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Abstract— A novel summation invariant feature under trans-
formation group action for 3D surface recognition is proposed,
and its application to 3D face recognition is investigated. Based
on a systematic mathematical procedure called moving frame,
we derived the summation invariant feature that is invariant
under affine transformation. Compared with classical differential
invariants, such as the mean curvature or the Gaussian curvature,
summation invariant feature is far less sensitive to observation
noise in the data. A further enhancement leads to a new type
of invariant 3D surface shape descriptor called a semi-local
summation invariant. We demonstrate one important, potential
application of this new feature to 3D human face recognition.

I. I NTRODUCTION

Invariants for transformation groups play an important role
in computer vision. The idea that one can compute functions
of images that do not change under various viewing conditions
is appealing for many applications such as human face recog-
nition. Hence the study of invariants for certain transformation
groups (Euclidean, affine and projective) has flourished in
recent years. However, for practical applications, the shapes
or 3D surfaces of the object of interests are often corrupted
by noise due to imperfect data acquisition, quantization, and
other causes. It has been reported that differential invariants
depending on derivatives are very sensitive to noise [1], [2].
Toward the end of the last millennium, algorithms based on
invariants did not meet our expectations.

There have been several attempts to decrease sensitivity
to noise. To avoid high-order derivatives, a semi-differential
invariant was introduced in [3], [4]. Potentials were used as
coordinates to prolong group actions, so that the resulting
invariants would depend on integrals rather than derivatives
and not be sensitive to noise [5]. Also another type of integral
invariant was formulated by integrating with respect to affine
quasi-invariant arc-length [6]. These invariants are defined
on continuous functions. When applied to digitized object
descriptions of contours or surfaces, numerical integration will
be needed and the results can be affected significantly by step
size and other detailed settings.

Recently [7], we introduce a general method to generate
invariants that are weighted summations of discrete data, as
analogues to integral ones. Since these invariants are defined
explicitly on discrete data, they do not require computationally

intensive numerical integration to compute and will not be
affected by the choice of step size. On the other hand, using
weighted summation to compute the summation invariant
will greatly reduce the impact of noise and hence promises
higher signal to noise ratio of the computed invariant features.
Specifically, in [7], we proposed a semi-local summation
invariant feature for two-dimensional (2D) closed contours,
and has demonstrated the superior performance using this
novel summation invariant feature compared to those produced
using integral invariants or wavelet invariant features. We note
that the 2D summation invariant formulation is quite different
from those developed in [5].

In this paper, we focus on deriving a novel summation
invariant formulation for 3D surface. We note that the integral
invariant proposed by Hann and Hickman [5] can not be
easily extended to 3D objects even the shape of the surface is
described by equations.

In order to apply the proposed summation invariants to
object recognition, in particular face recognition problems,
additional challenges must be overcome. Specifically, the 3D
summation invariant maps a high dimension 3D surface into
a scalar. As such, it may not yield sufficient amount of
information to distinguish similar but different faces. In order
to enhance the discriminating power of this invariant feature,
we propose to partition a given 3D surface into smaller non-
overlapping patches using conformal mapping and compute
summation invariant on each patch. Preliminary results indi-
cate such an approach is very promising.

The rest of this paper is organized as follows. Section 2
describes the summation invariant. In section 3, we use the
summation invariant to define a novel shape descriptor, which
is called the semi-local summation invariant. In section 4, we
test the proposed method on 3D mesh under translation and
rotation. Finally, section 5 summarizes the contribution and
provides an overview of future directions.

II. SUMMATION INVARIANT

The transformation groups acting onR3, such as the Euclid-
ean and affine groups are of particular importance in 3D object
recognition. In this section, we describe a systematic method
to find summation invariant for surface in 3D space.



A. Extending Group Action to Potentials

Hann and Hickman [5] defined a potential jet space for a
transformation group acting onR2. Based on this definition,
they have derivedintegral invariantsfor 2D contours. A po-
tential drawback of applying their method for practical contour
recognition is that numerical integration will be needed to
evaluate the integral invariant since practical contours are
always represented by sampled 2D coordinates. In [7], we
derived a 2D summation invariant feature and illustrated
with an example to show that such a new feature performs
better than direct evaluation of Hann and Hickman’s integral
invariant features using numerical integration.

