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ABSTRACT

To protect privacy of individuals or companies thay be leaked in street view images, we present a
system to automatically detect and remove carg$ tieey had never been there. Although street view
service providers have made efforts on blurring &nrfaces and license plates, we argue that rengainin
features, such as license numbers and phone numpbetsd on car bodies, could cause privacy leak.
Given a sequence of street view images, this syStstrdetects cars by the deformable part modal, a
then determines foreground/background seeds foGtadCut image segmentation module in order to
facilitate automatic car segmentation. After remgvicars, an exemplar-based inpainting method is
developed with special designs on filling prioridetermination and road structure propagation.
Hierarchical texture propagation and randomizedutexpropagation are integrated to implement the
inpainting process, so that aesthetically pleagipginting results as well as privacy protectiom te

accomplished.
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randomized texture propagation.

1. INTRODUCTION

Map services have been widely utilized in many wauysh as trip planning, shop finding, and automati
navigation. Recently, several map service providseixch as Google Maps and Bing Maps, have
introduced a new service: street view or streetsixj@oration. As a part of map services, streetvvie
images provide more detailed information than tradal map. Based on street view images, location-
based services can be provided with highly intéraghterfaces, and users can enjoy traveling ceetd
around the world by just clicking. However, as ve@ Gee, vehicles appearing in street view images no

only affect usage of this service, but also leakgmy of owners of these vehicles. Although thesgenh
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been studies for blurring license plates [1][2]eythare clearly not enough to protect privacy of the
objects/persons that were unintentionally captimgethe camera car. As shown in Figure 1, on vesicle
detailed information other than the license platesild still leak privacy information, such as the
company's name or phone numbers printed on carebodsometimes people can still recognize
motorbike riders even only the shape of body amdntiotorbike are shown. Although Google allows
users to request further blurring, it is impossioleusers to review all street view images to @cotheir
own privacy. Therefore, the goal of this work isaatomatically detect and remove the whole cars in
street view images, as shown in Figure 2.

This work can be viewed to deal with a problem tisain-between of image inpainting and video
inpainting. In image inpainting, only informationitin an image can be exploited to reconstruct the
missing region when some objects are removed.deovinpainting, strong consistency between densely
sampled frames can be exploited to interpolatattesing regions. In our problem, “sparsely sampled

images” have relatively weaker consistency, and tixisting video inpainting techniques cannot be

directly employed.

Figure 2. Two sample pairs of street view imagestae corresponding inpainting results.



One may propose to mosaic or blur vehicle regioraotect privacy, just like blurring license plate

To verify this, we conducted a pilot study wherethbonosaic results and inpainting results were

presented to thirteen users, who were asked toagirements about how satisfactory these results are.

The subjective evaluation results show that elevkthe thirteen users prefer inpainting results for

privacy protection. Although both mosaic and ingiaigy are able to protect privacy, inpainting result

are more aesthetically pleasing and acceptabldadty inpainting and mosaic techniques are not

conflicting to protect privacy in street view imagd-or the cases our system doesn’t work well, e.g.

images with complex road conditions, mosaic effexdia be employed as an alternative to protect

privacy.
In this paper, we focus on analyzing street vievages, automatically detecting cars and removing

them, and filling missing regions with inpaintinthis system includes the following key components:

® Automatic car detection: Street view images arg eemplex due to significant variations of lighting
conditions, viewing angles, and deformation. Alkesk factors cause severe noises and make
automatic car detection quite challenging. We emphie cascade deformable part model [3] to detect
cars, and apply the Grabcut algorithm [4] to segnuam regions. In contrast to the conventional
Grabcut algorithm where foreground seeds and backgr seeds are assigned manually, we devise
an automatic seed finding approach based on refuited detection and car detection.

® Road structure propagation: Images along the sdametswvere captured consecutively and often
contain spatial continuity, which can then be ugedeconstruct the missing region. In the proposed
system, road structure mainly coming from high-gratispatial continuity, e.g., lane lines and crash
barrier, is propagated to neighboring images alwathe intra-image inpainting process. If road
structure can be extracted and propagated apptelgrithe missing regions would be well bounded
by high-gradient structure, and thus the problenmgéinting is eased.

® Hierarchical and randomized inpainting: The ordérinmpainting is determined by considering
gradient information, and techniques of hierardhieature propagation [5] and randomized texture
propagation [6] are combined in order to obtaineghpg inpainting results both for smooth regions

and high-gradient regions.

The remainder of this paper is organized as followterature survey is given in Section 2, and
necessary preprocesses are described in SectionS&ction 4, details of automatic car detectiod an

segmentation are provided. The road structure gatpan process especially designed for street view



images is given in Section 5. In Section 6, we diesdhe idea of exemplar-based inpainting, how we
determine the filling priority, and how to develephybrid method to make results more pleasing.
Performance evaluation and limitations of the aurngork will be presented in Section 7, followed by

conclusion and future work in Section 8.

