Multi-Node Broadcasting in All-Ported 3-D
Wormbhole-Routed Torus Using an
Aggregation-then-Distribution Strategy

Yuh-Shyan Chen? Chao-Yu Chiang” Che-Yi Chen ¢

aDepartment of Computer Science and Information Engineering, National Chung
Cheng University, Chiayi, Taiwan, R.0.C.

b Division of Research and Developement, Computer Center, National Chung
Cheng Unwversity, Chiayi, Taiwan, R.0.C.

¢ Department of Computer Science, National Tsing Hua University, Hsingchu,
Taiwan, R.0.C.

Abstract

In this paper, we investigate the multi-node broadcasting problem in a 3-D torus,
where there are an unknown number of s source nodes located at unknown positions
each intending to broadcast a message of size m bytes to the rest of the network.
The torus is assumed to use the all-port model and the popular dimension-ordered
routing. Existing congestion-free results are derived based on finding multiple edge-
disjoint spanning trees in the network. This paper shows how to efficiently perform
multi-node broadcasting in a 3-D torus. The main technique used in this paper is an
aggregation-then-distribution strategy, which is characterized by the following fea-
tures: (i) the broadcast messages are aggregated into some positions on the 3-D torus,
then a number of independent subnetworks are constructed from the 3-D torus; and
(ii) these subnetworks, which are responsible for distributing the messages, fully ex-
ploit the communication parallelism and the characteristic of wormhole routing. It
is shown that such an approach is more appropriate than those using edge-disjoint
trees for fixed-connection networks such as tori. Extensive simulations are conducted
to evaluate this multi-broadcasting algorithm.

Key words: Broadcasting, collective communication, dimension-order routing,
interconnection network, many-to-all broadcasting, parallel processing, torus,
wormhole-routed.

Preprint submitted to Elsevier Science 7 January 2004

1 Introduction

A massively parallel computer (MPC) consists of a large number of identical
processing elements interconnected by a network. One basic communication
operation which uses such a machine is broadcasting. Two commonly discussed
instances are: one-to-all broadcasts and all-to-all broadcasts, where one or all
nodes need to broadcast messages to the rest of the nodes [2]. A more com-
plicated instance is the many-to-all (or multi-node) broadcast, where there is
an unknown number of nodes located at unknown positions each intending
to perform a broadcast operation. The focus of this paper is the multi-node
broadcast problem, which has been applied to parallel graph algorithms, par-
allel matrix algorithms, fast Fourier transformations, and cache coherence [3],
[5], [7], [12], [14]. This is especially true for those collective communication
patterns, such as broadcasting and multicasting, which involve more than one
source. Moreover, it is an important primitive communication operation for
data-redistribution communication of a parallelizing compiler [16].

The wormhole routing technology [13], [15] has been s adopted by many new-
generation parallel computers, such as the Intel Touchstone DELTA, Intel
Paragon, MIT J-machine, Caltech MOSAIC, and Cray T3D. In such networks,
a packet is partitioned into a sequence of flits, which are sent in a worm-like (or
pipelined) manner. In the absence of congestion, the communication latency
in such networks is proportional to the additive factor of message length and
routing distance (while on the contrary the latency in a store-and-forward net-
work is proportional to the multiplicative factor of message length and routing
distance). It is for this reason that communication latency for network with
wormhole routing is recognized to be quite distance-insensitive. Many routing
algorithms have been proposed to utilize this property. For instance, [15] shows
how to perform one-to-all broadcast in wormhole-routed all-port tori using as
least communication phases as possible, where a phase consists of a set of
congestion-free communication paths; paths of different lengths can co-exists
in a phase, but the corresponding communications are expected to complete in
about the same time due to wormhole routing’s distance-insensitive property.

Email addresses: yschen@cs.ccu.edu.tw (Yuh-Shyan Chen),
cychiang@so-net.net.tw (Chao-Yu Chiang), jerry@cs.nthu.edu.tw (Che-Yi
Chen).

I The preliminary version of this paper is presented at The Third International
Symposium on High Performance Computing, Oct. 2000, Tokyo, JAPAN.

2 Yuh-Shyan Chen is with Department of Computer Science and Information
Engineering, National Chung Cheng University, Chiayi, Taiwan, R.O.C., (Email:
yschen@cs.ccu.edu.tw). This work was supported by the Ministry of Education, the
the Republic of China, under grant 91A-H-FAQ7-1-4 (Learning Technology) and
National Science Council of the Republic of China under grant #NSC-89-2218-E-
305-002.

Multi-node broadcast problems have been studied in a variety of interconnec-
tion networks [5], [9], [10], [11], [12], [14]. Saad and Schultz [9], [10] initially
defined this problem and proposed a simple routing algorithm for hypercubes.
Stamoulis and Tsitsiklis [11] proposed a method of using n edge-disjoint span-
ning trees in an n-dimensional hypercube to solve this problem. A distributed
approach to improve the load imbalance problem in [11] was presented by
Tseng [12] for hypercubes and star graphs. Efforts were made by Varvari-
gos [14] to solve the more complicated problem where each source node may
have several messages (of the same length) to broadcast. Susanne et al. [5]
proposed a scheme called s-to-p broadcasting, where the authors try to align
broadcast messages into a regular pattern before the broadcasting. Recently,
Kesavan and Panda [6] investigated a multiple multicast with minimized node
contention on wormhole k-ary n-cube networks. However, their approach at-
tempted to reduce the node-contention problem, which does not produce a
congestion-free result.

