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ABSTRACT

We present a novel 3D face recognition method that incor-
porates summation invariant features extracted from multi-
ple sub-regions of a facial range images, and optimal fusion
of similarity scores between corresponding sub-regions. The
key innovation of this paper is the development of the fusion-
based face recognition algorithm that delivers significant per-
formance enhancement while requiring very little computa-
tion. Experiments on the FRGC (Face Recognition Grand
Challenge) version 2 dataset show that our algorithm improves
the recognition performance significantly in the presence of
facial expressions.

1. INTRODUCTION

Face recognition based on 3D information has received un-
precedented interest in recent years [1]. However, few results
have been reported on dealing with the variations of facial ex-
pressions. Like variations caused by illumination and pose
changes, expression variation is another fundamental issue in
face recognition. A practical face recognition solution has to
deal with a certain degree of expression changes even with co-
operative users. The advantages of 3D facial features include
that illumination variations may be of lesser problem and pose
variations can be normalized provided facial landmarks are
given [2]. Therefore, facial expressions eventually become
the bottleneck to current 3D face recognition systems.

From the comprehensive survey on 3D face recognition
by Bowyer et al. [1], there are relatively fewer research works
reported on handling the great challenge posed by facial ex-
pressions. Passalis et al. [3] propose a fully automatic 3D
face recognition algorithm based on the elastically adapted
deformable model frame work. Their deformable face model
can perform non-rigid alignment with input facial surface un-
der different expressions. A 3D face recognition approach
based on the invariant feature of isometries was introduced
by Bronstein et al. [4]. The key innovation of their approach
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lies in utilizing geodesic distance between the fiducial points
on a 3D face surface. Chang et al. [5] tackle the issue of ex-
pression changes by utilizing three different nose regions of
a face, as being relatively rigid areas across different facial
expressions.

In this paper, we propose a multi-region approach for im-
proving the robustness to facial expressions. Intuitively, we
argue that smaller facial regions, if judiciously selected, would
be less sensitive to expression variations and may lead to bet-
ter overall performance. A key research issue in a multi-
region approach is to devise an effective fusion method so
that individual pattern classification results based on differ-
ent facial regions can be combined to yield the best result.
Along this direction, we proposed a score-level information
fusion approach: an optimal linear weighted fusion approach
based on classical Linear Discriminant Analysis (LDA). The
experimental validation of the proposed approach is carried
out by using the Face Recognition Grand Challenge (FRGC)
version 2 dataset [6] and the Biometrics Experimentation En-
vironment (BEE) accompanying FRGC.

The remainder of this paper is organized as follows: In
section 2, we will briefly introduce the single region 3D face
recognition method developed in [7]. The single region al-
gorithm serves as the building block of the proposed multi-
region 3D face recognition algorithm. In section 3, we present
two fusion schemes, which combine all the facial sub-regions
and yield final results, and the empirical results. Finally, con-
cluding remarks are made in section 4.

2. SINGLE-REGION 3D FACE RECOGNITION

In the UW-Madison face recognition laboratory, we have de-
veloped novel families of geometrically invariant features, known
as summation invariants [8, 9], and apply them for 3D face
recognition tasks. In this section, we briefly review the single
region 3D face recognition approach using summation invari-
ants.

Given a 3D facial range image and the locations of fidu-
cial points on the face surface, we can identify an 81 × 81
rectangular region centered at the nose tip as the region of in-



terest. Note that FRGC provides the locations of eye corners,
nose tip and mouth corners. A normalized range image and
the 81×81 region used in our single region method are shown
in Figure 1. Each row and each column of this rectangular re-
gion of the range image is a 2D curve. In this work, we only
compute the summation invariant η1,1, which is a member of
the Euclidean summation invariant family, from a 2D curve.
Given N points over a curve {(xn, yn)}, we have [7]:
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n. Instead
of using the entire 2D curve to compute a single summation
invariant, we compute η1,1 over a local segment surrounding
each point on a 2D curve . The length of the local segment is
chosen to be 21 in our experiments. This semi-local summa-
tion invariant for a 2D curve, thus yields another 2D curve,
with fewer points due to the local segment. Combining all
2D feature curves, the single region of range image yields a
high-dimensional feature vector, called summation invariant
feature vector. We then apply the Principal Component Anal-
ysis (PCA) to reduce the dimensionality of the summation in-
variant feature vector. After proper dimension reduction, we
obtain a compact representation for the 81 × 81 region of a
given facial range image. Interested readers may refer to [7]
for details on the feature extraction of 3D range images.

As a participating group of the Face Recognition Grand
Challenge (FRGC) [6], we follow the designated experiment
protocol to compute a similarity score for each pair of images,
one in the gallery set and the other in the probe set. If the im-
age pair belong to the same person, the similarity score is la-
beled as a match score. Otherwise, it is labeled as a non-match
score. After all images in the gallery and in the probe set are
compared, the statistical distributions of the match scores and
the non-match scores can be derived. These distributions then
give a Receiver-Operating Characteristic (ROC) curve which
is used to represent the performance of a particular algorithm.

In the FRGC protocol, three masks are defined over the
similarity matrix where each entry contains the similarity score
of an image pair. Each mask collects its own set of entries in
the similarity matrix, thus generating three ROC curves which
will be referred to as ROC I, II and III. In ROC I, the gallery
image and probe image are from the same semester. In ROC
II, gallery and probe are from the same year. In ROC III,
gallery and probe are from different semesters. In average,
ROC III has the longest time lapse between gallery and probe
and therefore is the most challenging experiment. More de-
tails of FRGC experiments can be found in [6].