2. RELATED WORKS

2.1 Applicationson Street View I mages

Street view services such as Google Street Viewof7Bing Streetside have emerged as a novel
location-related application providing street-leirebges of entire cities. Many interesting applomas

can thus be developed for navigation purposes. ifugtb et al. [8] developed a 2D/3D navigation
system where users issue gesture commands to biGasgle Map and Google Street View. From
Google Street View, Guy and Truong [9] collectathrintersection information and developed a system
called CrossingGuard to provide details of intetiseacgeometry for visual impaired pedestrians. Ketef
al. [10] developed a novel interface that seamyeisgérchanges browsing between bubbles and multi-
perspective panoramas so that a targeted locatioibe efficiently identified.

Privacy issues in street view images have attraotedh attention. Especially in Europe, many
countries claimed that Google breaches one or BOraws. Google responded to this by blurring faces
and license plates [1]. Flores and Belongie [1fjjuad that articles of clothing, body shape andhigig
may still leak privacy, and proposed a pedestreanaval method when multiple images capturing the
same pedestrian and redundant background are lateaila

In addition to pedestrians, we argue that vehidedicycles/motorbikes riders would also leak
privacy information, as shown in Figure 1. Basedlmn street view images capturing the sidewalk and
pedestrians with fagade of building as backgrouhd,work in [11] utilized rich feature points ineth
background and estimated the geometric relationbleigveen two neighboring images by a planar
perspective transformation. In our case, the psmzkStreet view images largely contain smooth road
regions, with significant scene changes on the sidad(see Figure 7 for example), and thus the
relationship between neighboring images cannot bell wlescribed by a planar perspective
transformation. Moreover, images fed to the sysiteifi1l] were manually filtered so that image pairs
containing the same pedestrians were known in advan our case, given a sequence of street view
images where vehicles may appear in arbitrary nusnbeimages, we aim to automatically detect and

remove vehicles on the road, and to reconstruag@savith inpainting techniques.



2.2 Inpainting

Inpainting techniques can be roughly categorizei two groups: PDE-based (partial derivative
equation) schemes [12] and exemplar-based schei8pslhe PDE-based scheme propagates texture in
a given direction and often introduces blur effadt® to the adopted diffusion method. On the other
hand, the exemplar-based scheme copies texture rissghboring image patches and is often able to
derive more structured content. In our case, wel n@esmoothly fill the missing regions located be t
road, and sharply fill missing regions located anel lines or crash barriers with structure infororat
The proposed system extracts road structure froatiadly adjacent images, and then fills missing
regions suspected to be highly structured withrdael structure coming from neighboring images. To
reconstruct the left missing regions, we propos@ectional inpainting method modified from [5],can
team it up with a randomized exemplar-based methed,PatchMatch [6]. The inpainting results thus

have sharp structure in line-like regions and faweoth texture in the road region.

2.3 Object Detection and Recognition
The targeted objects to be removed are vehicled, thns related works on object detection and
recognition, especially for vehicles, are brieflyngeyed here. Mainly taking car objects as examples
Agarwal et al. [22] proposed a canonical part-baspdesentation and learned a classifier to dstdet
view cars in varying conditions consisting of obuetd background and mild occlusion. Hota et al] [23
adopted the Adaboost-based classifier with Haarfidatures followed by support vector machine (SVM)
based classifiers with histogram of oriented gnadi@¢lOG) to detect side-view and rear-view cars.
Inspired by that cars are artificial objects wittnsistent characteristics in structure, Zheng aiatd-
[24] proposed image strip features to facilitatecefnt detection of multi-view cars. They also posed
a complexity-aware criterion in the boosting schemerder to use cheaper features in earlier etel
make more speedup. Kuo and Nevatia [25] construotgdr dimensional embedding of cars in various
views, and learned a cascaded tree classifierieae robust multi-view car detection.

In addition to the works mentioned above, tremesdsiudies have been proposed to detect and
recognize objects in images. Among them, deformphhe models (DPM) [15] achieve state-of-the-art
results in the PASCAL object detection challerigesd thus we adopt this approach to detect aars. |

DPM, an object class is represented by mixturasutiscale deformable part models, which consist of

! http://pascallin.ecs.soton.ac.uk/challenges/VOC/



a coarse root filter and several higher resolupant filters. A spatial model is also constructed t
describe how each part is located relatively tordwt. Taking the rear view of a car as an exampeée,
can describe a car by parts consisting of tiredljgtats, and windscreen. Histograms of oriented
gradients (HOG) [16] are used to describe the whbject and its parts, respectively. The root ffiiad
part filters are trained based on latent SVMs.h&t detection stage, given a window centered byirat,po
responses of the root filter and part filters asensed up and fed to the SVM to determine the

occurrence of an object.

