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Abstract. Visual appearance of landmark photos changesfisigmily in dif-
ferent weather conditions. In this work, we obtai@ather information from a
weather forecast website based on a landmark phgewtag and taken time in-
formation. With weather information, we adaptivalyjust weightings for com-
bining distances obtained based on different featand thus propose a weath-
er-adaptive distance measure for landmark photssifieation. We verify the
effectiveness of this idea, and accomplish onéefearly attempts to develop a
landmark photo classification system that resistse¢ather changes.
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1 I ntroduction

Landmark image classification has emerged as aoriapt research topic due to its
potential usage of location-based service and {acgée image retrieval. Famous
landmarks such as Eiffel Tower and Statute of ltibattract millions of visitors eve-
ry year, who took pictures of the landmarks fromimited viewpoints in various
conditions, and then shared them on social meditigpims. Large amounts of land-
mark photos thus urge the need of efficient retfi@ccess as well as effective recog-
nition/classification.

Many studies of landmark classification and itseexted variants, i.e., location
prediction/recognition, have been widely proposedecent years. They mainly focus
on integrating multimodal features such as geodcaplinformation and visual in-
formation, or developing classification models lithea large-scale datasets. Howev-
er, the problem of high intra-class variations eauby drastically different visual
conditions still remains.

In this paper, we investigate one factor that Iprgdfects visual appearance of
landmark imagesweather types. Through the whole year many people visit Notre
Dame, for example, and take photos under variowsthge conditions. Fig. 1 shows
sample photos taken at Notre Dame and Sacre Coesuriny and cloudy days, re-
spectively. From this figure we see visual appeagarare significantly different in
different weathers due to the sky and the intengitiighting on the building. Such
intra-class variations impede accurate image dleatson. However, the influence of
weather types on measuring image similarity waslogked before. In this work we
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propose a weather-adaptive distance metric so kbter similarity measurement
between images can be achieved, and thus bettdmérk image classification is
expected.

When comparing two landmark images, we could cateutheir distance from
many perspectives, such as texture and local featints, and then linearly combine
distances respectively calculated based on eathréeaNith weather properties ob-
tained from a weather forecast website, we proposaljust weightings by formulat-
ing this task as an optimization problem. As thstfcontribution of this work, we
consider its analogy to single neuron training determine the optimal weightings
by the gradient method. As the second contributioare effective features can be
discovered and prioritized through the learnt weigls, and more accurate landmark
image classification can be achieved.

The rest of this paper is organized as followsSéttion 2 literature of landmark
image classification will be surveyed. Details lo tweather-adaptive distance metric
with weight learning are described in Section Xt®e 4 provides discussion of the
proposed metric and performance of landmark imdagsiication, followed by con-
cluding remarks in Section 5.

Fig. 1. Left to right: sample photos of Notre Dame on sudays, Notre Dame on cloudy days,
Sacre Coeur on sunny days, and Sacre Coeur on alaygy

2 Related Works

Landmark image classification has been widely stidn the past decade. We briefly
review some of them in the following. Zheng et[&H#] built an internet-scale land-

mark dataset by mining true landmark images frons@&ged photos and tour guide
web pages. Unsupervised clustering techniques &uhlvmodels based on feature
points were adopted to build a landmark recogniéogine. Yi et al. [11] also built a

large-scale dataset and adopted the bag of feapym®ach associated with multiclass
SVM to achieve landmark image classification. Tldso showed that using textual
tags and temporal constraints leads to signifip@nformance improvement over the
visual only method. Li et al. [13] combined 2D apmnce and 3D constraints to
discover iconic views of a landmark, which werestatsed in landmark recognition.

Chen et al. [9] proposed a soft bag-of-visual phrapproach for mobile landmark
recognition. Visual phrases were learnt in a catgegependent manner to achieve
promising recognition performance. Min et al. [12joposed an efficient mobile

landmark search system where the client uploadgpmesred images to the server,



and the server recognizes landmark by matchingiheaded image with landmark
texture projected from pre-constructed landmarkn3ilels.

