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ABSTRACT 

To protect privacy of individuals or companies that may be leaked in street view images, we present a 

system to automatically detect and remove cars as if they had never been there. Although street view 

service providers have made efforts on blurring human faces and license plates, we argue that remaining 

features, such as license numbers and phone numbers printed on car bodies, could cause privacy leak. 

Given a sequence of street view images, this system first detects cars by the deformable part model, and 

then determines foreground/background seeds for the GrabCut image segmentation module in order to 

facilitate automatic car segmentation. After removing cars, an exemplar-based inpainting method is 

developed with special designs on filling priority determination and road structure propagation. 

Hierarchical texture propagation and randomized texture propagation are integrated to implement the 

inpainting process, so that aesthetically pleasing inpainting results as well as privacy protection can be 

accomplished.  
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1. INTRODUCTION 

Map services have been widely utilized in many ways, such as trip planning, shop finding, and automatic 

navigation. Recently, several map service providers, such as Google Maps and Bing Maps, have 

introduced a new service: street view or streetside exploration. As a part of map services, street view 

images provide more detailed information than traditional map. Based on street view images, location-

based services can be provided with highly interactive interfaces, and users can enjoy traveling on streets 

around the world by just clicking. However, as we can see, vehicles appearing in street view images not 

only affect usage of this service, but also leak privacy of owners of these vehicles. Although there have 
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been studies for blurring license plates [1][2], they are clearly not enough to protect privacy of the 

objects/persons that were unintentionally captured by the camera car. As shown in Figure 1, on vehicles 

detailed information other than the license plates would still leak privacy information, such as the 

company’s name or phone numbers printed on car bodies. Sometimes people can still recognize 

motorbike riders even only the shape of body and the motorbike are shown. Although Google allows 

users to request further blurring, it is impossible for users to review all street view images to protect their 

own privacy. Therefore, the goal of this work is to automatically detect and remove the whole cars in 

street view images, as shown in Figure 2.  

This work can be viewed to deal with a problem that is in-between of image inpainting and video 

inpainting. In image inpainting, only information within an image can be exploited to reconstruct the 

missing region when some objects are removed. In video inpainting, strong consistency between densely 

sampled frames can be exploited to interpolate the missing regions. In our problem, “sparsely sampled 

images” have relatively weaker consistency, and thus existing video inpainting techniques cannot be 

directly employed. 

 

Figure 1. Detailed information on vehicles would leak privacy.  

 

 

Figure 2. Two sample pairs of street view images and the corresponding inpainting results.  
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One may propose to mosaic or blur vehicle regions to protect privacy, just like blurring license plates. 

To verify this, we conducted a pilot study where both mosaic results and inpainting results were 

presented to thirteen users, who were asked to give comments about how satisfactory these results are. 

The subjective evaluation results show that eleven of the thirteen users prefer inpainting results for 

privacy protection. Although both mosaic and inpainting are able to protect privacy, inpainting results 

are more aesthetically pleasing and acceptable. In fact, inpainting and mosaic techniques are not 

conflicting to protect privacy in street view images. For the cases our system doesn’t work well, e.g., 

images with complex road conditions, mosaic effects can be employed as an alternative to protect 

privacy.  

In this paper, we focus on analyzing street view images, automatically detecting cars and removing 

them, and filling missing regions with inpainting. This system includes the following key components:  

� Automatic car detection: Street view images are very complex due to significant variations of lighting 

conditions, viewing angles, and deformation. All these factors cause severe noises and make 

automatic car detection quite challenging. We employ the cascade deformable part model [3] to detect 

cars, and apply the Grabcut algorithm [4] to segment car regions. In contrast to the conventional 

Grabcut algorithm where foreground seeds and background seeds are assigned manually, we devise 

an automatic seed finding approach based on results of road detection and car detection.  

� Road structure propagation: Images along the same street were captured consecutively and often 

contain spatial continuity, which can then be used to reconstruct the missing region. In the proposed 

system, road structure mainly coming from high-gradient spatial continuity, e.g., lane lines and crash 

barrier, is propagated to neighboring images ahead of the intra-image inpainting process. If road 

structure can be extracted and propagated appropriately, the missing regions would be well bounded 

by high-gradient structure, and thus the problem of inpainting is eased.  

� Hierarchical and randomized inpainting: The order of inpainting is determined by considering 

gradient information, and techniques of hierarchical texture propagation [5] and randomized texture 

propagation [6] are combined in order to obtain appealing inpainting results both for smooth regions 

and high-gradient regions.  

 

The remainder of this paper is organized as follows. Literature survey is given in Section 2, and 

necessary preprocesses are described in Section 3. In Section 4, details of automatic car detection and 

segmentation are provided. The road structure propagation process especially designed for street view 
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images is given in Section 5. In Section 6, we describe the idea of exemplar-based inpainting, how we 

determine the filling priority, and how to develop a hybrid method to make results more pleasing. 

Performance evaluation and limitations of the current work will be presented in Section 7, followed by 

conclusion and future work in Section 8.  

 

2. RELATED WORKS 

2.1 Applications on Street View Images 

Street view services such as Google Street View [7] or Bing Streetside have emerged as a novel 

location-related application providing street-level images of entire cities. Many interesting applications 

can thus be developed for navigation purposes. Yushimoto et al. [8] developed a 2D/3D navigation 

system where users issue gesture commands to browse Google Map and Google Street View. From 

Google Street View, Guy and Truong [9] collected rich intersection information and developed a system 

called CrossingGuard to provide details of intersection geometry for visual impaired pedestrians. Koef et 

al. [10] developed a novel interface that seamlessly interchanges browsing between bubbles and multi-

perspective panoramas so that a targeted location can be efficiently identified.   