2.4 Image Segmentation

Image segmentation has been one of the most chalterproblems in computer vision and image
processing society for decades. Fully automatic gen@egmentation is a holy grail of image
understanding researchers and keeps attractingroebse’s efforts until now. Although elegant metiod
like normalized cuts [26] and graphs [27] were deped, performance of fully automatic segmentation
methods is still limited and is much inferior to atthumans can do. Therefore, semi-automatic image
segmentation methods, i.e., limited user inteneents needed to specify foreground and background,
become popular in recent years. In the Graph Garnéwork, the user specifies certain pixels that
absolutely have to be part of the foreground. Reahips between pixels are described as a gragjh [1
which is then segmented by the graph cut algoritondiscriminate foreground from background.
Modified from the graph cut approach, the Grabdgorthm [4] is constructed based on an energy
function that jointly considers a data term indiogthow likely color of pixels matches with the
foreground model and the background model, and @#8mess term indicating consistency between
neighboring pixels. Users can guide the GrabCubralgn by simply drawing a rectangle to roughly
discriminate foreground from background. Also basadthe graph cut framework, the lazy snapping
system [17] allows users to specify foreground sese background seeds by strokes. In our work, we
rely on the GrabCut algorithm to segment car objé@m the road region, with a design of automatic

seed finding.

3. PREPROCESSING
3.1 Road Detection
Two factors are considered in our road detectionute First, the road region occupies most areas of

bottom halves of images, and thus the dominantrcolahe bottom half is an important clue for



detecting road. Second, the road region in imagep% changing according to terrain, street layand,
lanes. Therefore, we need an adaptive method éztobie road region.

Given consecutive street view images..... f.}, a sliding window with size of three images is
applied to scan the sequence. To detect the rggahref theith imagey,, the RGB color histograms of
the bottom halves of,_,, f,, andf,,, are extracted and accumulated, denoted:byBased orH;:, an
iterative region growing algorithm is proposeditaifthe road region, as illustrated in Figure 2rfie;
the color with the highest peak is first determinddnoted by (step 2). The set of pixelsin the
bottom half off, and with the colot. is then identified (step 3) and is added to thgeted sek. For
each pixek in r, we find pixelsy in z's neighborhood. If pixelg are with similar color te: (denoted
by ¢, ~ ¢.), they are added into the se{step 5). If the area of the grown regjenis not larger than a
threshold, the growing procedure repeats agairtdyirsy from the pixels with the color corresporglin
to the second peak @f;. In this work, RGB histograms with each color cament represented by eight
bits are extracted for analysis. The neighborhood is defined as the 8-connected pixels of the pixel
The threshold is set as 20% of the area of the whole image.

Figure 4(b) shows three intermediate results oforegrowing based on the pixels with the color
corresponding to the highest peak. From thesetsesgl see that most of the road region can be teetec
except for lane lines that are with distinct colfyesn the road. We find the minimum polygon coverin
the intermediate results to obtain final road d&ecresults, as shown in Figure 4(c). Based om roa
detection results, we would adaptively constructRe®B histogram of the road in a spatial locality,

which will be used in car segmentation and inpagtater.

Algorithm: Road detection

Input: the color histograrfd ;

Output: the road regioi

1. SetR=0 j=1 .

2. Find the colorc; corresponding to the largestk ofH; .

3. Find the set of pixel8; in the bottom halffofand with
colorc; .

4. SetR=RUP; .

5. Foreach pixele € R , find pixejs  iwighborhoodN (x)
ey cN(x) . ike,~c, ,s&=RUy

6. If |[R| >0 ,stop.
Otherwise, fotH; , set the value of the birtafresponding to
c; aszeroj =j+1 ,andgo to step 2.

Figure 3. The road detection algorithm.
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Figure 4. (a) The original images; (b) Intermediasults of region growing based on the pixels whih
color corresponding to the highest peak; (c) Finad detection results and line detection resuolthe

road region.

3.2 LineDetection

Lane lines, which ought to be consistent in a srsgaditial locality, provide important cues to repréas
road structure. Following the standard line detectprocedure, we apply Gaussian blur to the road
region, and then transform the road region into Hloeigh space. Peaks in the Hough space are then
selected, which correspond to prominent lines endhiginal image space. Making blurring in advance

facilitates detecting prominent lines. Figure 4llcstrates prominent lines detected in the roayiomre.

4. CARDETECTION AND SEGMENTATION

4.1 Car Detection

We rely on the framework of the deformable part ediqd5] to detect on-road cars. Because evaluating
all configurations of the root filter and part éis for each sliding window is time consuming, the
cascade DPM approach was proposed in [3], whereotbtefilter and part filters are put in a cascade,
and at the detection stage only the regions passanly evaluation are further evaluated. This early
pruning scheme largely improves detection efficemgthout sacrificing detection accuracy. In our

work, we employ the cascade DPM to detect cars.



Figure 5 illustrates the car detection process.cé&ides DPMs trained for specific vehicles, such as
sedan, truck, and bus, can be adopted to detegoaBible types of cars. Sliding windows in the
representation of HOGs are extracted at variougscand are then examined to tell whether carsapp
inside these windows. Note that if a sliding windolawiously contains no sedan, for example, it would
be rejected by the cascade DPM for sedan at gadges to avoid unnecessary examination by later par
filters. In our work, we found the cascade DPM foar” constructed by the authors in [3] already
achieves satisfactory detection performance. Heweedo not train our vehicle-specific models and
simply use the general “car” model provided by Bpure 6(a) and Figure 6(h) show two sample result
of car detection. More examples will be providedha evaluation section.