Since the IMG2GPS system proposed in [6], studiegeographical location esti-
mation emerge in recent years. Hays and Efrosdiijhated the geographical location
of a query photo based on a data-driven scene-mgtepproach. Li et al. [8] im-
proved the scene-matching approach by jointly aergig visual similarity and geo-
graphical proximity to build a ranking method. Lét al. [7] greatly extended the
scene-matching approach by further consideringlemas appearance and land cover
survey data. A query photo can be localized evénhés no corresponding ground-
level images in the database. Fang et al. [5] adbftent SVM to discover geo-
informative attributes from regions in order toifiéate better location recognition
and exploration.

Although there have been many works targeting radri@ark or location recogni-
tion, few of them specially tackled visual varia$ocaused by lighting, editing, or
weather change. Shen and Cheng [10] proposed gesialfeature points to find
visual correspondence between images of diffetgtess(painting vs. photograph, or
photographs in different colors) but containing saene semantic meaning. However,
methodology or features especially designed toidenwisual variations caused by
weather conditions are still missing. In this wonke focus on developing a distance
metric considering weather conditions.

3  Weather-Adaptive Distance Metric

3.1 Common Distance Metric

Given two imaged, andl,, assuming that each image can be representéd types
of features, i.eJ, = {p,,....py} andi;, = {q,,....,q5}, the conventional way to
integrate distances derived from features is:

N
D(lp, Iy) = >0 widi(p;, q;), (1)

whered;(p,,q;) is the normalized distance calculated based oritthdeature.
Weightingsw;’s are often empirically set or simply follows aifanm distribution,
i.e.,w; = 1/N. However, the integrated distanB¥I,.I,) often cannot reflect im-
pacts of different features, yielding limited lanaltk classification performance.

To show the shortage of this simple metric, frortkel we collect photos of fa-
mous landmarks that were captured on sunny dagkody days. We then calculate
integrated distanc®(J,, I,) between photos that are randomly selected follgwin
four schemes: (1), and!, are from the same landmark under the same wefiber
(sunny or cloudy); (2], andl, are from the same landmark under different weather
types (one is sunny and another is cloudy);/{3andI, are from different landmarks
under the same weather type; {#)andl, are from different landmarks under differ-
ent weather types. The integrated distal¢é,., /,) is obtained by combining indi-
vidual features respectively derived from Gabotuexfeatures, haze features, bag of
visual words, and CNN features. The individual alisted;(p,, q;) is measured by



Euclidean distance. Details of the evaluation adtaad features will be described in
Section 4.

Fig. 2 shows distributions of integrated distanfdg,, /,) between photos select-
ed based on four different schemes. Comparing iteilditions obtained based on
the first and the third schemes, under the saméheeaondition, distances between
photos from the same landmark are similar to thamnfdifferent landmarks. This
shows weather properties dominate calculation efadce measure. The first two
distributions (obtained based on the first two sobg) are similar to the last two dis-
tributions (obtained based on last two schemesijs Teans the common distance
metric cannot reliably describe that photos from shme landmark are similar, while
photos from different landmarks are relatively idist even when they were captured
under the same weather condition.
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Fig. 2. Distributions of integrated distances calculataddal on four settings. ET stands for
Eiffel Tower, and BB stands for Big Ben.

3.2 Weather-Adaptive Distance Metric

The characteristics shown in Fig. 2 motivate upitopose a weather-adaptive dis-
tance metric for measuring landmark photos. The ideto adjust weightings for
combining individual distances in a systematic neanih.et us model whether two
photosI, andl, belong to the same landmark based on the intebdistances like
this:

Y= Zil widi(p;, q;) = dTU’, (2)

where w = [wy, ..., wx]|? andd = [d1(p,.q,),---dn(py,qy)]. The indicator
y = 0if I, andl, are from the same landmark (no matter whether tiese under
the same weather condition or not), ang 1 otherwise.

We wish to find the values of weights, ..., wx such that the estimated indica-
tion value is as close as the ground truth. Given training dataset
{(d1,v1), ..., (dps,yar)} constituted by randomly selectiddg photo pairs from the



collected landmark photo collection, the traininglgem is formulated as the follow-
ing optimization problem:

minimize 2?11(7}7 - d]T'w)Q, ®3)

where the minimization is taken over all= [wy, ..., wy]T € RY. The termdij
is the estimated indication value, and the objecfinction represents the sum of
squared errors between the desired ougpand the estimated resdfw. We can
write the optimization problem in matrix form:

minimize ||y — D7 w||?, (4)

whereD = [d; - - - dp] andy = [y1. ..., yn]".