The aforementioned congestion-free results are all based on finding edge-
disjoint spanning trees in a network and are appropriate for non-fized connec-
tion networks [3]. One problem with this is that the number of edge-disjoint
trees that can be offered by a network is fixed [3]. The other problem is that
the characteristic of wormhole routing, which is assumed in this paper, is not
well exploited [13]. In this paper, we consider multi-dimensional tori, which
have been adopted by Cray T3D and T3E and are fized-connection networks.
The currently popular wormhole routing technology is assumed. In the litera-
ture, sending a packet involves two costs: start-up time and transmission time.
Attempts to minimize both of these costs are made.

This paper addresses the multi-node broadcasting problem in wormhole-routed
3-D tori. Our approach is designed based on a proposed aggregation-then-
distribution strategy. The major contribution of this paper is to present a way
to develop a multi-node broadcasting using an aggregation-then-distribution
strategy in wormhole-routed 3-D tori, which is characterized by the following
features: (i) broadcast messages are aggregated into some positions of the 3-D
torus, then a number of independent subnetworks are constructed from the
3-D torus, and (ii) these subnetworks, which are responsible for distributing
the messages, can fully exploit communication parallelism and the character-
istics of wormhole routing. We adopt an algebraic foundation [15] to develop
our multi-node broadcasting algorithm. Using algebraic presentation allows us
to develop an efficient multi-node broadcast algorithm in wormhole-routed 3-
D tori. Our aggregation-then-distribution strategy is divided into two phases.
First, network-partitioning techniques proposed in [13] are used to obtain mul-
tiple independent subnetworks (which differ from edge-disjoint spanning trees)
in a torus. The number of independent subnetworks is actually an adjustable
parameter. For a multi-node broadcast problem with an unknown number of
s source nodes located at unknown positions in an torus each intending to

broadcast an m-byte message, our approach can solve it efficiently in time
O(max([log; n], h)T, + max([log; [2|17, hm')T,), where h is the number of
independent subnetworks, m = ;5m, and m' = ¥m. It is shown that this
number has outperformed the aforementioned congestion-free scheme using
edge-disjoint spanning-trees.

The rest of this paper is organized as follows. The basic ideas are given in
Section 2. Section 3 presents our multi-node broadcasting in a 3-D torus.
Timing analyses and comparisons are in Section 4, and conclusions are drawn
in Section 5.

2 Basic Ideas
2.1 System Model

A massively parallel computer (MPC) is formally represented as G = (V,C),
where V' denotes the node set and C' specifies the channel connectivity. Each
node contains a separate router to handle its communication tasks. In this
paper, we consider G as a 3-D torus T, xn,xns With 11 X ny X n3 nodes. In
3-D tori, each node is denoted as P jx, 1 <1 <n;, 1 <j<mny,1<k<ns,
and P, ;, ;, has an edge connected t0 F;,+1)modny,is,i; @long dimension one, an
edge to P, (iy+1) modna,ns along dimension two, and an edge to I, 4, (i3+1) modns
along dimension three. Each edge is considered to consist of two directed
communication links pointing in opposite directions.

The wormhole routing model is assumed [7]. Under such a model, each packet
is partitioned into smaller units called flits, which are sent in a pipelined man-
ner. In the absence of congestion, the communication latency in the networks
is proportional to the factor of the sum of the message length and the routing
distance. Specifically, the time required to deliver a packet of L bytes from a
source node to a destination node can be formulated as 1T + LT, where T}
is the start-up time containing the channel setup and software overhead, and
T. represents the transmission time per data byte. In this paper, attempts are
made to maximize the trade-off between the start-up and transmission costs.
In addition, we adopt the all-port model, that a node can simultaneously send
and receive messages along all outgoing and incoming links, and dimension-
ordered routing [12], that is every message must traverse links in a strictly
increasing order.

\

'/

y

[l
-l
—1

it

LAY/ .G,
\ L Y
'Il.'-

Fig. 1. (a) An example of DDNs and (b) DCN in a 3D torus.

2.2 Network Partitioning Scheme on a 3-D Torus

We expand the network partitioning scheme in 2-D tori [13] into 3-D tori as
follows. Consider a 3-D torus T}, xn,xns- Suppose that an integer h exists such
that nq,n9, and ng are divisible by h. We define an h x h data-distribution
network DDN ., =(V4.,,Cy)=DDN;, u,v = 0..h —1 and i = uxh+ v, as
follows:

{P,;.li =ah+ ((u+v)modh),j=0bh+uv,l=ch+u,

Vu,v =
foralla=0...[72] =1,b=0...[72] = 1,e=0...[3] — 1}

Cy.» = {all channels of the z-axis ah + u + v , y-axis bh + v, and z-axis ch + u}.

)

Each DDN is a dilation-h 3-D torus of size [51] x [72] x [%2], such that
each edge is dilated by a path of h edges. Fig. 1 illustrates an example where
the block nodes denote DDN and the gray zone represents DCN. The 3-D
torus T, xnyxns 1S Partitioned into a ™53 data collecting network DCN, =
(Vapes Cape)y @ =0..n1—1,b=0..ny—1,c=0..n3—1,and 1 < k < MX3xns,

as follows:

Vape = {Pijili=ah+z,j =bh+y,l=ch+z forall x,y,z=0..h —1};
Cape = {the set of edges induced by Vi in Ty, snyxns -

These DDNs and DCN's have the following properties.