The cascade DPM gives bounding boxes of detectsd Ta prevent the following inpainting process
from too many noises, more accurate car regionsegded. Based on the detected bounding boxes, the
GrabCut algorithm is then used to obtain fine segaten.

Cascade DPM for “sedan”

Root Part Part Part

Test image fiter | | fiterl | 7| fiter2 |~ " ] filterN
______ Multi-scale sliding
[ windows

' Cascade DPM for “truck”

Root 'Part N 'Part N .Part 5 Car detection
filter filter 1 filter 2 filter N results

Cascade DPM for “bus”

Root Part Part Part
fier [ | fiter: | 7| fiter2 [~ "7 71 filter N

Figure 5. lllustration of the car detection process

4.2 Car Segmentation

We employ the GrabCut framework [4] to segmentatgects from the road region. However, there are

tremendous street view images, and even a smallistnod user interaction needed is not feasible. We

thus design an approach that initiates foregrowaukiipround seeds. With these seeds, color distoibsiti

of foreground and background are determined, am@tlabCut algorithm is adopted to segment cars.
Foreground seeds are determined based on the Ingumai of car detection. Thirty percent of pixels

in the bounding box are sampled, according to &dabihity distribution defined by a two-dimensional

Gaussian centered at the spatial centroid of thumdiag box. According to the Gaussian distribution,



pixels nearer to the centroid would be sampled m@me the other hand, three issues are jointly

considered to determine background seeds:

® Thirty percent of pixels in the road region aredamly sampled as background seeds. These seeds
are important for discriminating cars from the rdmtause most foreground seeds are surrounded by
the road.

® Pixels on lines are selected as background sedds. surrounded by the road, lane lines have
significantly different appearance to the road, arel easily misclassified as foreground if pixats o
them are not especially indicated as background.

® In addition to the car bounding boxes, the roadoregand lines, ten percent of pixels in the

remaining region are randomly sampled as backgreerds.

Figure 6 includes two samples showing foregrourditzackground seeds and segmentation results of
the GrabCut algorithm. The blue dots in Figure @)ljustrate foreground seeds. The red dots guFe
6(c)(j) and Figure 6(d)(k) illustrate backgroundede sampled from the road and lines, respectively.
Note that for clear illustration only parts of seette illustrated in these figures. Figure 6(el(istrate
all foreground seeds and background seeds. Thal isggmentation results in Figure 6(f)(m) contain
some false detection, which can be eliminated byphaogical operations including erosion and
dilation. Figure 6(g)(n) show final results. Somes, false detection regions still remain, like thse
shown in Figure 6(g). This is not a serious probleoause even if the region is erroneously removed
from this image, we would fill it with pixels onéfroad later by inpainting techniques.

We should notice that automatic segmentation ig weportant for tremendous amount of street view
images. With the automatic process, we can traceite on the map and remove all cars in street view
images along this route. Seeing Figure 6(a), wihenetare multiple cars in an image, users need to
define foreground rectangles many times, and segorencar a time by the conventional GrabCut tool.
With the proposed process, this system automaticafines foreground seeds and background seeds,

and multiple cars can be detected and segmentedtaimaously.
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Figure 6. Sample results of car detection and Guéb@sed segmentation. (a)(h) The original images
and car bounding boxes. (b)(i) Foreground seedsaos (blue circles). (c)(j) Background seeds on the
road (red crosses). (d)(k) Background seeds oms.li@(l) All automatically determined seeds. (f)(m

Segmentation results. (g)(n) Refined segmentatsnlts after morphological operations.

5. ROAD STRUCTURE PROPAGATION

From the classic work [13] to the most recent stdtehe art [28], missing regions with geometric
structure are generally given higher priority to fiked first. When filling the remaining regionshe
inpainting process is then guided by the “alreafiliéd regions to achieve promising results. Weoals
follow this thought in this work, but in additioro texisting regions within the targeted image,
information from spatially neighboring street viemages can also be utilized in inpainting highly

structured regions. In this section, we consid&rmation across images to fill highly structuregions.
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In Section 6, information within an image is comsitl in determining filling priority, as done by nya
previous works.

In street view images, the most important (constytgeometric structure across images is road
structure, and thus we aim to fill such regionstfimportant road structures mainly consist otllanes
and boundaries between the road and the sidewdlichvare often represented as prominent straight
lines. The importance of identifying and reconging road structure is at least twofold. First, fauns
are sensitive to reconstruction error on straightd. Using the designed road structure propagation
method can more accurately reconstruct line stractsecond, the reconstructed line structure cbeld
an important clue to guide the calculation offfiipriority described in Sec. 6.1.