We have more training points than the number ofghisi Assuming that rank of
D" is N, the objective function is simply a strictly comvgquadratic function ofw.
In this work, we utilize a fixed-step-size gradiafgorithm [3] that iteratively updates
the weighting vectow in the following form:

w(k+l) — w(k) + aDe(k)' (5)

wherea is the predefined step size, arldl =y — D w*) is the estimation er-
ror at thekth iteration.

Through the process mentioned above, we learn fftenal weighting vector
w = [wy,...,wx]T that causes the minimum estimation error.

4 Experiments

4.1  Experimental Settings

The collected dataset consists of sunny and clginbyos of five famous landmarks,
including Big Ben, Eiffel Tower, Notre Dame, Sa€@eeur and Winsor Castle. Table
1 shows information of the collected dataset. Thmipers of sunny and cloudy pho-
tos are roughly balanced, and there are totall¥Q gghotos in the dataset.

Features. We use Gabor texture features [2], haze featutgsblpg of feature
points [11], and CNN features [15] to describe mage. For Gabor texture features,
image pixels’ intensity are transformed into thegfitency domain, which is then de-
composed into 16 ranges by the Gabor Wavelet fomstivith four scales and four
orientations. Mean and standard deviation of thgnitade of the transform coeffi-
cients in each range are used to represent eaglefiey band, and are then concate-
nated to form a 32-D texture feature vector.

For haze features, dark channel prior [4] is fi@tulated for each pixel. An image
is partitioned by a spatial pyramid scheme, i.aifaumly partitioned inta2?, 42, and
82 non-overlapping regions to obtain 84 sub-regiofise median values of dark
channel intensities in these sub-regions are cenattd as an 84-D haze feature vec-
tor [1].



Table 1. Information of the evaluation dataset.

Landmark Sunny Cloudy
Big Ben 100 100
Eiffel Tower 138 143
Notre Dame 105 104
Sacre Coeur 168 101
Winsor Castle 141 110
Sum 652 558

Following the single image classification processppsed in [11], we describe an
image by a bag of visual words (BoW) model. Weizdilthe visual vocabulary (with
10,000 visual words) built in Top-SURF [16] to ctrost an image’s 10,000-D BowW
representation.

Currently using convolutional neural network (CNRatures largely surpasses
hand-crafted features. To extract CNN featuresptilze the MatConvNet package
[17] with the pre-trained model obtained based madeNet ILSVRC-2012. There
are five convolutional layers and three fully-cocteel layers in the CNN model. The
first convolutional layer filters the input imagdtiw 64 kernels of sizél x 11 x 3
with a stride of 4 pixels. The second convolutiofsler makes filtering with 256
kernels of sizé x 5 x 64. The third, fourth, and fifth convolutional layease con-
nected to one another without any intervening papbr normalization layers. The
third and fourth convolutional layer have 256 késraf size3 x 3 x 256, respective-
ly, and the fifth convolutional layer has 4096 kalmof sizet x 6 x 256. The fully-
connected layers have 4096 neurons each. We takéooutput of the fifth, sixth, and
seventh layers to be CNN features, and found #atufes from the sixth layer yield
the best performance through our preliminary expenits.

Experimental Settings. Based on the dataset, we adaptively adjust weifgints
measuring distances between photos captured irsghee weather condition or in

different weather conditions. Particularly, we randy select pairs of sunny photos to
form the training poobs = {I\*, ..., I&?}. For each pair it$'S, if the two photod,
and/,; belong to the same landmark, the indicatds set as 0, and set as 1 otherwise.
Initial weighted distances between selected pasgjefined in egn. (1), and the asso-
ciated indicators, are treated as the training, datd the updated procedure described

in egn. (5) is used to adjust weightings specifyjcédr measuring distance between
sunny photos. We denote the adjusted weightingsas= {w55>, . wff)}. Similar-
ly, we randomly select pairs of cloudy photos tarfahe seC'C = {Ifc), Iﬁ?},

and determine the adjusted weightingg:c = {wY‘). wgf)}. To appropriately
measure distance between two photos that were reapin different weather condi-
tions, we also randomly selekf photo pairs, where for each pair one photo is gunn
and another is cloudy. Based on the correspondiiigliweighted distances and as-

sociated indicators, the adjusted weightings: = {wY‘), ceny wff)} are determined.
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Fig. 3. Distributions of integrated distances before diter aveighting adjustment. From left to
right: distributions of sunny vs. sunny photostriiitions of cloudy vs. cloudy photos; distri-
butions of sunny vs. cloudy photos.