1. DDNy, DDNy,..., and DDN>_; are mutually independent, (under the given
port model).

2. DCNy, DCNy,..., and DCN,_; are mutually independent (under the given
port model), and together they contain all nodes of G.

3. DDN; and DCN; intersect in at least one node, for all 0 < i < h? and
R

4. DDNy, DDNq,..., and DDN2_; are isomorphic.

5. DCNy, DCNy,..., and DCN_; are isomorphic.

2.3 Algebraic Notation

In the following, we adopt algebraic notation defined in [15] to represent the
routing algorithm. The torus of size n is an undirected graph. Each node is
denoted as Py, 4,2 0 < 2 < n, 1 < ¢ < k. Our routing algorithm is
based on the concept of a ”span of vector spaces” in linear algebra. The alge-
braic notation is used to represent the k-D torus from other perspectives. The
torus is mapped into a Euclidean integer space Z*, where Z is in the domain
{0,1,...,n — 1}. Conveniently, the i-th positive (resp., negative) elementary
vector is denoted as €; (resp., €_;) of Z*, i = 1..k. We may rewrite €;, + €,
— — — — — — — -
€, — €, (=€; + €_4,) as €;, _,, and €;, +..+ €; as ¢;

(2
. — — = = — — "
For instance, e,3=¢; + €3 and €, _3=€; — €3.

_)
as €4y iy Lyeensim ®

- = —
Lemma 1 In Z*, given node x, a q-tuple of vectors B=(b1, ba, ..., by), and a
q-tuple of integer N=(ny,na, ..., ng), the span of x by vectors B and distances
N is defined as

SPAN(z,B,N) = {z+ % a; b: [0 < a; < n;}.
=1

This notation is used to represent some subgroups in a tori. For instance, the
main diagonal line of torus T4, is represented as SPAN(Pyp,(€12),n); an
XY -plane passing through node Py ; in T}, xpxn is denoted as SPAN (Po o, (21

— - = >

es),(n,n)). A 3-D torus is viewed as SPAN (Py 0, (€1, €2, €3), (n,n,n)).

We should introduce some notations to facilitate our routing algorithm. Con-
sidering a 3-D torus, we introduce the two matrices of delivery routing and
distance. A delivery routing matric R = [r;;]sxs is a matrix with entries
—1,0, 1 such that each row indicates a message delivery; if ; ; =1 (resp. —1),
the corresponding message will travel along the positive (resp. negative) direc-
tion of dimension j; if r; ; = 0, the message will not travel along dimension j.
A distance matriz D = [d; j]3x3 is an integer diagonal matrix (all non-diagonal

»

-
»
-

Pijker
i @ .Fi+llf,k+l

e

i1,k

N

Pi-1j k-1 l e
Pij1i
Y Pijj1

(a) (b)

Fig. 2. Examples of (a) a routing matrix and (b) collection routing matrix.

elements are 0); d;; represents the distance to be traveled by the i-th message
described in R along each dimension.

For instance, the six message deliveries in Fig. 2(a) have three directions and
thus can be represented by a delivery routing matrix:

&5 101
R = 5273 =011
€3 001

In general, the node p; ;; sends M to the six nodes piyq, jitar, Pij+ask+as,

~ it
Pijktas, Pita_ijkta—y, Pijra_sktas, a0d Pijria_s, (note that ay; = %_—17,
where t is block size; see Section 3 for details on deriving ¢). So two distance

matrices can be used:

0410 0 C¥,10 0
Dt=10 ay,0 | and D" =0 a_,0

0 0 ag 0 0 «a_3

and the 6 message deliveries in Fig. 2(a) are represented by matrix multipli-
cation:
(0751 0 (0%} a_1 0 _q
Z)+ X R = 0 Qo Qg and D x R = 0 A_o2 (X_9
0 0 Q3 0 0 _3

For instance, given

100 —10 O
D =1|010|l andD =10 —=10 and
001 0O 0 -1

101 -1 0 -1
D"xR=|011| andD xR=|0 —-1-1/,
001 0 0 -1

then node p;;, may send M to the six nodes pii1jk+1, Pij+ik+1, Pijk+l,
Pi—1,4k—1, Pij—1,k-1, and Pijk—1.

Further we define a similar routing matrix, namely the collection routing ma-
trix C. A collection routing matriz C' = [c;;|sxs 1S a matrix with entries
—1,0,1 such that each row indicates the path of a collected message; if ¢; ;
=1 (resp. —1), the corresponding message will be collected from neighboring
nodes along the positive (resp. negative) direction of dimension j; if ¢; ; = 0,
the message will not be collected from neighbors along dimension j. Normally,
if matrices C' and R have the same entries, their representative routing path
denotes the opposite direction. For instance as shown in Fig. 2(b), given a
collection routing matrix

&1 101
C= 5273 =011},
€3 001

then matrix multiplication,

101 -1 0 -1
DtxC=|011| and D" xC=|0 —1-1],
001 0O 0 -1

indicates that node p; ; collects six distinct messages from nodes p;i1 i1,
Pij+1,k+1, Pijk+1, Pi—1,5k—1, Pij—1,k—1, and Dijk—1- Observe that the collection
routing matrix C'is always used in the aggregation phase, and delivery routing
matrix R is adopted in the distribution phase.

3 Multi-Node Broadcasting in 3-D Tori

Now we introduce our multi-node broadcasting algorithm. The network par-
tition scheme is applied to a 3-D torus, so that A2 number of DDNs and

(71 x [#] x [#] number of DCN's exist.