Privacy issues in street view images have attracted much attention. Especially in Europe, many 

countries claimed that Google breaches one or more EU laws. Google responded to this by blurring faces 

and license plates [1]. Flores and Belongie [11] argued that articles of clothing, body shape and height, 

may still leak privacy, and proposed a pedestrian removal method when multiple images capturing the 

same pedestrian and redundant background are available.  

In addition to pedestrians, we argue that vehicles or bicycles/motorbikes riders would also leak 

privacy information, as shown in Figure 1. Based on the street view images capturing the sidewalk and 

pedestrians with façade of building as background, the work in [11] utilized rich feature points in the 

background and estimated the geometric relationship between two neighboring images by a planar 

perspective transformation. In our case, the processed street view images largely contain smooth road 

regions, with significant scene changes on the roadside (see Figure 7 for example), and thus the 

relationship between neighboring images cannot be well described by a planar perspective 

transformation. Moreover, images fed to the system in [11] were manually filtered so that image pairs 

containing the same pedestrians were known in advance. In our case, given a sequence of street view 

images where vehicles may appear in arbitrary numbers of images, we aim to automatically detect and 

remove vehicles on the road, and to reconstruct images with inpainting techniques.  
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2.2 Inpainting 

Inpainting techniques can be roughly categorized into two groups: PDE-based (partial derivative 

equation) schemes [12] and exemplar-based schemes [13]. The PDE-based scheme propagates texture in 

a given direction and often introduces blur effects due to the adopted diffusion method. On the other 

hand, the exemplar-based scheme copies texture from neighboring image patches and is often able to 

derive more structured content. In our case, we need to smoothly fill the missing regions located on the 

road, and sharply fill missing regions located on lane lines or crash barriers with structure information. 

The proposed system extracts road structure from spatially adjacent images, and then fills missing 

regions suspected to be highly structured with the road structure coming from neighboring images. To 

reconstruct the left missing regions, we propose a directional inpainting method modified from [5], and 

team it up with a randomized exemplar-based method, i.e., PatchMatch [6]. The inpainting results thus 

have sharp structure in line-like regions and have smooth texture in the road region.  

 

2.3 Object Detection and Recognition 

The targeted objects to be removed are vehicles, and thus related works on object detection and 

recognition, especially for vehicles, are briefly surveyed here. Mainly taking car objects as examples, 

Agarwal et al. [22] proposed a canonical part-based representation and learned a classifier to detect side-

view cars in varying conditions consisting of cluttered background and mild occlusion. Hota et al. [23] 

adopted the Adaboost-based classifier with Haar-like features followed by support vector machine (SVM) 

based classifiers with histogram of oriented gradient (HOG) to detect side-view and rear-view cars. 

Inspired by that cars are artificial objects with consistent characteristics in structure, Zheng and Liang 

[24] proposed image strip features to facilitate efficient detection of multi-view cars. They also proposed 

a complexity-aware criterion in the boosting scheme, in order to use cheaper features in earlier levels to 

make more speedup. Kuo and Nevatia [25] constructed lower dimensional embedding of cars in various 

views, and learned a cascaded tree classifier to achieve robust multi-view car detection.  

In addition to the works mentioned above, tremendous studies have been proposed to detect and 

recognize objects in images. Among them, deformable part models (DPM) [15] achieve state-of-the-art 

results in the PASCAL object detection challenges1, and thus we adopt this approach to detect cars. In 

DPM, an object class is represented by mixtures of multiscale deformable part models, which consist of 

                                                                 
1 http://pascallin.ecs.soton.ac.uk/challenges/VOC/ 
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a coarse root filter and several higher resolution part filters. A spatial model is also constructed to 

describe how each part is located relatively to the root. Taking the rear view of a car as an example, we 

can describe a car by parts consisting of tires, taillights, and windscreen. Histograms of oriented 

gradients (HOG) [16] are used to describe the whole object and its parts, respectively. The root filter and 

part filters are trained based on latent SVMs. At the detection stage, given a window centered by a point, 

responses of the root filter and part filters are summed up and fed to the SVM to determine the 

occurrence of an object.  

 

2.4 Image Segmentation 

Image segmentation has been one of the most challenging problems in computer vision and image 

processing society for decades. Fully automatic image segmentation is a holy grail of image 

understanding researchers and keeps attracting researcher’s efforts until now. Although elegant methods 

like normalized cuts [26] and graphs [27] were developed, performance of fully automatic segmentation 

methods is still limited and is much inferior to what humans can do. Therefore, semi-automatic image 

segmentation methods, i.e., limited user intervention is needed to specify foreground and background, 

become popular in recent years. In the Graph Cut framework, the user specifies certain pixels that 

absolutely have to be part of the foreground. Relationships between pixels are described as a graph [14], 

which is then segmented by the graph cut algorithm to discriminate foreground from background. 

Modified from the graph cut approach, the GrabCut algorithm [4] is constructed based on an energy 

function that jointly considers a data term indicating how likely color of pixels matches with the 

foreground model and the background model, and a smoothness term indicating consistency between 

neighboring pixels. Users can guide the GrabCut algorithm by simply drawing a rectangle to roughly 

discriminate foreground from background. Also based on the graph cut framework, the lazy snapping 

system [17] allows users to specify foreground seeds and background seeds by strokes. In our work, we 

rely on the GrabCut algorithm to segment car objects from the road region, with a design of automatic 

seed finding.  