In this paper, we will focus on 3D invariant features that
represent a 3D surface of an object, such as a human face.
Unfortunately, the direct generalization of Hann and Hick-
man’s 2D integral invariant approach for 3D surface objects
is quite a non-trivial task. Instead, in this paper, we employ
a somewhat different representation of a given 3Dsurface.
Consider a surfaceS ⊆ R3; we can treat it as a mapping from
a simple closed regionU ⊆ R2 to R3

S : (u, v) 7−→ (x, y, z), where(u, v) ∈ U (1)

In many engineering fields, we only have values of a
surface S measured at discrete coordinates Hence,S can
be represented as a discrete function with two independent
variables.

S =




x[m,n]
y[m,n]
z[m,n]


 (2)

where m = 1, . . . , M and n = 1, . . . , N . Based on this
assumption, thepotential and potential jet spacecan be
defined as follows:

Definition 1: The potentialPi,j,k of order l is given by

Pi,j,k =
M∑

m=1

N∑
n=1

xi[m,n] · yj [m,n] · zk[m,n] (3)

wherei + j + k = l.
Definition 2: The potential jet spaceJ l is the Euclidean

space with coordinates

J l =(x[1, 1], y[1, 1], z[1, 1], x[M, 1], y[M, 1],

z[M, 1], x[1, N ], y[1, N ], z[1, N ], P (l))

whereP (l) consists of potentials up tolth order.
Then, invariant functions of the transformation groupG can

be found by themethod of moving frames[1].

B. Invariants of Affine Transformations

A surface under affine transformation can be described as




a b c
d e f
g h i







x
y
z


 +




j
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L


 =




x
y
z


 (4)

To systematically derive the invariants, we apply themethod
of moving framesformulated byÉlie Cartan [8]:

1) First, the group action is prolonged into a jet space
which is spanned by the(x, y, z) coordinates as well as
their corresponding directives. We may solve for group
parameters usingnormalization equations.

2) Then, these group parameters will be substituted into
un-normalized jet space coordinates and that will yield
the desired differential invariants.

Now, we will derive affine invariants by using this method
and also explain some terminologies used above.Prolongation
of group action is simply applying the affine transformation to
those coordinates defined by potentials. It’s a prolonged group
action since the transformation group originally acts onR3.
After prolonging the affine transformation toP1,0,0, it becomes

P 1,0,0 =
M∑

m=1

N∑
n=1

x[m,n]

=
M∑

m=1

N∑
n=1

(ax + by + cz + j)

= aP1,0,0 + bP0,1,0 + cP0,0,1 + jMN

P 0,1,0 and P 0,0,1 can be found in the same way. We can
solve for group parameters{a, b, c, d, e, f, g, h, i, j, k, L} by
setting anormalization equationas follows:

(x[1, 1], y[1, 1], z[1, 1], x[M, 1], y[M, 1], z[M, 1],

x[1, N ], y[1, N ], z[1, N ], P 1,0,0, P 0,1,0, P 0,0,1)
= (0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0)

The solved{a, b, c, d, e, f, g, h, i, j, k, L} is called amov-
ing frame [1], [2]. It yields an affine transformation which
brings any point inpotential jet spaceto a fixed point in
potential jet space. In this case, we choose the fixed point
as(0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0). In fact, we are free to choose
any fixed point in potential jet space as long as we can solve
for {a, b, c, d, e, f, g, h, i, j, k, L}. By applying this moving
frame to higher order affine-transformed potentials, we can
generate as many invariants as we want. For example, an
affine invariantη2,0,0 of the surface, which is shown below,
can be found by substituting{a, b, c, d, e, f, g, h, i, j, k, L} into
P 2,0,0.

η2,0,0 = {P0,0,2(MN(x01y00 − x00y01) + P1,0,0(y01 − y00)

+ P0,1,0(x00 − x01))2 − 2P0,1,1(MN(x01y00 − x00y01)
+ P1,0,0(y01 − y00) + P0,1,0(x00 − x01))(MN(x01z00

− x00z01) + P1,0,0(z01 − z00) + P0,0,1(x00 − x01))
+ P0,2,0(MN(x01z00 − x00z01) + P1,0,0(z01 − z00)

+ P0,0,1(x00 − x01))2 − 2P1,1,0(MN(x01z00 − x00z01)
+ P1,0,0(z01 − z00) + P0,0,1(x00 − x01))(MN(y01z00

− y00z01) + P0,1,0(z01 − z00) + P0,0,1(y00 − y01))
+ P2,0,0(MN(y01z00 − y00z01) + P0,1,0(z01 − z00)



+ P0,0,1(y00 − y01))2 − 2P1,0,1(MN(x01y00 − x00y01)
+ P1,0,0(y01 − y00) + P0,1,0(x00 − x01))(MN(y00z01