Motivated by the work [18] that collects statistiok patch offsets between images, we design our
road structure propagation process as follows. Givive spatially consecutive images
{li—s, Liv, I I, Liy2}, Where prominent lines in each image have beeactsst and cars have been
detected and removed, we would like to construgiartant road structure in the missing regiomn;of
Each image is first divided intox 4 = 16 blocks. For every two consecutive images, sand/..., we
collect horizontal offset information of prominelmes block by block. Ler = {p.} denote the set of
pixels on prominent lines in thigh block ofz, and@ = {¢.} denote the set of pixels on prominent lines
in the jth block ofz.;... For each pixeb. € P, the pixelg. ¢ @ that has the same vertical coordinate.as
denoted by (y) = o (), is found. That is,

qe = argming, eq{pr(7) — qu(x)|pr(y) = @ (v)}. (1)
The horizontal offset is calculated as=p.(z) - g¢w (). If Nno pixel in@ having the same vertical
coordinate as., the offset: is undefined. The horizontal offset histogram,, between theth blocks
of 1, and i, is then constructed after all pixelse P are examined.

According to the horizontal offset histogram, werhissing regions in; in a block-by-block manner.
Assume that the largest peak#f_, corresponds to the horizontal offsea missing pixep in the jth
block of ; is filled with a known pixel in thejth block of7.., if ¢ is on prominent liness(y) = (y), and
p(z) = q(z) + 6. For the missing pixel, if there is no known pixelin ;.. such thab(z) = ¢(z) + 6, Or a
known pixelq is not on prominent lines, appropriate pixelssfgitng the criteria mentioned above are
searched from ., L., andZ; ., according to largest peaks an,_,, H!, ,, and#;,_,, respectively. All
blocks inz; that consist of missing regions are filled witladcstructure by the aforementioned process.

Figure 7(a) shows five consecutively captured irsagad Figure 7(b) shows corresponding results of

car removal and line detection. Note that a lane is often detected as two parallel thin lines.fillo
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missing regions with complete lane lines or impariane-like structure, we apply a dilation opeoati

for each pixel on detected lines. Figure 7(c) shivesexpanded lines in each image, where pixels on
them are viewed as known pixels, and are usedltmi§sing regions with the consideration of offset
histograms. Figure 7(d) shows the propagation tesil;;. By considering road structure in spatially

adjacent images, the line structure between roddsatewalk is constructed even though the missing

region is extremely large.
Iio Liy I; Lin Livo

Figure 7. (a) Original images. (b) Images after geimg cars and detecting lines (shown in red). (c)

Lines with dilation. (d) The propagation resulttloé image/;.

6. INPAINTING

After filling the road structure by considering theter-image relationship, we adopt inpainting
techniques considering intra-image patches tdHél remaining regions. An inpainting process cdssis
of two important stages: filling order determinaticand texture propagation. In filling order
determination, we modify the priority definition [B] by considering road characteristics and textur

relationship between missing and existing areaghéntexture propagation process, two state-ofthe-
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exemplar-based methods, i.e., [5] and [6], aregnated. If gradient magnitude of a missing patch is
large, a hierarchical texture propagation methoddifreml from [5] is adopted. Otherwise, the
randomized propagation method defined in [6] ispaeld. In both propagation processes, known
exemplars are searched from a range guided byirthetidn of the prominent line that is spatiallpsést

to the missing patch.

6.1 Determining Filling Priority

An image! may have several missing regions, denoted Byw,....w.}. The source region is denoted
by ¢, ands = 1 — 2. A square image patch centered by the pixisldenoted by.. In [5], the filling order
(priority) of the patchy, on the boundary of a missing regiors defined by the product of two terms:
P(p) = C(p)D(p). The first term indicates the confidence valuaJ andesigned to favor patches having
more known pixels:

Ygegon-o €(@)

cle) = o]
»

: ()

wherejy,| is the area of,. The confidence value is initialized ag) = 1,vp € (1 — Q) andc(p) = 0,vp € Q2.

The second term considers data characteristicsndrthe patch:, and is designed to favor image
patches having high color gradients. A method niediifrom the approach proposed in [19] is described
in the following. To eliminate the influence of Bej the image patah is first smoothed by a Gaussion
kernel. For a pixel i, and in the source regien its horizontal gradient magnitudgs ¢, ando? in R,

G, and B color channels are calculated, respeygtieeld the overall horizontal gradient magnitude is
calculated as. =p% + 05 +p5. Similarly, the overall vertical gradient magnieuds calculated as
py =P+ pS + pE. Each pixel is described by a vecter »,]*, and the gradient magnitudes of the pixels
in then by » image patchy, are then arranged as by »* matrix J. Eigen-decomposition is then applied
to the matrixs, and the first and the second largest eigenvaluasd). are found. The data termis
accordingly defined as:

D(p) = o+ (1 = eap( -~y ) (3)
wherey is a positive value ande [0,1]. When the image patch has larger gradient,yi.es )2, the data
term is emphasized, and the filling priority rais€ke term is a very small positive number to avoid a
zero denominator. In [5) is set as 0.001. The size of an image patch»ss.

We modify the data term(p) mentioned above to meet the conditions of strest ¥mages. In street

view images the road region is visually smooth,, ilew spatial frequency area. In contrast to
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conventional inpainting techniques that usually kmaell for high-frequency regions, small amounts of
inpainting errors in the road region would be pptaelly significant. Therefore, we especially mgdif
the data term by considering two factors: the cgladient around the boundary pixels, and the apati
relationship between existing and missing arearatdlie boundary pixels.