 

3. PREPROCESSING 

3.1 Road Detection 

Two factors are considered in our road detection module. First, the road region occupies most areas of 

bottom halves of images, and thus the dominant color in the bottom half is an important clue for 
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detecting road. Second, the road region in images keeps changing according to terrain, street layout, and 

lanes. Therefore, we need an adaptive method to detect the road region.  

Given consecutive street view images , a sliding window with size of three images is 

applied to scan the sequence. To detect the road region of the th image , the RGB color histograms of 

the bottom halves of , , and  are extracted and accumulated, denoted by . Based on , an 

iterative region growing algorithm is proposed to find the road region, as illustrated in Figure 3. From  

the color with the highest peak is first determined, denoted by  (step 2). The set of pixels  in the 

bottom half of  and with the color  is then identified (step 3) and is added to the targeted set . For 

each pixel  in , we find pixels  in ’s neighborhood. If pixels  are with similar color to  (denoted 

by ), they are added into the set  (step 5). If the area of the grown region  is not larger than a 

threshold, the growing procedure repeats again by starting from the pixels with the color corresponding 

to the second peak of . In this work, RGB histograms with each color component represented by eight 

bits are extracted for analysis. The neighborhood  is defined as the 8-connected pixels of the pixel . 

The threshold  is set as 20% of the area of the whole image.  

Figure 4(b) shows three intermediate results of region growing based on the pixels with the color 

corresponding to the highest peak. From these results we see that most of the road region can be detected, 

except for lane lines that are with distinct colors from the road. We find the minimum polygon covering 

the intermediate results to obtain final road detection results, as shown in Figure 4(c). Based on road 

detection results, we would adaptively construct an RGB histogram of the road in a spatial locality, 

which will be used in car segmentation and inpainting later.  

Algorithm: Road detection

Input: the color histogram
Output: the road region  
1. Set            ,          . 
2. Find the color      corresponding to the largest peak of       .
3. Find the set of pixels      in the bottom half of      and with 

color      .
4. Set                      . 
5. For each pixel            , find pixels     its neighborhood            , 

i.e.,                  .  if                , set 
6. If              , stop. 

Otherwise, for       , set the value of the bin of corresponding to     
as zero,                 , and go to step 2. 

 

Figure 3. The road detection algorithm.  
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Figure 4. (a) The original images; (b) Intermediate results of region growing based on the pixels with the 

color corresponding to the highest peak; (c) Final road detection results and line detection results in the 

road region.  

 

3.2 Line Detection 

Lane lines, which ought to be consistent in a small spatial locality, provide important cues to represent 

road structure. Following the standard line detection procedure, we apply Gaussian blur to the road 

region, and then transform the road region into the Hough space. Peaks in the Hough space are then 

selected, which correspond to prominent lines in the original image space. Making blurring in advance 

facilitates detecting prominent lines. Figure 4(c) illustrates prominent lines detected in the road region.  

 

4. CAR DETECTION AND SEGMENTATION 

4.1 Car Detection 

We rely on the framework of the deformable part model [15] to detect on-road cars. Because evaluating 

all configurations of the root filter and part filters for each sliding window is time consuming, the 

cascade DPM approach was proposed in [3], where the root filter and part filters are put in a cascade, 

and at the detection stage only the regions passing early evaluation are further evaluated. This early 

pruning scheme largely improves detection efficiency without sacrificing detection accuracy. In our 

work, we employ the cascade DPM to detect cars.  
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Figure 5 illustrates the car detection process. Cascade DPMs trained for specific vehicles, such as 

sedan, truck, and bus, can be adopted to detect all possible types of cars. Sliding windows in the 

representation of HOGs are extracted at various scales, and are then examined to tell whether cars appear 

inside these windows. Note that if a sliding window obviously contains no sedan, for example, it would 

be rejected by the cascade DPM for sedan at early stages to avoid unnecessary examination by later part 

filters. In our work, we found the cascade DPM for “car” constructed by the authors in [3] already 

achieves satisfactory detection performance. Hence, we do not train our vehicle-specific models and 

simply use the general “car” model provided by [3]. Figure 6(a) and Figure 6(h) show two sample results 

of car detection. More examples will be provided in the evaluation section.  

The cascade DPM gives bounding boxes of detected cars. To prevent the following inpainting process 

from too many noises, more accurate car regions are needed. Based on the detected bounding boxes, the 

GrabCut algorithm is then used to obtain fine segmentation.  

…

…
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windows
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Root 
filter

Part 
filter 1

Part 
filter 2

Part 
filter N

…

Cascade DPM for “truck”

Root 
filter

Part 
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Figure 5. Illustration of the car detection process.  

 

4.2 Car Segmentation 

We employ the GrabCut framework [4] to segment car objects from the road region. However, there are 

tremendous street view images, and even a small amount of user interaction needed is not feasible. We 

thus design an approach that initiates foreground/background seeds. With these seeds, color distributions 

of foreground and background are determined, and the GrabCut algorithm is adopted to segment cars. 

Foreground seeds are determined based on the bounding box of car detection. Thirty percent of pixels 

in the bounding box are sampled, according to a probability distribution defined by a two-dimensional 

Gaussian centered at the spatial centroid of the bounding box. According to the Gaussian distribution, 
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pixels nearer to the centroid would be sampled more. On the other hand, three issues are jointly 

considered to determine background seeds:  

� Thirty percent of pixels in the road region are randomly sampled as background seeds. These seeds 

are important for discriminating cars from the road because most foreground seeds are surrounded by 

the road.  

� Pixels on lines are selected as background seeds. Also surrounded by the road, lane lines have 

significantly different appearance to the road, and are easily misclassified as foreground if pixels on 

them are not especially indicated as background.  