3.1 The Aggregation-then-Distribution Strategy

Existing multi-node broadcasting results are based on the construction of mul-
tiple spanning trees [11], [12], [14] such that all source nodes are evenly dis-
tributed to root nodes in all trees. As mentioned in Section 1, this approach is
suitable for non-fixed connection networks [4], [11], [12], [14]. However, limit-
ing the maximum number of multiple spanning trees is not suitable for fixed-
connection networks [1], [8], [13]. The largest number of spanning trees in
multi-dimensional tori is as many as the degree. It is worth mentioning that
there are only six edge-disjoint spanning trees in 3-D tori. This motivates us
to develop a truly efficient scheme to improve the limination.

Our proposed scheme, namely the aggregation-then-distribution scheme, is
based on the network partitioning scheme; a torus network is partitioned into
numbers of DDNs and DCNs. The main function of the aggregation-then-
distribution scheme is outlined.

1. Aggregation phase: There are many source nodes located at unknown
positions, and each one intends to broadcast its message. Source messages
are aggregated into some regular positions of hxh DDNs. The purpose of the
aggregation operation is to regularize the data pattern. Unfortunately, this
operation causes load-imbalance problem. A tuning operation is presented
for the purpose of load balancing.

2. Distribution phase: A number of independent subnetworks (h x h DDN's)
are constructed from the 3-D torus. These subnetworks, which are respon-
sible for distributing messages, can fully exploit the communication paral-
lelism. Multi-node broadcasting is accomplished by means of these indepen-
dent subnetworks.

In the following, the aggregation and distribution phases of multi-node broad-
casting are presented, respectively.

SN
0009
GIgiag4

@ R ' b)

Fig. 3. (a) Data aggregation pattern when h = 7 and (b) data aggregation pattern
when h > 7.

3.2 Aggregation Phase

Assume that there are s source nodes, and each one intends to broadcast its
message. Initially, messages in all source nodes attempt to be aggregate to
DDNgy, DDN,..., DDN>_;. This operation is very efficient for the many-to-
all communication pattern because the communication pattern is regulated in
advance. The aggregation phase is divided into two steps:

e Step 1: diagonal-based data-aggregation operation; and
e Step 2: balancing-load operation.

3.2.1 Step 1: Diagonal-Based Data-Aggregation Operation

The main function of the data-aggregation operation is to standardize the
communication pattern before multi-node broadcasting. The sizes of DDN,
DDN.,..., DDN}2>_; and DCNy, DCNq,..., DCNj_ are initially determined,
where k£ = Z—g

Let a 3-D torus be represented as SPAN (FPp .0, (21,3, 21,2, 21), (n,n,n)). Each
DCN is viewed as SPAN(P,,.., (21,3,21,2,21),(& h,h)), where 0 < z =
th,y = jh,z = kh < n. The data-aggregation operation attempts to aggregate
all possible messages to a special plane in each DCN which is denoted as a
diagonal plane represented by SPAN (P, ., (21,3,21,2), (h,h)). That is, all
nodes aggregate messages into the diagonal plane SPAN(P,, ., (21,3,21,2
), (h, h)). Initially, we let h = 7; then every node P, ; in the diagonal plane of

each DCN aggregates messages from nodes Pk, Pk Pij2k Pijiok,

10

P, k-3, and P, ;43 as shown in Fig. 3(a). This operation is represented by

100 100 10 0
C=1|010|,D"=1]020|,D =0 -2 0 |,
001 003 0 0 —3
and
100 10 0

D"xC=1020| andD xC=1]0 =2 0
003 0O 0 -3

Obviously, this communication pattern is congestion free. If h > 7, each dis-
tinct group can aggregate messages from seven different nodes, and then each
of the seven groups can aggregate messages into a diagonal plane. Finally, all
messages are aggregated into one diagonal plane, which is executed in [log; h]|
steps. Fig. 3(b) illustrates an example when h = 49; six messages from nodes
Pt ks Pivejrs Bij—2tky Pijvouk, Pijr—st, and P 13 are aggregated to node
P, ;x, where t = 1 and 7. This operation is represented by

100 t0 0 —+0 0
C=1|010|,D"=1|02t0 |, D =0 —2t 0 |,
001 00 3t 0 0 —3t
and
t0 0 —+0 0

DtxC=1|02t0 | andD xC=1|0 =2t 0
00 3t 0 0 -3t

Lemma 2 Diagonal-based data-aggregation operations can be recursively per-

. [10g7 h] i 7“0g7 Rl _q
formed on a torus Tyxnxy in [log, h|Ts+ 'Zo 7'mI1. = [logy W Ts+—5—m1..
1=

3.2.2 Step 2: Balancing-Load Operation

After applying the data-aggregation operation, each DDN,, DDNy,..., and
DDN,>_, has a different number of messages. This is load imbalance, so a

11

c2
(a) (b) (c) (d)

Fig. 4. (a) Plane to line if h > 7, (b) plane to line if h = 7, (c) diagonal plane
pattern, (d) prefix-sum collection into a diagonal plane.

data tuning procedure is presented in order to achieve load balance. This part
is divided into two procedures:

e Prefix-Sum Procedure: Each message-retaining node calculates a prefix-sum
value; and

e Data Tuning Procedure: A data tuning operation is performed to achieve
the load balance.