Because the captured time and geographical infeomaire available for each
photo in our database, we can use this informdatarbtain weather type through the
API provided by the Weather Underground weBsi@verall, given a pair of photos
(one may be query, and another may be from thentarkl database), we first select
appropriate weights fromsg, wee, or wse, according to their weather types, and
then calculate the weighted distance between thernhe foundation for landmark
classification or other applications.

4.2 Distributions of Distances

Fig. 2 shows that integrated distance distributiares similar no matter photos in the
same landmark or in different landmarks are conthaférough the proposed ad-
justment, we verify that through the adjusted waigls distances between photos
can be more appropriately captured.

Fig. 3 shows distributions of integrated distanbeswveen (a) sunny photos, (b)
cloudy photos, and (c) one sunny photo and onedgl@hoto, in the same landmark
(blue curves) or in different landmarks (red cujvésom all these three subfigures,
we see that before weighting adjustment (solid esixvdistance distributions between
photos in the same or different landmarks are aimAfter adjustment, distance dis-
tributions coming from photos at the same landnmadve apart from that for differ-
ent landmarks.

To quantitatively show the effect of weighting agtjment, we calculate the sym-
metric KL divergence between distance distributioaspectively derived for same
landmark and different landmarks. Table 2 showaitéet information. We can quan-
titatively observe that the KL divergence betweéstathce distributions largely in-
creases after weighting adjustment.

Fig. 4 shows absolute values of learnt weightsHterthree different schemes. We
especially notice the relative values of these hisigand observe that Bow and CNN
features are consistently more important than therdwo features. This conforms to
recent studies on image classification, and alsavsithat the proposed method can
effectively learn weights.

1 Weather Underground, http://www.wunderground.com/



Table 2. KL divergences of distance distributions.

Type Before adjustment After adjustment
Sunny-Sunny 0.0830 0.4034
Cloudy-Cloudy | 0.2251 0.5134
Sunny-Cloudy 0.0383 0.3717

weight weight weight
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Fig. 4. Absolute weights of different features. Left tghti: weights for sunny vs. sunny photos;
weights for cloudy vs. cloudy photos; weights fonsy vs. cloudy photos.
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Fig. 5. Accuracy of landmark classification with variedanest neighbor settings.

4.3 Performance of Landmark Classification

We adopt a simple classification method, i.e., Knast neighbor classifier, to more
clearly show the effectiveness of weighting adjustimin landmark classification.
Given a query photo, we find its K-nearest neigkbloased on integrated distance,
and classify the query photo as one of the landraackrding to majority voting. We
compare classification performance obtained basednitial integrated distances
(eqgn. (1)) with that obtained based on adjustedgiated distances (according to
weather types). Fig. 5 shows accuracy of landméaksdication with different set-



tings of the number of nearest neighbors (K). Ftbim figure we clearly see the sig-
nificant improvement given by appropriately adjogtiveightings.

5 Conclusion

We have presented a weather-adaptive distancecntieati is verified to yield better
landmark photo classification based on a pilot llate. By considering multiple fea-
tures, distance between photos is usually calalilayecombining individual distance
derived from each feature. In this work we advod#i@, by further considering
weather type of the two compared photos, weightihgs can better combine indi-
vidual features can be learnt. We formulate itragptimization problem and find the
best weighting setting by a gradient algorithm. Téported evaluation verifies that
the learnt weightings yield more effective distabetween photos and thus improve
performance of landmark photo classification insemawith adjusted weightings. In
the future, a larger-scale evaluation will be cartdd, and more elegant methods to
combine individual features and the correspondiagrliing problems will be studied.
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