� In addition to the car bounding boxes, the road region, and lines, ten percent of pixels in the 

remaining region are randomly sampled as background seeds.  

 

Figure 6 includes two samples showing foreground and background seeds and segmentation results of 

the GrabCut algorithm. The blue dots in Figure 6(b)(i) illustrate foreground seeds. The red dots in Figure 

6(c)(j) and Figure 6(d)(k) illustrate background seeds sampled from the road and lines, respectively. 

Note that for clear illustration only parts of seeds are illustrated in these figures. Figure 6(e)(l) illustrate 

all foreground seeds and background seeds. The initial segmentation results in Figure 6(f)(m) contain 

some false detection, which can be eliminated by morphological operations including erosion and 

dilation. Figure 6(g)(n) show final results. Sometimes, false detection regions still remain, like the case 

shown in Figure 6(g). This is not a serious problem because even if the region is erroneously removed 

from this image, we would fill it with pixels on the road later by inpainting techniques.  

We should notice that automatic segmentation is very important for tremendous amount of street view 

images. With the automatic process, we can trace a route on the map and remove all cars in street view 

images along this route. Seeing Figure 6(a), when there are multiple cars in an image, users need to 

define foreground rectangles many times, and segment one car a time by the conventional GrabCut tool. 

With the proposed process, this system automatically defines foreground seeds and background seeds, 

and multiple cars can be detected and segmented simultaneously. 
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(a)

(b) (c) (d)

(e) (f) (g)

(i) (j) (k)

(l) (m) (n)

(h)

 

Figure 6. Sample results of car detection and GrabCut-based segmentation. (a)(h) The original images 

and car bounding boxes. (b)(i) Foreground seeds on cars (blue circles). (c)(j) Background seeds on the 

road (red crosses). (d)(k) Background seeds on lines. (e)(l) All automatically determined seeds. (f)(m) 

Segmentation results. (g)(n) Refined segmentation results after morphological operations.  

 

5. ROAD STRUCTURE PROPAGATION 

From the classic work [13] to the most recent state of the art [28], missing regions with geometric 

structure are generally given higher priority to be filled first. When filling the remaining regions, the 

inpainting process is then guided by the “already” filled regions to achieve promising results. We also 

follow this thought in this work, but in addition to existing regions within the targeted image, 

information from spatially neighboring street view images can also be utilized in inpainting highly 

structured regions. In this section, we consider information across images to fill highly structured regions. 
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In Section 6, information within an image is considered in determining filling priority, as done by many 

previous works.  

In street view images, the most important (consistent) geometric structure across images is road 

structure, and thus we aim to fill such regions first. Important road structures mainly consist of land lines 

and boundaries between the road and the sidewalk, which are often represented as prominent straight 

lines. The importance of identifying and reconstructing road structure is at least twofold. First, humans 

are sensitive to reconstruction error on straight lines. Using the designed road structure propagation 

method can more accurately reconstruct line structure. Second, the reconstructed line structure could be 

an important clue to guide the calculation of filling priority described in Sec. 6.1.  

Motivated by the work [18] that collects statistics of patch offsets between images, we design our 

road structure propagation process as follows. Given five spatially consecutive images 

, where prominent lines in each image have been detected and cars have been 

detected and removed, we would like to construct important road structure in the missing region of . 

Each image is first divided into  blocks. For every two consecutive images, say  and , we 

collect horizontal offset information of prominent lines block by block. Let  denote the set of 

pixels on prominent lines in the th block of , and  denote the set of pixels on prominent lines 

in the th block of . For each pixel , the pixel  that has the same vertical coordinate as , 

denoted by , is found. That is,  

.  (1) 

The horizontal offset is calculated as . If no pixel in  having the same vertical 

coordinate as , the offset  is undefined. The horizontal offset histogram  between the th blocks 

of  and  is then constructed after all pixels  are examined.  

According to the horizontal offset histogram, we fill missing regions in  in a block-by-block manner. 

Assume that the largest peak of  corresponds to the horizontal offset , a missing pixel  in the th 

block of  is filled with a known pixel  in the th block of  if  is on prominent lines, , and 

. For the missing pixel , if there is no known pixel  in  such that , or a 

known pixel  is not on prominent lines, appropriate pixels satisfying the criteria mentioned above are 

searched from , , and , according to largest peaks in , , and , respectively. All 

blocks in  that consist of missing regions are filled with road structure by the aforementioned process.  

Figure 7(a) shows five consecutively captured images, and Figure 7(b) shows corresponding results of 

car removal and line detection. Note that a lane line is often detected as two parallel thin lines. To fill 
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missing regions with complete lane lines or important line-like structure, we apply a dilation operation 

for each pixel on detected lines. Figure 7(c) shows the expanded lines in each image, where pixels on 

them are viewed as known pixels, and are used to fill missing regions with the consideration of offset 

histograms. Figure 7(d) shows the propagation results of . By considering road structure in spatially 

adjacent images, the line structure between road and sidewalk is constructed even though the missing 

region is extremely large.  

(a)

(b)

(c)

(d)

 

Figure 7. (a) Original images. (b) Images after removing cars and detecting lines (shown in red). (c) 

Lines with dilation. (d) The propagation result of the image .  

 

6. INPAINTING 

After filling the road structure by considering the inter-image relationship, we adopt inpainting 

techniques considering intra-image patches to fill the remaining regions. An inpainting process consists 

of two important stages: filling order determination and texture propagation. In filling order 

determination, we modify the priority definition in [5] by considering road characteristics and texture 

relationship between missing and existing areas. In the texture propagation process, two state-of-the-art 
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exemplar-based methods, i.e., [5] and [6], are integrated. If gradient magnitude of a missing patch is 

large, a hierarchical texture propagation method modified from [5] is adopted. Otherwise, the 

randomized propagation method defined in [6] is adopted. In both propagation processes, known 

exemplars are searched from a range guided by the direction of the prominent line that is spatially closest 

to the missing patch.  