3.2.2.1 Prefix-Sum Procedure: The prefix-sum procedure exchanges
information for calculating the prefix-sum value. After the data-aggregation
operation, all source nodes’ messages are aggregated to regular positions,
which are in diagonal plane SPAN (P, , ., (2173, 21,2), (h,h)), where 0 < z =

ih,y = jh,z = kh < n. All those planes constitute a special cube SPAN (P .0,

(21,3, E)1,2, 21), (na n, [%]))

In the following, we describe a simple diagonal-based recursive prefix-sum
procedure. Our diagonal-based recursive prefix-sum procedure calculates a

prefix-sum value for each message-retaining node in SPAN (P, (€13, €12,

€1), (n, n, [#1)). The diagonal-based prefix-sum procedure is divided into
forward and backward stages. In the forward stage, information on the number
of messages is aggregated from a cube to a plane, and then from a plane to
a line, and then from a line to one node. After the forward stage, the total
number of whole source messages is kept in one node. In the backward stage,
the partial prefix-sum value is returned from the node to a line, and then
from a line to a plane, and eventually from a plane to a cube. Herein we

omit the detailed operations. Two examples of plane-to-line and line-to-node

12

Fig. 5. (a) First stage of line to node, (b) second stage of line to node, (c) first stage
collection pattern, (d) second stage collection pattern

operations are illustrated in Figs. 4 and 5. After the backward stage, every
. — — — .

node in SPAN (Pypo, (€13, €12, €1), (n, 1, [7])) has its own prefix-sum value

for calculating a unique ranking number. Using ranking numbers allows each

node in SPAN (P 0,0, (21,3, 21,2, €4), (n, n, [%1)) to move extra messages to
other DDNs to satisfy the load balance. Consequently, the total time cost of

the prefix-sum procedure is (8log, n| + 2[log, [} 1] + 1)(Ts + T,).

3.2.2.2 Data Tuning Procedure: This task is divided into two parts:
(1) finding a destination list and (2) performing a data tuning operation. Two
important values are needed: one is the prefix-sum value and the other is the
number of retained-messages. The destination list is calculated based on these
two values. Assume that node z is located in DDN;, j, with a destination list.
The information on the destination list indicates that node z should move
a message to certain neighboring nodes. To satisfy this purpose, for node =,
if (k,1) € destination list, one message from DDN;; (node z) is moved to
DDNy,. That is, every node x performs the following operation.

S1. Finding a destination list: Having a prefix-sum value o and number
of retained-messages 3, then the destination list is F = {amodh?, (a +
1) mod h?, ..., (& + #) mod h?} if the number of DDN's is h?. Two commu-
nication steps are needed if one intends to move message from DDN, ; to
DDN . One is for moving message from DDN; ; to DDN, ; (called row tun-
ing operation) and other one is to move message from DDNy ; to DDNy,
(called column tuning operation). Finally, a destination sequence f' is con-
structed to find the destination DDNy; for DDN; ;. Note that F' is a se-
quence of pairs which is constructed as follows. For every t € [, let (i =
tmodh,j=1t/h) € F', where i, j indicate the offset value of row and column

tuning operations in the data tuning operation. For instance, if h? = 49, if
a =47 and = 6, then F = {47,48,0,1,2,3}. If a node is in DDNj 5, then

13

S2.

T1.

T2:

DDNi+3.x

(b) (d)

Fig. 6. (a),(b) Row tuning actions, and (c),(d) column tuning actions.

F={47,48,0,1,2,3} and F' = {(5,6),(6,6),(0,0),(1,0),(2,0), (3,0)}.
Data tuning operation: The data tuning operation is divided into row
tuning and column tuning operations which are formally described below.
Row tuning operation (DDN;; —DDN ;): An extra alignment opera-
tion is executed due to the dimension-order routing. If |i — k| < 3, then we
allow DDN; ; —DDN ;41 j, DDN ;45 ;, and DDN ;3 ; within two communi-
cation steps. For each node in the diagonal plane of DDN; ;, we first align
DDN 4, ; along dimension X with distance +1, DDN 1, ; along dimension
Y with distance £2, and DDN ;43 ; along dimension Z with distance £3 to
six meta-nodes, as shown in Fig. 6(a). Every node P,, . in diagonal plane
DDN; ; distributes its messages to six nodes P11, Potiy+1,20 Pry—2,2s
Py yyoz, Ppy .3, and P,y .3, which are represented by

110 100 -1 0 O
R=1020]|, where D" ={010| and D" =] 0 —1 0
003 001 0 0 —1

Let nodes P,y 2., Pryt2,2y Pry-3, and Py, .13 act as meta-nodes. Sec-
ond, meta-nodes P, , 5, and P, , o, forward messages to P, 2, 2, and
Py,y2 410, along dimension X, and meta-nodes P, , ,_3, and P, , .3 forward
messages to Py 3.3 and Py ,13 .13 along dimension Y as shown in Fig.
6(b). Further if |i — k| > 3, then this procedure can be generally performed
in time 2[log; h|(Ts +mT,).

