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ABSTRACT

A novel summation invariant of curves under 

transformation group action is proposed. This new 

invariant is less sensitive to noise than the differential 

invariant and does not require an analytical expression for 

the curve as the integral invariant does. We exploit this 

summation invariant to define a shape descriptor called a 

semi-local summation invariant and use it as a new feature 

for shape recognition. Tested on a database of noisy 

shapes of fishes, it was observed that the summation 

invariant feature exhibited superior discriminating power 

than that of wavelet-based invariant features. 

1. INTRODUCTION 

Invariants for transformation groups play an important 

role in computer vision. The idea that one can compute 

functions of images that do not change under various 

viewing conditions is appealing. It holds potential for 

many applications. Hence the study of invariants for 

certain transformation groups (Euclidean, affine and 

projective)  has flourished.  

Toward the end of the last millennium, algorithms 

based on invariants did not meet our expectations. 

Differential invariants depending on derivatives so are 

very sensitive to noise [1, 2]. There have been several 

attempts to decrease sensitivity to noise. To avoid high-

order derivatives, a semi-differential invariant was 

introduced in [3]. Affine invariant multiscale analysis was 

investigated in [4]. Potentials were used as coordinates to 

prolong group actions, so that the resulting invariants 

would depend on integrals rather than derivatives and not 

be sensitive to noise [5]. Also another type of integral 

invariant was formulated by integrating with respect to 

affine quasi-invariant arc-length [6]. 

In this paper, we introduce a general method to 

generate invariants that are weighted summations of 

discrete data, as analogues to integral ones. We use the 

summation invariants to measure the similarity between 

shapes and illustrate the potential of our method in real 

world applications. The rest of this paper is organized as 

follows. Section 2 describes the summation invariant. In 

section 3, we use the summation invariant to define a 

novel shape descriptor, which is called the semi-local 

summation invariant.  In section 4, we apply the proposed 

method to the problem of fish recognition. Finally, section 

5 summarizes the contribution and provides an overview 

of future directions.  

2. SUMMATION INVARIANT 

The transformation groups acting on 
2

, such as 

Euclidean, affine and projective groups are of particular 

importance in planar shape recognition. In this section, we 

describe a systematic method to find invariant functions 

for certain transformation groups.  

2.1. Extending group action to potentials

The boundary of an object is extracted and parameterized 

as [ ]x n and [ ]y n . Consider a transformation group G of 

dimension r acting on 
2
defined by 

( [ ], [ ]) ( [ ], [ ]),g x n y n x n y n g G= ∈

We prolong the group action to the jet space 
n

J consisting 

of potentials up to the n-th order. The definition of 

potential and jet space are shown below. 

Definition 1. The potential 
,i j

P of order k is given by 

1

,

0

[ ] [ ]
N

i j i j

n

P x n y n
−

=

= ⋅ , where i j k+ =

Definition 2. The jet space 
n

J is the Euclidean space with 

coordinates  

( )
( [0], [0], [ 1], [ 1], )

n
x y x N y N P− −

where
( )n

P consist of potentials up to n-th order.   
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For example, 

1 1

1

0 0

( [0], [0], [ 1], [ 1], [ ], [ ])
N N

n n

J x y x N y N x n y n
− −

= =

= − −

Then, we can find an invariant function of the 

transformation group G by solving the normalization 

equations [7].  

2.2. An example: invariant of affine transformation

In this section, we use affine transformation as an 

example to illustrate the proposed method. Consider the 

affine transformation group acting on 
2
given by, 

( , ) ( , )g x y ax by c dx ey f= + + + +

, where det( ) 0
a b

c d
≠

After applying the group action, 
1,0

P  is given by 

1

1,0 1,0 0,1

0

[ ] [ ]
N

n

P ax n by n c aP bP cN
−

=

= + + = + +

Similarly, 

1

0,1 1,0 0,1

0

[ ] [ ]
N

n

P dx n ey n f dP eP fN
−

=

= + + = + +

We can solve for {a, b, c, d, e, f} by setting 

1,0 0,1
( [0], [0], [ 1], [ 1], , )

(0, 0,1,1, 0, 0)

x y x N y N P P− −

=

Then, Substituting {a, b, c, d, e, f} into 
2,0

P  gives us the 

invariant function 

2,0 0,1 2 0,2 1,0 2

1,1 1,0 0,1

1,0 0,1 2

2

1,0 0,1

( [0] ) ( [0] )

2 ( [0] )( [0] )

( [0] [0])

[ 1] [0] [0] [ 1]
/

( [ 1] [0]) ( [ 1] [0])

P Ny P P Nx P

P Nx P Ny P

N P y P x

Nx N y Nx y N

P y N y P x N x

α

− + −

= − − −

− −

− − − +

− − − − −

3. SEMI-LOCAL SUMMATION INVARIANTS 

Since the summation invariant is a map from 
N

to , the 

dimension of the feature vector is one. In some 

applications, such as recognition of similar objects, it 

won’t give us accurate recognition results. Instead of 

doing global summation, we define a summation invariant 

locally to extract local features of the contour and also 

expand the dimension of the feature vector. It’s called a 

semi-local summation invariant. The definition of the 

semi-local summation invariant is given by

( )2

1 0 0 1 1 0 1 0
[ ] ( ) ( ) ( )

x y
m M x y x y P y y P x xβ = − + − − −

 where 

1

[mod( , )]
m M

x

n m

P x n N
+ −

=

=
1

[mod( , )]
m M

y

n m

P y n N
+ −

=

=

0
[ ],x x m=

0
[ ],y y m=

1
[mod( 1, )],x x m M N= + −

1
[mod( 1, )].y y m M N= + −

Here, we can use only the denominator of α to define a 

semi-local summation invariant.  Since it’s transformed by 

g denominator(α) = 
2

( )ae bd−  denominator(α)

for all (2)g A∈ . The scaling factor will be canceled when 

similarity is measured by normalized cross-correlation as 

follows:  
1

1 2

0

1 1

2 2

1 2

0 0

[ ] [ ]