The first factor is defined as

di(p) = ewp™ 172, 4)
When the existing area @f is smooth, i.e.): = X2, this term is larger, and the filling priority sais.

The second factor comes from implicit texture oé tload. Although the road region is generally
smooth, there is often implicit directional textuahee to long-term extrusion by cars. We jointly sidler
the spatial relationship between missing and exgstéireas, and the directional texture of the réast,
the spatial centroid. of the missing area in,, and the spatial centroid of the existing area in,, are
calculated. The vector from to c. is then determined and normalized, and is denased. Assume
that the direction of the prominent line (basedtlo@ results of Sec. 3.2) closest to the patdls v
(normalized to a unit vector), the consistency leenw, andv, is measured by

dz(p) = exp™ Ve, (5)

Figure 8 shows an illustration of determining fiti priority. Let us consider three boundary patches
¥ay, ¥psy, @Ndy,,. The black dash lines passing through these patitbstrate the vectar, and the red
dash lines represent the spatial relationship Etweissing areas and existing areas. From thisefigu
we can see that the spatial relationship,irmost coheres with the closest prominent line,
d2(p;) is the largest. From this perspectivg,is preferred to be filled first.

Finally, the modified data term(p) is defined a®(p) = ¢:(p)d:(p), and the overall filling priority for
the patchy, is determined by(p) = C(p)D(p). Patches on boundaries of missing regions aredfiih
descending order of the priority. Filling priorgisvill be recomputed after all the patches on baued
of missing regions have been filled. That is, asnig region is progressively filled from the border

the center.
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Figure 8. lllustration of determining the fillingiprity (described in Sec. 6.1), and the searchdaim

along the direction of the prominent line (desaiilbe Sec. 6.2).

6.2 Hierarchical Texture Propagation

In [5], the best image patch to be used to fillleeindary patch, is determined by
xS (.a), (6)

whered(,,v,) denotes the sum of squared differences betweandidate patch, < w and the already

Al — A2
AL+ A2

Wi = Are ML e
g = argmirg, ey (d(ﬁ’p: hq) + (

filled or known pixels of;,. In [5], the search window is entirely the source region, i.e,= 4. The
second term gives higher costs for image patchdéls larger color gradient (i.e., larger difference

betweem, andx.). On smooth areas, this term tends to 0. The im¢ty, ¢) is designed as

Fona) = (e + ) ™ (7)

Tvp 5qll

wherew,_., is the vector from the center of to the center of,. The value is set as 0.001. If the vector
vy, IS NOt collinear tov,, this term gives a penalty attributed |49 v,.,/. When two vectors are
collinear, the functiori(p, ¢) tends to one.

For the same reason to design egn. (5), in ord&aviar candidate image patches that are relatively
located at the direction similar to the closesnprent line, we limit the search window in egn. (6) as
follows. The closest prominent line usually comesnf lane lines or crash barrier, and coheres with
implicit trace on the road. For a boundary patgltentered atz..y,), if the gradient of its closest
prominent line isd., d,), we first find a point asc = (x,.v,) + (2d.. 2d,). The search window for finding

the best patch is defined as

W = {qlc(z) — uw1/2 < g(z) < e{z) + w1 /2,
ely) —w1/2 < qly) < ely) + w1 /2} (8)
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wheregq(z) andq(y) denote the andy coordinates of the point respectively. By this definition, the
w x w1 Square region centeredcas the search window. The image patch centeresheltg in W is a
candidate patch, and is compared wittaccording to eqn. (6). Figure 8 illustrates tharsle window
for p,, along the direction of the closest prominent.limethis work,«: is set as 60 pixels.

To further improve robustness, we enhance the Iseprocess with the idea of hierarchical
decomposition in motion estimation. Two levels edching are conducted. In the first-level (coarse-
level) search, the image is downscaled twice i aitrizontal and vertical dimensions. For a boupdar
patch, the corresponding search window is deteminryeeqn. (8), and the search process definedrin eq
(6) is used to find the best patch. Assume thab#st patch found in the first-level search is et at
q'". In the second-level (fine-level) search, we tdiepointg'" as the role ot in eqn. (8) and define a
new search window in the image at the originalesche second-level search is then conducted based
on the original image and the search window cedtbye'"’ to further refine the choice of best patch.

Finally, the best ten patches from the second-Ilseatch are all considered to fill the missing [sixe

The value of a missing pixelin «, is determined by

2}21 5iTq (9)
Ziil 8i '

wheres; is the similarity between the patehand theth best patchy; [12]. r; in ¥; is the pixel located at

p=

the same relative position asn ¢,.

Figure 9 shows six intermediate results samplewoh fan inpainting process. Focusing on the missing
region on the left (the solid-line yellow ellipsé&om Figure 9(a) to Figure 9(f) the filling ordisrmainly
from top-right to bottom-left or vice versa. Foretimissing regions on the right (the dash-line blue
ellipse), which are actually parts of lane linds filling order is mainly from top-left to bottomght or

vice versa. This example clearly shows the effeatipht by the design of eqn. (5).
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Figure 9. Six intermediate inpainting results saadgrom an inpainting process.