− y01z00) + P0,1,0(z00 − z01) + P0,0,1(y01 − y00))
−MN(P1,0,0(y01z00 − y00z01) + P0,1,0(x00z01 − x01z00)

+ P0,0,1(x01y00 − x00y01))2}
/(MN(x00(y10z01 − y01z10) + x10(y01z00 − y00z01)
+ x01(y00z10 − y10z00))
+ P1,0,0(y00(z01 − z10) + y10(z00 − z01) + y01(z10 − z00))
+ P0,1,0(x00(z10 − z01) + x10(z01 − z00) + x01(z00 − z10))

+ P0,0,1(x00(y01 − y10) + x10(y00 − y01) + x01(y10 − y00)))2

where x00 = x[1, 1], y00 = y[1, 1], z00 = z[1, 1], x10 =
x[M, 1], y10 = y[M, 1], z10 = z[M, 1], x01 = x[1, N ], y01 =
y[1, N ], z01 = z[1, N ]. Note that summation invariant is
quite different from the traditional moment invariants [9]. The
moment invariants are defined globally, i.e. the whole shape
is required. On the contrary, summation invariants can be
defined on any region of a surface such that the local feature
can be extracted. In order to distinguish similar objects, an
invariant function which can represent local characteristics of
an object is always highly desired. It can be shown that the
numerator and denominator ofη200 are respectively invariant
to Eucledean transform.

III. A PPLICATIONS TO3D FACE RECOGNITION

There are a number of efforts in the past to explore 3D
invariant features for the purpose of human face recogni-
tion using local invariant features such as gradients [10], or
view based approach [11]. To apply the summation invariant
features presented above to face recognition, a number of
practical issues must be addressed.

In practical applications, the summation invariant can be
computed locally over a patch of surface to extract regional
features. We call it thesemi-local summation invariant. By
controlling the size of the surface, both unique local features
as well as global features may be captured.

Another practical consideration is that 3D surfaces are
often represented by a triangular mesh which has no ordering
information among points on the surface. However, the sum-
mation invariant as well as semi-local summation invariants
are defined over regular grid points in a 3D space. We apply
a shape-preserving parameterization[12] method to convert
triangular mesh representation to regular grid representation.

Our plan for 3D face recognition is as follows: For a
given surface representing human face, we partition the surface
into patches of regular rectangle support in the parameterized
space. Then we compute the semi-local summation invariants
over each of the surface patch. This yields a feature matrix
with each element representing the semi-local summation
invariant computed over the corresponding surface patch. By
comparison a distance between these feature matrices of two
surfaces, one would be able to determine whether two surfaces
are similar.

To illustrate, we conduct a preliminary experiment as fol-
lows: We down-loaded triangular meshes of human faces from
the model library at 3D Cafe [13]. Then we apply Euclidean
transformation of a human surface. These two meshes are
parameterized using shape-preserving mapping [12] with 100
sampling points in both longitude and latitude directions. The
results of surface parameterization are shown in Figure 1.
We further divide the parameterized surface into10 × 10
disjoint regions whose boundaries are shown in solid lines in
Figure 1. Then, semi-local summation invariants,numerator
of the η2,0,0, are computed for each region of these two
parameterized facial surfaces. This yields a10 × 10 feature
matrix for each of these surfaces as shown in Figure 2.
Clearly, the two feature matrices so computed are identical,
illustrating the invariance of the proposed summation invariant
feature with respect to Euclidean transformation (rotation and
translation).

IV. CONCLUSION

In this work, a transformation group action onR3 is
extended to jet space defined by potentials, which are summa-
tions of(x, y, z) coordinates. Thus, we provide a new solution
to the equivalence problem of surfaces in 3D space under
transformation group action. A summation invariant for the
affine group acting onR3 is explicitly derived. The advantage
of using summation invariants is that they are less sensitive to
noise because they do not depend on derivatives. The resulting
feature vector for object recognition, therefore, will be much
more reliable. Preliminary experiments on triangular meshes
clearly indicate that the proposed invariant function has the
potential to be practically applied to 3D object recognition.

Despite these encouraging results, the method has been only
tested on synthesized data. We would like to apply it to a
real life problem and attempt to recognize human faces under
rotation and translation.
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Fig. 1. Parameterization of triangular meshes: The black lines divide face into10 × 10 disjoint regions and summation invariants are computed at each
region.
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Fig. 2. Summation invariants computed by using numerator(η200).
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