Fig. 1. A normalized range image and the 81 × 81 region
centered at nose tip.

The single region algorithm works very well on the FRGC
v1.0 dataset which contains only neutral expression. The re-
sulting verification rate is 97.2%, measured at 0.1% false ac-
cept rate [7]. Unfortunately, we observe a significant perfor-
mance drop when it was applied to the FRGC v2.0 dataset
where expression variations exist. The results of applying sin-
gle region algorithm on the FRGC v2.0 dataset are shown in
Figure 3(a). At 0.1% false accept rate, the verification rates
for ROC I, II and III are about 75%, 73% and 71.5%, respec-
tively. In this work, we attempt to address this issue with a
multi-region approach.

3. MULTI-REGION 3D FACE RECOGNITION

Our strategy for multi-region 3D face recognition can be high-
lighted as follows: We will partition a 3D facial range image
into 10 rectangular sub-regions, as shown in Figure 2. These
regions are located on the normalized range images, which are
provided by the FRGC baseline algorithm. Note that the lo-
cation of nose tip and the pixel distance between eye corners
are normalized during the preprocessing stage [2]. Hence,
one can then specify the size and location of a selected region
by using the pixel coordinate frame. For each sub-region, a
single-region face recognition procedure as described in the
previous section will be performed. This yields a similar-
ity score that specifies how similar this given sub-region of
a gallery range image is to the same sub-region of a probe
range image. We then combine the similarity scores of all
sub-regions to yield a fused similarity score which then can
be used to deduce the performance of the proposed method.
The main innovation of this research is the development of
novel score-level information fusion approaches.

3.1. Score-level Information Fusion

For each pair of 3D range images, 10 similarity scores are
computed from the 10 selected sub-regions. A 10 × 1 score
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Fig. 2. We specify 10 regions on a facial surface. Matching scores obtained from each region are combined to yield the final
matching score.

vector is obtained by simply stacking 10 similarity scores to-
gether. Each of these score vectors can be regarded as a de-
rived feature vector that has a label of either match, if an im-
age pair are from the same person, or non-match, if an image
pair are from different persons. In essence, this is a typical
two-category classification problem. The objective of fusion
is to devise a function from R10 to R such that those labeled
with match will be mapped to a positive value and those la-
beled with non-match will be mapped to a negative value. In
this paper, we use linear fusion methods to achieve this goal.
More specifically, one can compute the fused score by using a
weighted sum of individual similarity scores in a score vector.
In the following, we will present two fusion schemes and their
performance on FRGC experiment 3s. Note that among chal-
lenge problems defined in FRGC, we focus on experiment 3s
which utilizes only facial range images.

3.2. Sum Rule

The simplest way of fusion is to add the similarity scores from
all the selected sub-regions. In other words, equal weights
are assigned on each sub-region since we don’t know the rel-
ative importance of these sub-regions. Figure 3(a) shows the
results of sum rule on the FRGC v2.0 dataset. By combin-
ing relatively small regions which are relatively unaffected by
expressions, we observe a significant improvement over the
single region method in terms of verification rate. At a 0.1%
false accept rate, the verification rates for ROC I, II and III
are about 90%, 89% and 88%, respectively.

3.3. Optimal Linear Fusion Using LDA

The classical Linear Discriminant Analysis [10] attempts to
find the optimal linear weight WLDA that maximizes a Rayleigh
quotient:

WLDA = arg max
W

WT SBW

WT SW W

where SB is the between-class scatter matrix and SW is the
within-class scatter matrix. It is well-known that the solution
has the form

WLDA = S−1
W (m+ −m−)

where m+ is the mean score vector of training samples be-
longing to match class and m− is the mean score vector of
training samples belonging to non-match class. The FRGC
protocol specifies two non-overlapping data partitions: train-
ing and validation. In FRGC v2.0 dataset, there are total 943
3D images in the training partition. Here, we use samples in
the training partition to obtain the optimal weighting vector
WLDA. Figure 3(b) shows the ROC curves of using sum rule
and LDA. Compared with fusion by sum rule, fusion by LDA
provides an uniform improvement in verification rate at any
false accept rate. In particular, at 0.1% false accept rate, fu-
sion by LDA can achieve the verification rates of 91.5%, 91%
and 90% for ROC I, II and III, respectively.
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Fig. 3. ROC performance obtained by information fusion. (a) Fusion by sum rule (solid lines) and single region method (dashed
lines). (b) Fusion by LDA (solid lines) and sum rule (dashed lines).

4. CONCLUSION

We have developed a 3D face recognition system which in-
tegrates multiple sub-regions on a facial surface. The fusion
of multiple sub-regions can provide a significantly better face
identification result under a variety of expressions. In addi-
tion, the LDA is adopted to obtain the optimal weights which
are assigned on each sub-region to maximize the verification
rate. The proposed multi-region algorithm overcomes the lim-
itations of the previous single-region algorithm which suffers
performance degradation in the presence of expression varia-
tions. Experiment results on FRGC v2.0 dataset demonstrate
that our algorithm is robust to facial expressions. The per-
formance improvement is due to the fact that the information
fusion scheme generates a final decision with higher quality
than the decision based on a single classifier.
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