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Abstract. Visual appearance of landmark photos changes significantly in dif-
ferent weather conditions. In this work, we obtain weather information from a 
weather forecast website based on a landmark photo’s geotag and taken time in-
formation. With weather information, we adaptively adjust weightings for com-
bining distances obtained based on different features and thus propose a weath-
er-adaptive distance measure for landmark photo classification. We verify the 
effectiveness of this idea, and accomplish one of the early attempts to develop a 
landmark photo classification system that resists to weather changes. 
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1 Introduction 

Landmark image classification has emerged as an important research topic due to its 
potential usage of location-based service and large-scale image retrieval. Famous 
landmarks such as Eiffel Tower and Statute of Liberty attract millions of visitors eve-
ry year, who took pictures of the landmarks from unlimited viewpoints in various 
conditions, and then shared them on social media platforms. Large amounts of land-
mark photos thus urge the need of efficient retrieval/access as well as effective recog-
nition/classification.  

Many studies of landmark classification and its extended variants, i.e., location 
prediction/recognition, have been widely proposed in recent years. They mainly focus 
on integrating multimodal features such as geographical information and visual in-
formation, or developing classification models based on large-scale datasets. Howev-
er, the problem of high intra-class variations caused by drastically different visual 
conditions still remains.  

In this paper, we investigate one factor that largely affects visual appearance of 
landmark images: weather types. Through the whole year many people visit Notre 
Dame, for example, and take photos under various weather conditions. Fig. 1 shows 
sample photos taken at Notre Dame and Sacre Coeur on sunny and cloudy days, re-
spectively. From this figure we see visual appearances are significantly different in 
different weathers due to the sky and the intensity of lighting on the building. Such 
intra-class variations impede accurate image classification. However, the influence of 
weather types on measuring image similarity was overlooked before. In this work we 



propose a weather-adaptive distance metric so that better similarity measurement 
between images can be achieved, and thus better landmark image classification is 
expected.  

When comparing two landmark images, we could calculate their distance from 
many perspectives, such as texture and local feature points, and then linearly combine 
distances respectively calculated based on each feature. With weather properties ob-
tained from a weather forecast website, we propose to adjust weightings by formulat-
ing this task as an optimization problem. As the first contribution of this work, we 
consider its analogy to single neuron training and determine the optimal weightings 
by the gradient method. As the second contribution, more effective features can be 
discovered and prioritized through the learnt weightings, and more accurate landmark 
image classification can be achieved.  

The rest of this paper is organized as follows. In Section 2 literature of landmark 
image classification will be surveyed. Details of the weather-adaptive distance metric 
with weight learning are described in Section 3. Section 4 provides discussion of the 
proposed metric and performance of landmark image classification, followed by con-
cluding remarks in Section 5.  

 

Fig. 1. Left to right: sample photos of Notre Dame on sunny days, Notre Dame on cloudy days, 
Sacre Coeur on sunny days, and Sacre Coeur on cloudy days.  

2 Related Works 

Landmark image classification has been widely studied in the past decade. We briefly 
review some of them in the following. Zheng et al. [14] built an internet-scale land-
mark dataset by mining true landmark images from GPS-tagged photos and tour guide 
web pages. Unsupervised clustering techniques and visual models based on feature 
points were adopted to build a landmark recognition engine. Yi et al. [11] also built a 
large-scale dataset and adopted the bag of feature approach associated with multiclass 
SVM to achieve landmark image classification. They also showed that using textual 
tags and temporal constraints leads to significant performance improvement over the 
visual only method. Li et al. [13] combined 2D appearance and 3D constraints to 
discover iconic views of a landmark, which were later used in landmark recognition. 
Chen et al. [9] proposed a soft bag-of-visual phrase approach for mobile landmark 
recognition. Visual phrases were learnt in a category-dependent manner to achieve 
promising recognition performance. Min et al. [12] proposed an efficient mobile 
landmark search system where the client uploads compressed images to the server, 



and the server recognizes landmark by matching the uploaded image with landmark 
texture projected from pre-constructed landmark 3D models.  