Column tuning operation (DDN ; -=DDN): Due to dimension-order
routing, an extra alignment operation is performed. If |j — | < 3, then
we allow DDN]C’]' _>DDNk,j:I:1, DDNk’in, and DDNk’jig within two com-
munication steps. In the first step, a node in DDNy, ; sends a message to
DDNy, j—1 and DDNy, ;11 and aligns the message along dimension Z with
distance 2 to two meta-nodes. That is, every node P, , . directly sends a

14

message to P,_1, .1 and P11, .41 and sends a message to two meta-nodes
P,y .o and P, ..o, which are represented by

101 100 -1 0 0
R=1002]|, where DV = {010 and D" =] 0 —1 0
000 001 0 0 —1

In the second step, DDN, ; directly moves a message to DDN, ;13 and, at
the same time, two meta-nodes forward messages to destination DDN ;.
That is, every node P, , , sends a message to P,_3, .3 and Pyy3, ,.3. Si-
multaneously, meta-nodes P, , .o and P, .2 send messages to Py_o, ,_2
and P2, ,+2 along dimension X. Further, if |; — k| > 3, then this task is
generally completed in time 2[log; h| (T + mT.).

The total time cost of the data tuning operation is 4[log; h|(Ts + mT,). Note
that the communication pattern of the row and column tuning operations is
congestion free.

3.8 Distribution Phase

After the aggregation phase, each of the data distribution networks DDN,,
DDN,..., DDN>_; has the same number of messages. These subnetworks,
which are responsible for distributing messages can fully exploit the communi-
cation parallelism of wormhole routing. The distribution phase is divided into
three steps.

e Step 1: (Alignment Operation) For every DDN, messages of nodes are aligned
to the diagonal plane, and then an all-to-all broadcast operation is executed
such that all nodes in each diagonal plane has the same number of broadcast
messages. Note that different diagonal plane would have distinct broadcast
messages.

e Step 2: (Broadcast Operation) Every DDN performs a diagonal plane broad-
cast scheme [15], such that all DDN's have the same copies of the broadcast
messages.

e Step 3: (Data-Collection Operation) Each node in every DCN collects mes-
sages from all other nodes in the same DCN.

3.8.1 Step 1: Alignment Operation

Each DDN retains the same number of messages which indicates that each
DDN has equal communication latency. The original 3-D torus is virtually
partitioned into h x h subtorus DDNs. Each pair of DDN's is mutually disjoint.

15

The alignment operation, which is divided into two stages, allows congestion-
free linking.

S1. Alignment to the diagonal plane: All possible messages are aligned
into the diagonal plane. This task can be easily achieved by performing
the diagonal-based data aggregation operation as introduced in Section 3.1,
which takes time [log;([}])](Zs + mT:), where m = J5m.

S2. All-to-all broadcasting procedure on the diagonal plane: This pro-
cedure collects messages of each node in the diagonal plane SPAN (P, , .,

(2173, 2172), ([%], [%#])) from other nodes located in the same diagonal

h h
plane. The plane can be viewed as having [7] rows or [#] columns. Two
broadcasting operations are needed. Basically, this procedure is the row and

column tuning operations with different distance matrices of D' and D .

B1. Row broadcasting operation: This procedure is the same as the row

tuning (T1) operation with the modification of

110 h 00 —h 0 0
R=1020]|, where D" = |0 h0| and D =| 0 —h 0
003 00h 0 0 —h

B2. Column broadcasting operation: This procedure is the same as the

column tuning (T2) operation with modification of

101 h0O —h 0 O
R=1|002]|, where D" =|0h0| andD =] 0 —h 0
000 00Ah 0 0 —h

n

Further, if [#] > 7, the diagonal plane is partitioned into [#] X || groups.
All-to-all broadcasting operations are executed in [£-] x [#-] groups in time
4log; (3 1(Ts+mT:), where m = ;75m. Each communication step of row and
column broadcasting operations is obviously congestion free. This is because

messages travel along distinct dimensions during broadcasting operations.

3.3.2 Step 2: Broadcast Operation

After the alignment operation, every node in the diagonal plane of each DDN
contains the same broadcast messages. The next step is to perform a well-
known result, the diagonal broadcast scheme in a 3-D torus [15], on each
DDN in parallel. The diagonal plane SPAN(P,, ., (€13, €12), ([2], [2]))
has partial source messages, and the broadcasting is based on recursively send-
ing messages from a diagonal plane to six planes. Note that the operation is

executed in time [log,[7]](Zs 4+ m1,), where m = 7zm.

16

3.3.3 Step 3: Data Collection Operation

For each data collecting network (which is an h x h x h mesh), each diago-
nal plane receives messages M, M, ..., and M>_,. Each received message
contains all messages of one DDN. These messages should be propagated to
every node of the DCN. This is implemented in three stages: row broadcasting
followed by column and horizontal broadcasting.

In the row broadcasting stage, we use a recursive scheme. Nodes located in
the diagonal plane send messages to two nodes with distance j:%h and recur-
sively propagate the message. This requires [log; h| communication phases
and incurs the time cost Ty = [logs h|(Ts +mT.), where m = ;5m.

Every node collects partial messages from the row broadcasting stage. The
messages belong to its column nodes; every node concurrently sends sepa-
rate messages to other nodes in a pipelined scheme. We first embed a logical
(directed) ring in each column of the DCN. This is done by first visiting
even nodes down the column and then odd nodes up the column. This pro-
duces dilation-2 embedding. With this embedding, every node then pipeline-
propagates its own messages following the ring. The same scheme is executed
in horizontal broadcasting, i.e., pipeline-propagates messages in the Z-axis di-
rection of the A x hx h DCN. The column broadcasting stage runs in time 75 =
(h —1)(Ts +mT,), where m = J5m, and horizontal broadcasting runs in time
T3 = (h—1)(Ts +m'T:), where m' = Zm. The total time cost of the data col-
lecting operation is 7' = ([logs h]+2h—2)Ts+[([logs h]+h—1)m+(h—1)m/|T,,

where m = %m and m' = %m

4 Performance Comparison

We begin with a discussion of time complexity, and then a simulation result
is given to verify the effectiveness of our proposed scheme.