6.3 Randomized Texture Propagation
The aforementioned texture propagation method aekigreat performance on reconstructing lane lines
and boundaries between the road and sidewalk/draster. However, size of the search window
defined in eqgn. (8) may be content dependent. Asroftaw is that inpainting errors would be
significantly propagated. For example, if a missipgtch v. that should be purely smooth is
reconstructed with a smooth patch containing saralbunts of high-gradient pixels, the missing patch
¢ Next toy. would inherit the error when, is reconstructed. This type of error gives litisual
inconsistency in high-frequency regions, but giiss to significant visual annoyance in smoothoagi
like road. Therefore, to generate pleasing inpagntiesults, we reconstruct missing patches wittm hig
gradient by the hierarchical texture propagatiord eeconstruct missing patches with low gradient by
the randomized texture propagation described &snfsl

To fill a missing patchy, centered at:.y), the PatchMatch method [6] randomly finds a patch
centered byx’,y') from the whole known region or the manually defimegion. To evaluate the degree
how v, is suitable to replace,, v,’s neighboring patcly, centered by:'—1,4), andy, centered by
(z',y' — 1), are also checked. The idea is thaty,ifs a good choice to reconstrugt then the distance
betweeny,, and+,, and the distance betweepn andv,, should both be small. Based @nv.;, and,,

the best patch to reconstrugtis determined byirgmin{d(«’,y'),d(=’ — 1,y),d(x'",y' — 1)}, whered(’,y")
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denotes the patch distance betwegandw,. Assume that the best choicesig a choice better than,

is to be found in the next iteration. Start fraim- 1,3'), a few patches within some circular range are
randomly sampled, and the same process is appliédd a better choice. In most cases, this iteeati
procedure quickly converges after four or fiveaterns [6].

In our work, information of the closest prominembel is used as the prior information for
randomization. Suppose that a missing paicts located at»,.s.), and the gradient of its closest
prominent line isA..A,). Rather than randomly sampling from the whole kmoegion, only patches
centered by pixels on the extended line that gasaigh(z,.y,) and has gradient., A,) are considered

to be the candidate pateh Details of the PatchMatch method can be fouri@]in

7. EVALUATION

7.1 Car Segmentation

We manually captured Google Street View imagesgtbe same street from eight different places to
form eight different datasets. Each dataset induthéty spatially consecutive images, and différen
datasets have significantly different road situadidDetailed information is shown in Table 1. Theeb
shaded regions in Figure 10 are car detection teesdBésically, most parts of cars are includechd t
cascade DPM successfully detects cars. Howevertalsignificant variations of camera views and car
occlusion, the cascade DPM often fails to detdataab in images. The cars that are very close @y

far from the camera are usually not detected,lastiated by the dash circles in Figure 10. Forteiga
these cars cause less privacy leak, and thus ®mthipose of privacy protection, these cases are
acceptable.

Table 1. Detailed information of the evaluationast.

ID | Type Loc. Properties

1 Highway Asia | Traffic marks, crash barrier, fewars

2 Highway Asia | Traffic marks, crash barrier, fewars

3 Highway USA | Traffic marks, crash barrier, moresca

4 Residential aread USA| Trees, buildings, parking,daee shadow

5 Residential areg USA| Tree, buildings, parking caarrow lanes

6 Tunnel Asia | Dusky light

7 Inside city Asia | Complex traffic marks, buildingstersection of roads
8 Inside city Asia | Complex traffic marks, buildingeees
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Figure 10. Sample car detection results. Samplédtsefor Dataset 1 to Dataset 8 are shown fromtéeft

right, and top to down.

We quantitatively evaluate car detection and cgmantation in the following. Car regions in each
image are first manually defined. A car detectiesult is claimed to be correct if more than 80%hef
detected region overlap with the ground truth. &atataset, the precision rate of car detectiohus t
calculated as the ratio of the number of correddliected regions to the number of all detectecbreyi
The recall rate is the ratio of the number of atttyedetected regions to the number of regions #nat
truly cars. By jointly considering precision and ca#, the F-measure is calculated as
F-measure = ZXPrecmonaeel  Table 2 shows performance of car detection fahedataset. The trend of
content-dependent performance is not surprisingofeance for images in the tunnel (the @ataset)
is very poor due to dusky light. Overall, the cakc®PM has higher precision than recall. In stvéai
images, car sizes and views change significantlgl, itis often that only parts of cars are shownisT
gives rise to great challenges in car detectiore average F-measure is 0.38, which is similar & th
state-of-the-art car detection performance in tA8@AL VOC challenge.

To evaluate car segmentation, we inspect pixelsasg, and manually define the ground truth. The
precision rate is the ratio of the number of cdiyedetected pixels to the number of all detectegIs.
The recall rate is the ratio of the number of octiyedetected pixels to the number of pixels thrattauly

on cars. Table 3 shows the car segmentation pesfozenfor each dataset. Limited by the results of ca
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detection, performance of car segmentation isfpist From these results, we see that highly atceura
automatic car detection in street view images ilk rdt achievable by the state of the art. Tolfair
reflect performance of inpainting, the inpaintinggess starts from manually removed car regiorkan

following evaluation.