 

6.1 Determining Filling Priority 

An image  may have several missing regions, denoted by . The source region is denoted 

by , and . A square image patch centered by the pixel  is denoted by . In [5], the filling order 

(priority) of the patch  on the boundary of a missing region  is defined by the product of two terms: 

. The first term indicates the confidence value, and is designed to favor patches having 

more known pixels:  

,  (2) 

where  is the area of . The confidence value is initialized as  and .  

The second term considers data characteristics around the patch  and is designed to favor image 

patches having high color gradients. A method modified from the approach proposed in [19] is described 

in the following. To eliminate the influence of noise, the image patch  is first smoothed by a Gaussion 

kernel. For a pixel in  and in the source region , its horizontal gradient magnitudes , , and  in R, 

G, and B color channels are calculated, respectively, and the overall horizontal gradient magnitude is 

calculated as . Similarly, the overall vertical gradient magnitude is calculated as 

. Each pixel is described by a vector , and the gradient magnitudes of the pixels 

in the  by  image patch  are then arranged as a  by  matrix . Eigen-decomposition is then applied 

to the matrix , and the first and the second largest eigenvalues  and  are found. The data term  is 

accordingly defined as:  

,  (3) 

where  is a positive value and . When the image patch has larger gradient, i.e., , the data 

term is emphasized, and the filling priority raises. The term  is a very small positive number to avoid a 

zero denominator. In [5],  is set as 0.001. The size of an image patch is .  

We modify the data term  mentioned above to meet the conditions of street view images. In street 

view images the road region is visually smooth, i.e., low spatial frequency area. In contrast to 
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conventional inpainting techniques that usually work well for high-frequency regions, small amounts of 

inpainting errors in the road region would be perceptually significant. Therefore, we especially modify 

the data term by considering two factors: the color gradient around the boundary pixels, and the spatial 

relationship between existing and missing area around the boundary pixels.  

The first factor is defined as  

.  (4) 

When the existing area of  is smooth, i.e., , this term is larger, and the filling priority raises.  

The second factor comes from implicit texture of the road. Although the road region is generally 

smooth, there is often implicit directional texture due to long-term extrusion by cars. We jointly consider 

the spatial relationship between missing and existing areas, and the directional texture of the road. First, 

the spatial centroid  of the missing area in , and the spatial centroid  of the existing area in , are 

calculated. The vector from  to  is then determined and normalized, and is denoted as . Assume 

that the direction of the prominent line (based on the results of Sec. 3.2) closest to the patch  is  

(normalized to a unit vector), the consistency between  and  is measured by  

.  (5) 

Figure 8 shows an illustration of determining filling priority. Let us consider three boundary patches 

, , and . The black dash lines passing through these patches illustrate the vector , and the red 

dash lines represent the spatial relationship between missing areas and existing areas. From this figure 

we can see that the spatial relationship in  most coheres with the closest prominent line, and thus 

 is the largest. From this perspective,  is preferred to be filled first.  

Finally, the modified data term  is defined as , and the overall filling priority for 

the patch  is determined by . Patches on boundaries of missing regions are filled in 

descending order of the priority. Filling priorities will be recomputed after all the patches on boundaries 

of missing regions have been filled. That is, a missing region is progressively filled from the border to 

the center. 
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Figure 8. Illustration of determining the filling priority (described in Sec. 6.1), and the search window 

along the direction of the prominent line (described in Sec. 6.2). 

 

6.2 Hierarchical Texture Propagation 

In [5], the best image patch to be used to fill the boundary patch  is determined by  

,  (6) 

where  denotes the sum of squared differences between a candidate patch  and the already 

filled or known pixels of . In [5], the search window  is entirely the source region, i.e., . The 

second term gives higher costs for image patches with larger color gradient (i.e., larger difference 

between  and ). On smooth areas, this term tends to 0. The function  is designed as  

,  (7) 

where  is the vector from the center of  to the center of . The value  is set as 0.001. If the vector 

 is not collinear to , this term gives a penalty attributed to . When two vectors are 

collinear, the function  tends to one.  

For the same reason to design eqn. (5), in order to favor candidate image patches that are relatively 

located at the direction similar to the closest prominent line, we limit the search window  in eqn. (6) as 

follows. The closest prominent line usually comes from lane lines or crash barrier, and coheres with 

implicit trace on the road. For a boundary patch  centered at , if the gradient of its closest 

prominent line is , we first find a point  as . The search window  for finding 

the best patch is defined as  

 (8) 
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where  and  denote the  and  coordinates of the point , respectively. By this definition, the 

 square region centered at  is the search window. The image patch centered at each  in  is a 

candidate patch, and is compared with  according to eqn. (6). Figure 8 illustrates the search window 

for , along the direction of the closest prominent line. In this work,  is set as 60 pixels.  

To further improve robustness, we enhance the search process with the idea of hierarchical 

decomposition in motion estimation. Two levels of searching are conducted. In the first-level (coarse-

level) search, the image is downscaled twice in both horizontal and vertical dimensions. For a boundary 

patch, the corresponding search window is determined by eqn. (8), and the search process defined in eqn. 

(6) is used to find the best patch. Assume that the best patch found in the first-level search is centered at 

. In the second-level (fine-level) search, we take the point  as the role of  in eqn. (8) and define a 

new search window in the image at the original scale. The second-level search is then conducted based 

on the original image and the search window centered by  to further refine the choice of best patch.  