4.1 Performance Analysis

The time complexity of our proposed scheme is given herein.

Lemma 3 The aggregation phase can be executed in a T wnxpn torus within
((8[log, n] + 5[log; h] + 2[log, %1 + 1)T;

17

Table 1
Comparison of the communication latency of multi-node broadcasting using various
schemes.

Strategy Start-up computation | Trans. computation

Edge-disjoint spanning trees (3D) [14] | O3 5] T%) O@B3(5] - FTe)

Aggregation-based (3D) O(max([logy n], h)Ts) | O(max([logy [%]17Zm,sm)T,)
7logz hl _

+ [(4]log, h] + ym + (8[log, n| + 2[log, %1 +1)| T,

6

where m denotes the size of a unit message.

Lemma 4 The distribution phase can be executed in a Ty,ypxy torus within

(6 [10g7 [%H + [logg h] + 2h — 2)T;

+1(6[togy ||| + Nlogs b1+ = 1) m + (h =) FmT..

Theorem 5 The multi-node broadcasting algorithm with the aggregation-then-
distribution strategy can be performed in a T, «nxn torus within

O(max([log; n], h)Ts + max([log7 {%H %m, sm)T,).

A simple comparison of the time complexity is given. Since there are six
edge-disjoint spanning trees [3] in a 3-D tori, where the height of a span-
ning tree is D42, and D=3[% | is the diameter in 7},x <. Therefore, the time
complexity of the scheme using edge-disjoint spanning trees is O(3[5] 7T, +

(3L5]) - %*)T¢). Table 1 shows that our scheme is more efficient than the

edge-disjoint spanning-tree scheme due to the fact that O([log, [%h remTe) <
OBL3] - F)T).

2 6

4.2 Simulation Results

We have developed a simulator to study the performance issue. We mainly
compared our scheme against the multiple-spanning-tree scheme [11] under
various situations. Parameters used in our simulations are listed below.

e The torus size is 16 x 16 x 16.
e Startup time 7y = 30 pus and T, = 1 pus.

18

2500¢ | -e— Our scheme (h=7)
—— Multi-tree scheme
—=— Our scheme (h=14)

2000

—
W
S
(=]

—
(=]
(=]
=

Multi-node broadcasting latency (ms)
(9]
[
(=]

1 2 3 4 5 6 72 8 9 10
Number of source nodes (* 10°)

Fig. 7. Multi-node broadcast latency in a 16 x 16 x 16 torus for various numbers of
source nodes.

e Dilation h =7 or 14.
e The message size rangs from 2 to 10k.

Below, we show our simulation results from three prospects.

A) Effects of the Number of Sources: Fig. 7 shows the multi-node broadcast
latency when Ty, = 30 ps and T, = 1 pus for various numbers of sources. Our
scheme when h = 7 incurs higher latency than multiple-spanning-tree scheme,
while our scheme when h = 14 has a lower latency than the multiple-spanning-
tree scheme. This reflects the fact that our scheme performs better than the
multiple-spanning-tree scheme with various number of sources.

B) Effects of Message Length: Fig. 8 shows the multi-node broadcast latency
when 7Ty, = 30 pus and T, = 1 pus at various message lengths. Our scheme
when h = 7 incurs a higher latency than that the multiple-spanning-tree
scheme, while our scheme when A = 14 has a lower latency than the multiple-
spanning-tree scheme. Our scheme truely has better performance than the
multiple-spanning-tree scheme for various message length. Furthermore, Fig.
8 also illustrates that our scheme has better performance as more message are
generated in the MPC.

C) Effects of Value of h: The value of h reflects the number of subnetworks, and
thus the level of communication parallelism. So a larger h generally delivers
a better performance. Figs. 7 and 8 compare multi-node broadcast latency

19

—e— Our scheme (4=7)
3000 —— Multi-tree scheme
- —=— Our scheme (h=14)
E ool
>
5
=
3
=

—_—

Multi-node broadcasting

W
(=
S

2k 4k 6k 8k 10k

Transmitted message size.

Fig. 8. Multi-node broadcast latency in a 16 x 16 x 16 torus for various numbers of
transmitted messages.

when h = 7 and 14. Observe that our scheme has a lower latency when h = 14
than when h = 7. This verifies that the higher the level of communication
parallelism is, the better the performance will be.

By comparing Figs. 7 and 8, our scheme can exploit a higher level of com-
munication parallelism than can the multiple-spanning-tree scheme. Generally
speaking, it is worth mentioning that there is significant improvement in com-
munication latency due to our scheme being able to exploit higher communi-
cation parallelism.

5 Conclusions

In this paper, we have shown how to solve the multi-node broadcast problem
in a 3-D torus using a proposed aggregation-then-distribution strategy. The
underlying assumptions are wormhole and dimension-ordered routing, which
are currently in general use. The main technique is to partition the torus into
a certain number of independent subnetworks such that all messages can be
transmitted in parallel. This aggregation-then-distribution scheme is proposed
for fixed-degree interconnection networks. Timing analysis has shown that this
scheme is promising over conventional schemes using multiple spanning trees.

20

References

[1] J.Bruck, R. Cypher, and C. T. Ho. Fault-tolerant de bruijn and shuffle-exchange
networks. IEEE Transactions on Parallel and Distributed Systems, 5(5):548—
553, 1994.

