1)(
⌊
3N

2

⌋
+ 2) + (r − 2)(N + 1)Ts1Tss.

Since the heap sorting algorithm in the worst case takes (L−1) log L+1 time
steps, the time complexity of Sr(N) becomes
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FSr(N) = ((r − 1)(r − 2) + 1)Ts2((L − 1) log L + 1) +

(r − 2)(r + N − 1)(�3N

2
� + 2) +

(r − 2)(N + 1)S(N)((L − 1) log L + 1)

=O(r2Ts2L log L + r2N2 + rNTs1L log L).

Corollary 11 The time complexity of odd-even sorting is O(r2N2L log L). If
each non-faulty node contains only one key, the complexity is O(r2N2).

Proof: In Theorem 10, we know that the time complexity of our algorithm
is O(r2Ts2L log L + r2N2 + rNTs1L log L). We spent Ts2 = O(N2) time steps
to perform odd-even sorting in PG2 with the snake order, and Ts1 = O(N)
time steps to perform odd-even sorting in PG. Therefore, the time complexity
is bounded by O(r2N2L log L). Note that if L = 1, the time cost becomes
O(r2N2).

Corollary 12 The time complexity of bitonic sorting is O(r2L log L(log2 N2)2

+ r2N2 + rNL log L(log2 N)2). If each non-faulty node contains only one key,
the complexity is O(r2(log2 N2)2 + r2N2 + rN(log2 N)2).

Proof: To perform a bitonic sorting on PG2, we need

Ts2 =
log2 N2∑

i=1

i steps, and Ts1 =
log2 N∑
i=1

i

time steps to perform bitonic sorting in PG. Therefore, the time complexity
is

O(r2L log L(log2 N2)2 + r2N2 + rNL log L(log2 N)2).

Note that if L = 1, the time complexity is bounded by O(r2(log2 N2)2+r2N2+
rN(log2 N)2).

4.2 Time Complexity of a Torus

From corollary 11, we know that the complexity of our fault-tolerant sorting
on a torus is O(r2N2L log L). Note that if L = 1, the time complexity on a
torus is FSr(N) = O (r2N2).
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4.3 Time Complexity of a Grid

The following corollary measures the time complexity of our fault-tolerant
sorting algorithm applied to a grid.

Corollary 13 If PGr is a grid, the time complexity of sorting on PGr is at
most O(r2N2L log L), where L is the number of elements each node contains.

Proof: We calculate the time complexity of our fault-tolerant sorting algo-
rithm on an r-dimensional torus. Then, we refer to the result proposed in [7]
which points out that if G is a connected graph, PGr can emulate any com-
putation on the N r-node r-dimensional torus by embedding the torus into
PGr with a dilation of three and a congestion of two. Since this embedding
undergoes constant dilation and congestion, the emulation has a constant slow-
down. (In fact, the slowdown is no greater than six). We use the slowdown
value to compute the exact running time for PGr. The complexity of sorting
on r-dimensional torus was previously proposed as FSr(N) = O(r2N2L log L).
Since the emulation of our algorithm by PGr requires a slowdown factor of
at most six, elements of the grid can be sorted in a time complexity 6×
Sr(N) = 6 × O(r2N2L log L) = O(r2N2L log L). Note that if L = 1, the
time complexity for the grid is bounded by FSr(N) = O (r2N2).

4.4 Time Complexity of a Hypercube

A hypercube has a constant N = 2. We are using the bitonic sorting operation
in the single-fault sorting algorithm. From Corollary 13, we can measure the
complexity FSr(N) of the fault-tolerant sorting of a hypercube:

FSr(N) = O(r2L log L + r2 + rL log L) = O(r2L log L).

Note that if L = 1, the time complexity on the hypercube becomes FSr(N) =
O (r2).

4.5 Time Complexity of a Petersen Cube

The Petersen cube is the r-dimensional product network of a Petersen graph,
as shown in Fig. 14. The product graphs obtained from the Petersen graph are
studied in [14]. Similar to a hypercube, the product of a Petersen graph has
a constant N . Since the Petersen graph is Hamiltonian, its two-dimensional
product network contains the 10 × 10 two-dimensional grid as a subgraph.
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Fig. 14. Petersen graph.