Since the IMG2GPS system proposed in [6], studies of geographical location esti-
mation emerge in recent years. Hays and Efros [6] estimated the geographical location 
of a query photo based on a data-driven scene-matching approach. Li et al. [8] im-
proved the scene-matching approach by jointly considering visual similarity and geo-
graphical proximity to build a ranking method. Lin et al. [7] greatly extended the 
scene-matching approach by further considering overhead appearance and land cover 
survey data. A query photo can be localized even if it has no corresponding ground-
level images in the database. Fang et al. [5] adopted latent SVM to discover geo-
informative attributes from regions in order to facilitate better location recognition 
and exploration.  

Although there have been many works targeting at landmark or location recogni-
tion, few of them specially tackled visual variations caused by lighting, editing, or 
weather change. Shen and Cheng [10] proposed gestalt rule feature points to find 
visual correspondence between images of different styles (painting vs. photograph, or 
photographs in different colors) but containing the same semantic meaning. However, 
methodology or features especially designed to consider visual variations caused by 
weather conditions are still missing. In this work, we focus on developing a distance 
metric considering weather conditions.  

3 Weather-Adaptive Distance Metric 

3.1 Common Distance Metric 

Given two images  and , assuming that each image can be represented by  types 
of features, i.e.,  and , the conventional way to 
integrate distances derived from features is:  

 ,  (1) 

where  is the normalized distance calculated based on the th feature. 
Weightings ’s are often empirically set or simply follows a uniform distribution, 
i.e., . However, the integrated distance  often cannot reflect im-
pacts of different features, yielding limited landmark classification performance.  

To show the shortage of this simple metric, from Flickr we collect photos of fa-
mous landmarks that were captured on sunny days or cloudy days. We then calculate 
integrated distance  between photos that are randomly selected following 
four schemes: (1)  and  are from the same landmark under the same weather type 
(sunny or cloudy); (2)  and  are from the same landmark under different weather 
types (one is sunny and another is cloudy); (3)  and  are from different landmarks 
under the same weather type; (4)  and  are from different landmarks under differ-
ent weather types. The integrated distance  is obtained by combining indi-
vidual features respectively derived from Gabor texture features, haze features, bag of 
visual words, and CNN features. The individual distance  is measured by 



Euclidean distance. Details of the evaluation dataset and features will be described in 
Section 4.  

Fig. 2 shows distributions of integrated distances  between photos select-
ed based on four different schemes. Comparing the distributions obtained based on 
the first and the third schemes, under the same weather condition, distances between 
photos from the same landmark are similar to that from different landmarks. This 
shows weather properties dominate calculation of distance measure. The first two 
distributions (obtained based on the first two schemes) are similar to the last two dis-
tributions (obtained based on last two schemes). This means the common distance 
metric cannot reliably describe that photos from the same landmark are similar, while 
photos from different landmarks are relatively distinct even when they were captured 
under the same weather condition.  

 

Fig. 2. Distributions of integrated distances calculated based on four settings. ET stands for 
Eiffel Tower, and BB stands for Big Ben.  

3.2 Weather-Adaptive Distance Metric 

The characteristics shown in Fig. 2 motivate us to propose a weather-adaptive dis-
tance metric for measuring landmark photos. The idea is to adjust weightings for 
combining individual distances in a systematic manner. Let us model whether two 
photos  and  belong to the same landmark based on the integrated distances like 
this:  

 ,  (2) 

where  and . The indicator 
 if  and  are from the same landmark (no matter whether they were under 

the same weather condition or not), and  otherwise.  
We wish to find the values of weights , …,  such that the estimated indica-

tion value is as close as the ground truth. Given a training dataset 
 constituted by randomly selecting  photo pairs from the 
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collected landmark photo collection, the training problem is formulated as the follow-
ing optimization problem:  

 ,  (3) 

where the minimization is taken over all . The term  
is the estimated indication value, and the objective function represents the sum of 
squared errors between the desired output  and the estimated result . We can 
write the optimization problem in matrix form:  

 ,  (4) 

where  and .  
We have more training points than the number of weights. Assuming that rank of  
 is , the objective function is simply a strictly convex quadratic function of . 