2] Y. S. Chen, T. Y. Juang, and E. H. Tseng. Efficient broadcasting in an
arrangement graph using multiple spanning trees. IEICE Transactions on

Fundamentals of FElectronic, Communications, and Computer Science, E83-
A(1):139-149, Jan. 2000.

[3] M. Cosnard and D. Trystram. Parallel Algorithms and Architectures. Thomaon
Computer Press, Boston MA, 1995.

[4] K. Day and A. Tripathi. Arrangement graphs: a class of generalized star graphs.
Information Processing Letter, 42(5):235-241, 1992.

[5] S. E. Hambrusch, A. A. Khokhar, and Y. Lin. Scalable s-to-p broadcasting on
message-passing mpps. IEEE Transactions on Parallel and Distributed Systems,
9(8):758-768, Aug. 1998.

[6] R. Kesavan and D. K. Panda. Multiple multicast with minimized node
contention on wormhole k-ary n-cube networks. IEEE Transactions on Parallel
and Distributed Systems, 10(4):371-393, 1999.

[7] F. T. Leighton. Introduction to Parallel Algorithms and Architectures: Arrays-
Trees-Hypercubes. Morgan Kaufmann Publishers, San Mateo, CA, 1992.

[8] V. Lo, S. Rajopadhy, J. A. Telle, and X. Zhong. Parallel divide and comquer on
meshes. IEEE Transactions on Parallel and Distributed Systems, 7(10), 1996.

9] Y.Saad and M. Schultz. Data communication in hypercubes. Journal of Parallel
and Distributed Computing, 6(1):115-135, Feb. 1989.

[10] Y. Saad and M. Schultz. Data communication in parallel architectures. Parallel
Computing, 11:131-150, 1989.

[11] G. D. Stamoulis and J. N. Tsitsiklis. An efficient algorithm for multiple
simultaneous broadcasts in the hypercube. Information Processing Letter,
46:219-224, Jul. 1989.

[12] Y. C. Tseng. Multi-node broadcasting in hypercubes and star graph. Journal
of Information Science and Engineering, 14(4):809-820, 1998.

[13] Y. C. Tseng, S. Y. Wang, and C. W. Ho. Efficient broadcasting in wormhole-
routed multicomputers: a network-partitioning approach. IEEE Transactions
on Parallel and Distributed Systems, 10(1):44-61, Jan. 1999.

[14] E. A. Varvarigos and D. P. Bertsekas. Pratial multinode broadcast and
partial exchange algorithms for d-dimension meshes. Journal of Parallel and
Distributed Computing, 23:177-189, 1994.

21

[15] S. Y. Wang and Y. C. Tseng. Algebraic foundations and broadcasting
algorithms for wormhole-routed all-port tori. IEEFE Transactions on Computers,
49(3):246-258, Mar. 2000.

[16] M. Wolfe. High Performance Compilers for Parallel Computing. Addison-
Wesley, USA, 1996.

Yuh-Shyan Chen received the B.S. degree in computer science from Tamkang
University, Taiwan, Republic of China, in June 1988 and the M.S. and Ph.D.
degrees in Computer Science and Information Engineering from the National
Central University, Taiwan, Republic of China, in June 1991 and January
1996, respectively. He joined the faculty of Department of Computer Science
and Information Engineering at Chung-Hua University, Taiwan, Republic of
China, as an associate professor in February 1996. He joined the Department of
Statistic, National Taipei University in August 2000, and then joined the De-
partment of Computer Science and Information Engineering, National Chung
Cheng University in August 2002. Dr. Chen served as IASTED Technical Com-
mittee on Telecommunications for 2002 2005, Program Committee Member of
IEEE ICPADS’2001, TASTED CCN’2002-CCN2004, MSEAT 2003, IEEE IC-
CCN’2001 2003, ICPP’2003, ICDCS’2004, and TASTED CSA’2004. He was
a Workshop Co-Chair of the 2001 Mobile Computing Workshop, and Guest
Editor of Journal of Internet technology, special issue on ”Wireless Internet
Applications and Systems” (2002), special issue on ”Wireless Ad Hoc Net-
work and Sensor Networks” (2004), and Telecommunication Systems, special
issue on ”Wireless Sensor Networks” (2004). His paper wins the 2001 IEEE
15th ICOIN-15 Best Paper Award. His recent research include WLAN, mo-
bile computing, mobile ad-hoc network, wireless sensor network, and mobile
P2P computing. Dr. Chen is a member of the IEEE Computer Society, IEICE
Society, and Phi Tau Phi Society.

Chao-Yu Chiang received the B.S. degree in computer science and Infor-
mation Engineering from Tamkang University, Taiwan, Republic of China, in
June 2001 and the M.S. degrees in Information Management from the Na-
tional Taipei University, Taiwan, Republic of China, In June 2003. Since Aug.
2003, he serve as the Research Assistant at the Computer Center of National
Chung Cheng University. His research interests include wireless network and
mobile computing.

Che-Yi Chen received his B.S. degree in Computer Science and the M.S.
degree in Electrical Engineering from the Chung-Hua University in 1995 and
1999, respectively. He worked for the Department of Computer Center, Chung-
Hua University as a research assistant in 2001. He is now a PhD candidate
in computer science in National Tsing-Hua University, Hsin-Chu, Taiwan. His
research interests include collective communication, computer networks, and

22

network security.

23