Thus, we can use a grid algorithm for sorting 100 nodes on the two-dimensional
product of a Petersen graph in constant time. Consequently, data in the r-
dimensional product of a Petersen graph with 10r nodes can be sorted in a
time complexity of O(r2L log L). Note that if L = 1, the time complexity
for executing the generalized fault-tolerant sorting algorithm on a Petersen
cube is FSr(N) = O (r2). Table 1 shows a comparison of time complexity of
Fernández and Efes’ sorting algorithm [8], Sheu et al.’s fault-tolerant sorting
on a hypercube [19], Chen’s fault-tolerant sorting on a hypercube [4], and
our generalized fault-tolerant sorting algorithm on a product network. The
proposed sorting algorithm is portable for a number of popular product net-
works. Note that if L = 1, the time complexity is bounded by O(r2N2) if
the graph is a grid, and by O (r2) if the graph is a hypercube or a Petersen
cube. Moreover, in the case of L = 1, the time complexities of hypercube and
Petersen cube are the same with the result in Fernández and Efes’ algorithm.
From Table 1, Fernández and Efes’ approach is more efficient when no faults
are present. However, our generalized fault-tolerant sorting algorithm is devel-
oped to tolerate faults in the product network. Observe that, Fernández and
Efes’ approach cannot work even if only one fault is occurred. This character-
istic of the performance analysis illustrates the performance achievement of
the generalized fault-tolerant sorting algorithm.

5 Conclusions

In this paper, we present the fault-tolerant sorting algorithm on an r -dimensi-
onal product network when the number of faulty nodes is f ≤ r− 1. The pro-
posed algorithm is generalized and portable for executing sorting operations on
faulty product networks. We first presented the D-split partitioning scheme for
partitioning PGr into a number of PG2s such that each PG2 contains at most
one faulty node. To tolerate up to one faulty node, we proposed two single-
fault sorting operations executed on each PG2. We combined the proposed
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Table 1
Time complexity comparison of existing sorting and fault-tolerant sorting algo-
rithms.

Existing Fault- Tolerant Fernández and Our Scheme

Sorting Algorithms Efes [8](without ( f ≤ r − 1 )

fault-tolerant)

f = 0, L = 1 f > 0, f > 0, L > 1

L = 1

Torus unknown O(r2N) O
(

r2N2
)

O(r2N2L log L)

Grid unknown O(r2N) O
(

r2N2
)

O(r2N2L log L)

Sheu et al. [19] Chen [4]

( f ≤ r − 1 ) ( f ≤ � 3r
2 � − 1 )

Hyper- f > 0, f > 0, f > 0, f > 0,

cube L = 1 L > 1 L = 1 L > 1 O
(

r2
)

O
(

r2
)

O(r2L log L)

O(log2 2r) O(L log L+ O(log2 2r) O(L log L+

L log2 2r) L log2 2r)

Petersen unknown O
(

r2
)

O
(

r2
)

O(r2L log L)

cube

where, f is the number of faulty nodes, L is the number of elements on each node,
r is the dimension, and N is the number of nodes of the factor graph.

single-fault sorting operations with the modified multi-way merging operation
as the basic operation for tolerating multiple faults. The time complexity of
the proposed fault-tolerant sorting algorithm is O(r2L log L(log2 N2)2+r2N2+
rNL log L(log2 N)2) when using bitonic sorting and is O(r2N2L log L) when
using odd-even sorting, where L is the number of data distributed on each
node and f ≤ r− 1. For particular networks, the time complexity for the grid
is O(r2N2L log L) and for a hypercube and Petersen cube is O(r2L log L). Note
that if L = 1, the time complexities of hypercube, and Petersen cube are the
same as the result in Fernández and Efes’ approach. From Table 1, Fernández
and Efes’ approach is more efficient when no faults are present. However, our
generalized fault-tolerant sorting algorithm is developed to tolerate faults in
the product network. Fernández and Efes’ approach cannot work even if one
fault is occurred. Consequently, the performance analysis indicates that our
proposed generalized sorting scheme is a truly efficient fault-tolerant scheme.
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