In this work, we utilize a fixed-step-size gradient algorithm [3] that iteratively updates 
the weighting vector  in the following form:  

 ,  (5) 

where  is the predefined step size, and  is the estimation er-
ror at the th iteration.  

Through the process mentioned above, we learn the optimal weighting vector 
 that causes the minimum estimation error.  

4 Experiments 

4.1 Experimental Settings 

The collected dataset consists of sunny and cloudy photos of five famous landmarks, 
including Big Ben, Eiffel Tower, Notre Dame, Sacre Coeur and Winsor Castle. Table 
1 shows information of the collected dataset. The numbers of sunny and cloudy pho-
tos are roughly balanced, and there are totally 1,210 photos in the dataset.  

Features. We use Gabor texture features [2], haze features [1], bag of feature 
points [11], and CNN features [15] to describe an image. For Gabor texture features, 
image pixels’ intensity are transformed into the frequency domain, which is then de-
composed into 16 ranges by the Gabor Wavelet functions with four scales and four 
orientations. Mean and standard deviation of the magnitude of the transform coeffi-
cients in each range are used to represent each frequency band, and are then concate-
nated to form a 32-D texture feature vector.  

For haze features, dark channel prior [4] is first calculated for each pixel. An image 
is partitioned by a spatial pyramid scheme, i.e., uniformly partitioned into , , and 

 non-overlapping regions to obtain 84 sub-regions. The median values of dark 
channel intensities in these sub-regions are concatenated as an 84-D haze feature vec-
tor [1].  



Table 1. Information of the evaluation dataset.  

Landmark Sunny Cloudy 
Big Ben 100 100 
Eiffel Tower 138 143 
Notre Dame 105 104 
Sacre Coeur 168 101 
Winsor Castle 141 110 
Sum 652 558 

 
Following the single image classification process proposed in [11], we describe an 

image by a bag of visual words (BoW) model. We utilize the visual vocabulary (with 
10,000 visual words) built in Top-SURF [16] to construct an image’s 10,000-D BoW 
representation.  

Currently using convolutional neural network (CNN) features largely surpasses 
hand-crafted features. To extract CNN features, we utilize the MatConvNet package 
[17] with the pre-trained model obtained based on ImageNet ILSVRC-2012. There 
are five convolutional layers and three fully-connected layers in the CNN model. The 
first convolutional layer filters the input image with 64 kernels of size  
with a stride of 4 pixels. The second convolutional layer makes filtering with 256 
kernels of size . The third, fourth, and fifth convolutional layers are con-
nected to one another without any intervening pooling or normalization layers. The 
third and fourth convolutional layer have 256 kernels of size , respective-
ly, and the fifth convolutional layer has 4096 kernels of size . The fully-
connected layers have 4096 neurons each. We try to take output of the fifth, sixth, and 
seventh layers to be CNN features, and found that features from the sixth layer yield 
the best performance through our preliminary experiments.  

Experimental Settings. Based on the dataset, we adaptively adjust weights for 
measuring distances between photos captured in the same weather condition or in 
different weather conditions. Particularly, we randomly select pairs of sunny photos to 

form the training pool . For each pair in , if the two photos  
and  belong to the same landmark, the indicator  is set as 0, and set as 1 otherwise. 
Initial weighted distances between selected pairs, as defined in eqn. (1), and the asso-
ciated indicators, are treated as the training data, and the updated procedure described 
in eqn. (5) is used to adjust weightings specifically for measuring distance between 

sunny photos. We denote the adjusted weightings as . Similar-

ly, we randomly select pairs of cloudy photos to form the set , 

and determine the adjusted weightings . To appropriately 
measure distance between two photos that were captured in different weather condi-
tions, we also randomly select  photo pairs, where for each pair one photo is sunny 
and another is cloudy. Based on the corresponding initial weighted distances and as-

sociated indicators, the adjusted weightings  are determined.  