Finally, the best ten patches from the second-level search are all considered to fill the missing pixels. 

The value of a missing pixel  in  is determined by  

,  (9) 

where  is the similarity between the patch  and the th best patch  [12].  in  is the pixel located at 

the same relative position as  in .  

Figure 9 shows six intermediate results sampled from an inpainting process. Focusing on the missing 

region on the left (the solid-line yellow ellipse), from Figure 9(a) to Figure 9(f) the filling order is mainly 

from top-right to bottom-left or vice versa. For the missing regions on the right (the dash-line blue 

ellipse), which are actually parts of lane lines, the filling order is mainly from top-left to bottom-right or 

vice versa. This example clearly shows the effect brought by the design of eqn. (5).  
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(a) (b) (c)

(d) (e) (f)
 

Figure 9. Six intermediate inpainting results sampled from an inpainting process.  

 

6.3 Randomized Texture Propagation 

The aforementioned texture propagation method achieves great performance on reconstructing lane lines 

and boundaries between the road and sidewalk/crash barrier. However, size of the search window 

defined in eqn. (8) may be content dependent. Another flaw is that inpainting errors would be 

significantly propagated. For example, if a missing patch  that should be purely smooth is 

reconstructed with a smooth patch containing small amounts of high-gradient pixels, the missing patch 

 next to  would inherit the error when  is reconstructed. This type of error gives little visual 

inconsistency in high-frequency regions, but gives rise to significant visual annoyance in smooth regions 

like road. Therefore, to generate pleasing inpainting results, we reconstruct missing patches with high 

gradient by the hierarchical texture propagation, and reconstruct missing patches with low gradient by 

the randomized texture propagation described as follows.  

To fill a missing patch  centered at , the PatchMatch method [6] randomly finds a patch  

centered by  from the whole known region or the manually defined region. To evaluate the degree 

how  is suitable to replace , ’s neighboring patch  centered by , and  centered by 

, are also checked. The idea is that, if  is a good choice to reconstruct , then the distance 

between  and , and the distance between  and , should both be small. Based on , , and , 

the best patch to reconstruct  is determined by , where  
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denotes the patch distance between  and . Assume that the best choice is , a choice better than  

is to be found in the next iteration. Start from , a few patches within some circular range are 

randomly sampled, and the same process is applied to find a better choice. In most cases, this iterative 

procedure quickly converges after four or five iterations [6].  

In our work, information of the closest prominent line is used as the prior information for 

randomization. Suppose that a missing patch  is located at , and the gradient of its closest 

prominent line is . Rather than randomly sampling from the whole known region, only patches 

centered by pixels on the extended line that pass through  and has gradient  are considered 

to be the candidate patch . Details of the PatchMatch method can be found in [6].  

 

7. EVALUATION 

7.1 Car Segmentation 

We manually captured Google Street View images along the same street from eight different places to 

form eight different datasets. Each dataset includes thirty spatially consecutive images, and different 

datasets have significantly different road situations. Detailed information is shown in Table 1. The blue-

shaded regions in Figure 10 are car detection results. Basically, most parts of cars are included if the 

cascade DPM successfully detects cars. However, due to significant variations of camera views and car 

occlusion, the cascade DPM often fails to detect all cars in images. The cars that are very close to or very 

far from the camera are usually not detected, as illustrated by the dash circles in Figure 10. Fortunately, 

these cars cause less privacy leak, and thus for the purpose of privacy protection, these cases are 

acceptable.  

Table 1. Detailed information of the evaluation dataset.  

ID Type Loc. Properties 

1 Highway Asia Traffic marks, crash barrier, fewer cars 

2 Highway Asia Traffic marks, crash barrier, fewer cars 

3 Highway USA Traffic marks, crash barrier, more cars 

4 Residential area USA Trees, buildings, parking cars, tree shadow 

5 Residential area USA Tree, buildings, parking cars, narrow lanes 

6 Tunnel Asia Dusky light 

7 Inside city Asia Complex traffic marks, buildings, intersection of roads 

8 Inside city Asia Complex traffic marks, buildings, trees 
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(a) (b) (c) (d)

(e) (f) (g) (h)
 

Figure 10. Sample car detection results. Sample results for Dataset 1 to Dataset 8 are shown from left to 

right, and top to down.  

 

We quantitatively evaluate car detection and car segmentation in the following. Car regions in each 

image are first manually defined. A car detection result is claimed to be correct if more than 80% of the 

detected region overlap with the ground truth. For a dataset, the precision rate of car detection is thus 

calculated as the ratio of the number of correctly detected regions to the number of all detected regions. 

The recall rate is the ratio of the number of correctly detected regions to the number of regions that are 

truly cars. By jointly considering precision and recall, the F-measure is calculated as 

. Table 2 shows performance of car detection for each dataset. The trend of 

content-dependent performance is not surprising. Performance for images in the tunnel (the 6th dataset) 

is very poor due to dusky light. Overall, the cascade DPM has higher precision than recall. In street view 

images, car sizes and views change significantly, and it is often that only parts of cars are shown. This 

gives rise to great challenges in car detection. The average F-measure is 0.38, which is similar to the 

state-of-the-art car detection performance in the PASCAL VOC challenge.  

To evaluate car segmentation, we inspect pixels on cars, and manually define the ground truth. The 

precision rate is the ratio of the number of correctly detected pixels to the number of all detected pixels. 

The recall rate is the ratio of the number of correctly detected pixels to the number of pixels that are truly 

on cars. Table 3 shows the car segmentation performance for each dataset. Limited by the results of car 
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detection, performance of car segmentation is just fair. From these results, we see that highly accurate 

automatic car detection in street view images is still not achievable by the state of the art. To fairly 

reflect performance of inpainting, the inpainting process starts from manually removed car regions in the 

following evaluation.  