[ ] [ ]

N

n

N N

n m

n n

n m

β β
ρ

β β

−

=

− −

= =

=

4. APPLICATIONS TO SHAPE RECOGNITION 

In this section, we apply semi-local summation invariant 

to recognize 2D fish contours under affine 

transformations.  

4.1. Fish recognition 

We randomly selected 100 distinct fish contours  from the 

SQUID database [8], and re-sampled each 2D contour 

curve such that the total number of points is 512. Some of 

these fish contours are shown in Figure 1(a). For each 

curve, we generate 20 variations by applying affine 

transformations with randomly generated parameters. In 

Figure 1(b), we illustrate the 20 variations of the same 

fish contour.  In all, there are 100 distinct types of fish 

contours and 20 variations for each type. For each type of 
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Figure 1. (a) 20 distinct types of fish from the 

database are shown here.  (b) 20 variations of fish 

contour for the same type of fish. 

fish, its 20 variations are partitioned equally and randomly 

into five disjoint sets of 4 samples each. Combining the 

corresponding disjoint sets of each fish type, we have five 

sets of data, with each consisting of exactly four samples 

of each of the 100 types of fishes.

Fish recognition is performed by choosing SET 1 as 

the training set and the others as the test set. We can also 

perform 4 other recognition experiments by choosing SET 

2, SET 3, SET 4 and SET 5 as the training set respectively. 

Specifically, the same pattern classifier will be applied to 

5 different partitions of the available data into training and 

testing data sets. In the kth partition, the kth data set will be 

the training data set, and the remaining four data sets 

combined will form the testing data set. This way, each 

data set will be used as the training data set exactly once 

in the 5 partitions. 

The semi-local summation invariant is calculated for 

each fish contour with M =51 with cyclic extension at the 

boundary. The feature vector has a dimension of 512. 

A nearest neighbor pattern classifier is used for this 

experiment. For each testing feature vector, its cross-

correlation with each of the training feature vectors is 

computed according to the following formula: 

1

0

1 1

2 2

0 0

[ ] [ ]

[ ] [ ]

N

training test

n

N N

training test

n m

n n

n m

ρ
η η

η η

−

=

− −

= =

=
⋅

When the semi-local summation invariant is used for 

matching fish contours, the total number of mismatches is 

177 out of 8000 or 2.21%. We repeat the same procedure 

but replacing the summation invariant with an integral 

invariant. The total number of mismatches is 1165/8000 = 

14.6%.  It is quite clear that the summation invariant 

based feature performed much better than that of the 

integral invariant based features. 

4.2. Sensitivity to noise 

Next, the sensitivity of the semi-local summation invariant 

based feature will be tested experimentally and compared 

to that of a wavelet invariant feature proposed by Khalil 

and Bayoumi [9]. For this purpose, we add Gaussian-

distributed noise into the fish contour. Again, the database 

contains 100 distinct types of fish and each type has 20 

variations. Fish contours with different noise level are 

depicted in Figure 2.  Two different noise levels are used:  

σ = 1, and σ = 2.

It has been shown [9] that the wavelet-based invariant 

function  shows superior discriminating power over other 

traditional invariant features such as the moment invariant 

[10] or Fourier descriptor method [11]. In this work, the 

wavelet affine invariant function 
, , , , ,

( )
a b c d e f

tη  is used.  

Within the 8 scale-levels we compute 
3,4,5,6,7 ,8

( )tη . In [9], 

it is found that scale levels 1 and 2 are too sensitive to 

noise and therefore are excluded from the wavelet 

invariant features.

The results in terms of probability of misclassification 

are summarized in Table 1. 

As we can see, the summation invariant can 

successfully recognize fish in spite of a high level of noise. 

Compared with wavelet-based techniques, it also exhibits 

stronger immunity to noise. 

Table 1 Sensitivity comparison using probability of 

misclassification

 Semi-local wavelet invariant 

σ = 1 367/8000 = 4.6% 2253/8000 = 28.2% 

σ = 2 514/8000 = 6.4% 3476/8000 = 43.5%  
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Figure 2. Fish contours after adding Gaussian 

distributed noise, (a) σ = 1, (b) σ = 2. (σ denotes the 

standard deviation of noise) 

5. CONCLUSION 

In this work, we provide a new solution to the equivalence 

problem of planar contours under transformation group 

action. A summation invariant for the affine group acting 

on
2
is explicitly derived and applied to the problem of 

shape recognition. A database of marine animals was used 

to test the proposed method. Compared with some 

traditional methods, experimental results show that our 

method has superior discriminating power and better noise 

immunity. Among possible future directions, the major 

work is to further improve recognition performance by 

using higher order summation invariants.  
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