 

Fig. 3. Distributions of integrated distances before and after weighting adjustment. From left to 
right: distributions of sunny vs. sunny photos; distributions of cloudy vs. cloudy photos; distri-

butions of sunny vs. cloudy photos.  

Because the captured time and geographical information are available for each 
photo in our database, we can use this information to obtain weather type through the 
API provided by the Weather Underground website1. Overall, given a pair of photos 
(one may be query, and another may be from the landmark database), we first select 
appropriate weights from , , or , according to their weather types, and 
then calculate the weighted distance between them as the foundation for landmark 
classification or other applications.  

4.2 Distributions of Distances 

Fig. 2 shows that integrated distance distributions are similar no matter photos in the 
same landmark or in different landmarks are compared. Through the proposed ad-
justment, we verify that through the adjusted weightings distances between photos 
can be more appropriately captured.  

Fig. 3 shows distributions of integrated distances between (a) sunny photos, (b) 
cloudy photos, and (c) one sunny photo and one cloudy photo, in the same landmark 
(blue curves) or in different landmarks (red curves). From all these three subfigures, 
we see that before weighting adjustment (solid curves), distance distributions between 
photos in the same or different landmarks are similar. After adjustment, distance dis-
tributions coming from photos at the same landmark move apart from that for differ-
ent landmarks.  

To quantitatively show the effect of weighting adjustment, we calculate the sym-
metric KL divergence between distance distributions respectively derived for same 
landmark and different landmarks. Table 2 shows detailed information. We can quan-
titatively observe that the KL divergence between distance distributions largely in-
creases after weighting adjustment.  

Fig. 4 shows absolute values of learnt weights for the three different schemes. We 
especially notice the relative values of these weights, and observe that BoW and CNN 
features are consistently more important than the other two features. This conforms to 
recent studies on image classification, and also shows that the proposed method can 
effectively learn weights.  

                                                           
1  Weather Underground, http://www.wunderground.com/ 
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Table 2. KL divergences of distance distributions.  

Type Before adjustment After adjustment 
Sunny-Sunny  0.0830 0.4034 
Cloudy-Cloudy 0.2251 0.5134 
Sunny-Cloudy 0.0383 0.3717 

 

 

Fig. 4. Absolute weights of different features. Left to right: weights for sunny vs. sunny photos; 
weights for cloudy vs. cloudy photos; weights for sunny vs. cloudy photos.  

 

Fig. 5. Accuracy of landmark classification with varied nearest neighbor settings.  

4.3 Performance of Landmark Classification 

We adopt a simple classification method, i.e., K-nearest neighbor classifier, to more 
clearly show the effectiveness of weighting adjustment in landmark classification. 
Given a query photo, we find its K-nearest neighbors based on integrated distance, 
and classify the query photo as one of the landmark according to majority voting. We 
compare classification performance obtained based on initial integrated distances 
(eqn. (1)) with that obtained based on adjusted integrated distances (according to 
weather types). Fig. 5 shows accuracy of landmark classification with different set-
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tings of the number of nearest neighbors (K). From this figure we clearly see the sig-
nificant improvement given by appropriately adjusting weightings.  

5 Conclusion 

We have presented a weather-adaptive distance metric that is verified to yield better 
landmark photo classification based on a pilot database. By considering multiple fea-
tures, distance between photos is usually calculated by combining individual distance 
derived from each feature. In this work we advocate that, by further considering 
weather type of the two compared photos, weightings that can better combine indi-
vidual features can be learnt. We formulate it as an optimization problem and find the 
best weighting setting by a gradient algorithm. The reported evaluation verifies that 
the learnt weightings yield more effective distances between photos and thus improve 
performance of landmark photo classification increases with adjusted weightings. In 
the future, a larger-scale evaluation will be conducted, and more elegant methods to 
combine individual features and the corresponding learning problems will be studied.  