 

Table 2. Performance of car detection in terms of precision, recall, and F-measure.  

 1 2 3 4 5 6 7 8 Avg. 

Precision 0.73 0.65 0.88 0.84 0.70 0.07 0.82 0.91 0.70 

Recall 0.36 0.15 0.32 0.36 0.28 0.07 0.45 0.12 0.26 

F-measure 0.48 0.25 0.47 0.51 0.40 0.07 0.58 0.30 0.38 

 

Table 3. Performance of car segmentation in terms of precision, recall, and F-measure.  

 1 2 3 4 5 6 7 8 Avg. 

Precision 0.63 0.46 0.60 0.64 0.52 0.10 0.57 0.53 0.51 

Recall 0.63 0.33 0.48 0.59 0.41 0.13 0.57 0.08 0.40 

F-measure 0.63 0.38 0.53 0.61 0.46 0.11 0.57 0.14 0.43 

 

7.2 Results of Inpainting 

To demonstrate performance of inpainting, we compare our proposed method with [5] and [6], which are 

the base methods we modify from, with [20], which is a typical exemplar-based inpainting method, and 

with [21], which is embedded in the OpenCV library and is especially computationally cheap. Figure 11 

shows sample results of each dataset. The regions where we can clearly notice the difference between 

methods are marked as yellow dash circles. Generally, the method in [21] usually gives rise to large-

scale blurred effects. This annoyance becomes more apparent when structured objects, such as central 

reservation and crash barrier, are reconstructed. The exemplar-based inpainting method in [20] obtains 

satisfactory performance for Datasets 2, 3, 6, and 7. However, this method may give rise to unnatural 

traffic marks because it does not specially consider line structure of road. Comparing with two base 

methods [5] and [6], our method clearly has superiority on reconstructing road structure, seeing 

especially from the results of Datasets 1, 4, and 8. Comparing sample results of [5] with [6] in the first 

dataset, we see that [5] works better in reconstructing lane lines, and [6] works better in reconstructing 

smooth regions. With the designed filling priority that considers road structure, and the combination of 
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hierarchical texture propagation [5] and randomized texture propagation [6], our method obtains much 

better inpainting performance in the applications of street view images.   

The sample result for the fifth dataset reveals one of the limitations of our method, i.e., the 

reconstructed edge between the road and the sidewalk is unnatural (the left-bottom region). Because the 

proposed method reconstructs a missing region with existing patches from spatially neighboring images, 

the inpainting results would be unnatural if views in neighboring images change significantly.  

 

7.3 User Study 

We conduct a user study to verify usability of the proposed system. Twenty-seven subjects, all heavy 

computer users, were asked to evaluate inpainting results obtained by three systems: our method, the 

hierarchical texture propagation method [5], and the randomized texture propagation method [6]. Each 

subject was asked to evaluate in totally twenty runs, and thus totally 540 sets of inpainting results were 

compared. At each run, a street view image was randomly selected from the eight datasets, and three 

corresponding inpainting results were randomly juxtaposed so that subjects can easily compare and rank 

the three inpainting results into the best, the worst, and in-between.  

Figure 12 shows the numbers of times an inpainting method is evaluated as the best, in-between, and 

the worst. From this figure, it is clear that our method and PatchMatch [6] generally obtain better results. 

Comparing ours with [6], 73.7% of the 540 evaluated images were ranked as the best or in-between for 

our method, and 64.6% were ranked so for PatchMatch [6].  
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(a) (b) (c) (d) (e) (f)
 

Figure 11. Sample inpainting results of the eight datasets, from top to down. (a) Original images; (b) 

Results of the proposed method; (c) Results of Le Meur [5]; (d) Results of PatchMatch [6]; (e)Results of 

Komodakis [20]; (f)Results of Telea [21].  
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Figure 12. Subjective comparison between three inpainting methods.  

 

Another question was asked when a subject finished all twenty runs: do you think these inpainting 

results provide more privacy protection than the original street view images? Not surprisingly, most 

subjects agree. The only one subject who did not agree thought car bodies would not leak much privacy, 

but riders on motorbikes would. Not removing motorbike riders really is the limitation of our current 

work. 

Our method obtains more superiority over PatchMatch for Datasets 4 and 5. There are many parking 

cars at the roadside, and inpainting results of [5] and [6] are often unnatural. Thanks to propagating road 

structure from neighboring images, our method relatively gives better results. On the other hand, our 

method obtains less superiority over PatchMatch for Datasets 7 and 8. Discontinuous road structure 

diminishes the advantage of road structure propagation. 

 

7.4 Complexity Issues 

This system consists of the following major components: detecting cars by the cascade DPM, road 

detection and line detection, car segmentation by the GrabCut algorithm, road structure propagation, and 

hierarchical/randomized texture propagation (inpainting). Table 4 shows the average time needed by 

each component to process a street view image in eight datasets. Note that our program has not been 

optimized, so that we should pay more attention to the relative time complexity rather than the absolute 

execution time. From Table 4 we can clearly see that the computation bottleneck is inpainting, i.e., 

averagely sixty percentage of execution time is attributed to the inpainting process. Searching for 

appropriate patches (including patch searching and patch evaluation) for each missing patch takes much 

time. One possible direction to accelerate the inpainting process is to utilize parallel algorithms and 

hardware like GPU (graphics processing unit), so that many targeted patches can be evaluated in parallel. 
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Another direction is to relax the criterion to select an appropriate patch, making sort of sacrifice on the 

quality of inpainting results.  

 

Table 4. Average time (in seconds) needed by each component to process a street view image in eight 

datasets.  

ID Car detection Road 

detection 

Car 

segmentation 

Structure 

propagation 

Inpainting %Inpainting 

1 1.11 3.99 2.06 6.25 30.93 69.76% 

2 0.92 3.74 2.05 12.77 17.19 46.87% 

3 1.04 3.63 2.08 8.76 22.06 58.73% 

4 1.05 3.47 2.08 6.95 32.28 70.43% 

5 0.91 15.04 2.23 4.14 40.20 64.30% 

6 0.67 3.74 2.10 6.52 11.54 46.98% 

7 0.98 4.35 2.16 5.31 23.31 64.55% 

8 0.75 3.73 2.25 7.65 23.82 62.34% 

 

7.5 Limitation 

Because there are various road conditions and vehicle types in street view images of various viewing 

angles, the current system is not able to handle all possible cases. One of the most challenging cases is a 

downtown scene, where many cars move on the road or park at the roadside, and many buildings with 

various facades are located along the street. In Figure 13, we show four sample images captured at the 

same place but from different viewpoints2, and these samples’ processing results, as the auxiliary 

information to describe the limitations of this system.  

� Limitation of road detection. The main idea of the algorithm depicted in Figure 3 is to determine 

the most dominant colors in the bottom halves of images. For the roads different from the straight 

roads, e.g., “intersection of roads”, “streets in downtown”, “roads with wider middle lane”, and 

“non-straight roads”, this algorithm can still successfully work if the color of road is really 

dominant in the bottom halves of images. The “roads with thicker shadows” or “roads jammed with 

cars” would be the most harmful case. It is often that the shade of trees or buildings around the road 

                                                                 
2 “Front,” “Back,” “Left,” and “Right” mean street view images captured by the cameras facing forward, backward, leftward, and rightward, 

respectively.  
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largely covers the road region. The shade region would cause the dominant colors, and make our 

road detection algorithm fail. Figure 13(b) shows this challenging case where the bottom halves of 

the “Left” image and the “Right” image are more or less occupied by parking cars or buildings’ 

shade. Results of road detection are thus not promising in these cases.  

� Limitation of car detection. The cars that are very close to or very far from the camera are difficult 

to be detected. In addition, detecting cars on a jammed street is difficult, where preceding cars may 

be occluded by following cars. We found the general cascade DPM for “car” provided by [3] is able 

to detect cars with appropriate sizes in both frontal view and side view. Theoretically, we can 

construct a car model for each type of vehicle, like bus or concrete mixer lorry. However, we did 

not do this because there are relatively fewer such vehicles on the road, and using an existing 

general car model makes us more focus on the main tasks, i.e., car segmentation and inpainting. In 

the “Front” and “Back” images of Figure 13(c), cars parking at the roadside are often miss-detected 

because of occlusion. The motorcycles in the “Right” image are not detected because currently the 

motorcycle cascade DPM is not specially constructed. 

� Limitation of inpainting. Currently the inpainting process is mainly designed to handle street view 

images in frontal views. For side-view images where façade of building occupies most space or cars 

are very close to the camera, cars may still be detected and removed, but road structure cannot be 

easily defined and extracted, and consequently the inpainting process without road structure 

propagation often obtains worse results. To only show the influence of road structure propagation 

on the inpainting results, for the “Left” and “Right” images in Figure 13, we manually remove the 

car/motorcycle regions and accomplish the inpainting process without road structure propagation to 

obtain the results shown in Figure 13(d). Overall, satisfactory inpainting results can still be obtained, 

except that structure of the boundary between road and sidewalk cannot be strongly reconstructed.  

 

Comparing with inpainting results, the mosaic results shown in Figure 13(e) totally ignore scene 

structure, and we can clearly see the mosaic artifacts. To simply protect privacy, mosaicking car regions 

would be enough. However, completely removing cars and recovering with the inpainting technique 

simultaneously protect privacy and maintain visual completeness.  
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Figure 13. Sample images captured by four cameras at the same place and their corresponding 

processing results. (a) Original images; (b) road detection results; (c) car detection results; (d) inpainting 

results; (e) mosaic results.  

 

8. CONCLUSION AND FUTURE WORKS 

We have presented an automatic approach that detects and removes cars in street view images. Based on 

the cascade deformable part model, line detection, and road detection, the proposed system automatically 

determines foreground seeds and background seeds, which are later fed to the GrabCut algorithm to 

locate car regions. After removing cars, the missing regions are reconstructed by the proposed inpainting 

technique that especially considers characteristics of road to determine the filling order and to conduct 

preliminary road structure propagation. A hierarchical texture propagation method and a randomized 
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texture propagation method are integrated to smoothly reconstruct the road region and sharply 

reconstruct line structure in the meanwhile. The evaluation results show that our method especially 

works better in street view images.  

The current work is limited by the following issues, which give the hints for developing future works:  

� The DPM-based car detection module does not work very well for challenging street view images, 

and motorbikes, bikes, and other vehicles like buses are not considered in this work. More 

advanced vehicle detection methods are needed in the future.  

� Google Street View images are actually 3D imageries. In this work, only images in a single view 

along a street are considered. More studies are needed to extend the current work to a 3D imagery 

obtained from Google Street View. 

� Performance of car detection and inpainting for complex scenes with large-area shadows and 

traffic jams is not good now. As for inpainting, propagating information from neighboring 

images may not work in these cases.  

� For a large-scale street view image collection, time consumption is a big issue. Parallel 

processing by the GPU programming model would be investigated in the future.  
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