Acknowledgements 

The work was partially supported by the Ministry of Science and Technology in Tai-
wan under the grant MOST103-2221-E-194-027-MY3. 

Reference 

1. C. Lu, D. Lin, J. Jia, and C.-K. Tang, “Two-Class Weather Classification,” Proceedings of 
IEEE Conference on Computer Vision and Pattern Recognition, pp. 3718-3725, 2014.  

2. B.S. Manjunath and W.Y. Ma, “Texture Features for Browsing and Retrieval of Image Da-
ta,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 18, no. 8, pp. 
837-842, 1996.  

3. E.K.P. Chong and S.H. Zak, An Introduction to Optimization, 4th edition, Wiley, 2013.  
4. K. He, J. Sun, and X. Tang. “Single Image Haze Removal using Dark Channel Prior,” Pro-

ceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 1956-
1963, 2009.  

5. Q. Fang, J. Sang, and C. Xu, “Discovering Geo-Informative Attributes for Location 
Recognition and Exploration,” ACM Transactions on Multimedia Computing, Communi-
cations, and Applications, vol. 11, no. 1s, Article 19, 2014.  

6. J. Hays and A.A. Efros, “IM2GPS: Estimating Geographic Information from a Single Im-
age,” Proceedings of IEEE Computer Vision and Pattern Recognition Conference, 2008.  

7. T.-Y. Lin, S. Belongie, and J. Hays, “Cross-View Image Geolocalization,” Proceedings of 
IEEE Computer Vision and Pattern Recognition Conference, pp. 891-898, 2013.  

8. X. Li, M. Larson, and A. Hanjalic, “Global-Scale Location Prediction for Social Images 
Using Geo-Visual Ranking,” IEEE Transactions on Multimedia, vol. 17, no. 5, pp. 674-
686, 2015.  



9. T. Chen, K.-H. Yap, and D. Zhang, “Discriminative Soft Bag-of-Visual Phrase for Mobile 
Landmark Recognition,” IEEE Transactions on Multimedia, vol. 16, no. 3, pp. 612-622, 
2014.  

10. I.-C. Shen and W.-H. Cheng, “Gestalt Rule Feature Points,” IEEE Transactions on Multi-
media, vol. 17, no. 4, pp. 526-537, 2015.  

11. Y. Li, D.J. Crandall, and D.P. Huttenlocher, “Landmark Classification in Large-Scale Im-
age Collections,” Proceedings of IEEE International Conference on Computer Vision, pp. 
1957-1964, 2009.  

12. W. Min, C. Xu, M. Xu, X. Xiao, and B.-K. Bao, “Mobile Landmark Search with 3D Mod-
els,” IEEE Transactions on Multimedia, vol. 16, no. 3, pp. 623-636, 2014.  

13. X. Li, C. Wu, C. Zach, S. Lazebnik, and J.-M. Frahm, “Modeling and Recognition of 
Landmark Image Collections Using Iconic Scene Images,” International Journal of Com-
puter Vision, vol. 95, no. 3, pp. 213-239, 2011.  

14. Y.-T. Zheng, M. Zhao, Y. Song, H. Adam, U. Buddemeier, A. Bissacco, F. Brucher, T.-S. 
Chua, and H. Neven, “Tour the World: Building a Web-Scale Landmark Recognition En-
gine,” Proceedings of IEEE Computer Vision and Pattern Recognition Conference, pp. 
1085-1092, 2009.  

15. A. Krizhevsky, I. Sutskever, and G.E. Hinton, “ImageNet Classification with Deep Convo-
lutional Neural Network,” Proceedings of Advances in Neural Information Processing Sys-
tem, 2012.  

16. B. Thomee, E.M. Bakker, and M.S. Lew, “TOP-SURF: A Visual Words Toolkit,” Pro-
ceedings of ACM International Conference on Image and Video Retrieval, pp. 1473-1476, 
2010.  

17. A. Vedaldi and K. Lenc, “MatConvNet – Convolutional Neural Networks for Matlab,” 
arXiv:1412.4564, 2014. 
 