Table 2. Performance of car detection in termsregigion, recall, and F-measure.
1 [2 [3 |4 [5 [6 [ 7] 8] Avg
Precision 0.73 0.65| 0.88| 0.84| 0.70| 0.07| 0.82| 0.91| 0.70
Recall 0.36/ 0.15| 0.32| 0.36| 0.28| 0.07| 0.45| 0.12| 0.26
F-measure 0.480.25| 0.47| 0.51| 0.40| 0.07| 0.58| 0.30| 0.38

Table 3. Performance of car segmentation in terinpsezision, recall, and F-measure.
1 2 3 4 5 6 7 8 Avg.
Precision 0.63 0.46| 0.60| 0.64| 0.52| 0.10| 0.57| 0.53| 0.51
Recall 0.63 0.33|0.48|0.59|0.41| 0.13| 0.57| 0.08| 0.40
F-measure 0.680.38| 0.53| 0.61| 0.46| 0.11| 0.57| 0.14| 0.43

7.2 Resultsof Inpainting

To demonstrate performance of inpainting, we compar proposed method with [5] and [6], which are
the base methods we modify from, with [20], whishaitypical exemplar-based inpainting method, and
with [21], which is embedded in the OpenCYV librand is especially computationally cheap. Figure 11
shows sample results of each dataset. The regibesewwe can clearly notice the difference between
methods are marked as yellow dash circles. Gegethlk method in [21] usually gives rise to large-
scale blurred effects. This annoyance becomes aygparent when structured objects, such as central
reservation and crash barrier, are reconstructbd.ekemplar-based inpainting method in [20] obtains
satisfactory performance for Datasets 2, 3, 6, Andowever, this method may give rise to unnatural
traffic marks because it does not specially consluhe structure of road. Comparing with two base
methods [5] and [6], our method clearly has supityicon reconstructing road structure, seeing
especially from the results of Datasets 1, 4, an@@nparing sample results of [5] with [6] in thesf
dataset, we see that [5] works better in reconstrgi¢ane lines, and [6] works better in reconsing:

smooth regions. With the designed filling priorihat considers road structure, and the combinaifon
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hierarchical texture propagation [5] and randomiedure propagation [6], our method obtains much
better inpainting performance in the applicatiohstoeet view images.

The sample result for the fifth dataset reveals ohdhe limitations of our method, i.e., the
reconstructed edge between the road and the siklesvahnatural (the left-bottom region). Because th
proposed method reconstructs a missing region exiisting patches from spatially neighboring images,

the inpainting results would be unnatural if viewsieighboring images change significantly.

7.3 User Study
We conduct a user study to verify usability of gpreposed system. Twenty-seven subjects, all heavy
computer users, were asked to evaluate inpaingsglts obtained by three systems: our method, the
hierarchical texture propagation method [5], arel ilndomized texture propagation method [6]. Each
subject was asked to evaluate in totally twentysyuamd thus totally 540 sets of inpainting reswiese
compared. At each run, a street view image wasorahdselected from the eight datasets, and three
corresponding inpainting results were randomlyapeised so that subjects can easily compare and rank
the three inpainting results into the best, thesty@nd in-between.

Figure 12 shows the numbers of times an inpaintieghod is evaluated as the best, in-between, and
the worst. From this figure, it is clear that ouethod and PatchMatch [6] generally obtain bettsults.
Comparing ours with [6], 73.7% of the 540 evaluatadges were ranked as the best or in-between for

our method, and 64.6% were ranked so for PatchM&jch
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@) (b) (© (d) (e) )

Figure 11. Sample inpainting results of the eightadets, from top to down. (a) Original images; (b)
Results of the proposed method; (c) Results of keaiM5]; (d) Results of PatchMatch [6]; (e)Results
Komodakis [20]; (f)Results of Telea [21].
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Figure 12. Subjective comparison between thredmtipg methods.

Another question was asked when a subject finiglletiventy runs: do you think these inpainting
results provide more privacy protection than thigional street view images? Not surprisingly, most
subjects agree. The only one subject who did negeatihhought car bodies would not leak much privacy,
but riders on motorbikes would. Not removing motkebriders really is the limitation of our current
work.

Our method obtains more superiority over PatchMédciDatasets 4 and 5. There are many parking
cars at the roadside, and inpainting results o] [6] are often unnatural. Thanks to propagatiragl
structure from neighboring images, our method et gives better results. On the other hand, our
method obtains less superiority over PatchMatchCfatasets 7 and 8. Discontinuous road structure

diminishes the advantage of road structure propagat

7.4 Complexity Issues

This system consists of the following major compuse detecting cars by the cascade DPM, road
detection and line detection, car segmentatiornbyGrabCut algorithm, road structure propagatiod, a
hierarchical/randomized texture propagation (inpag). Table 4 shows the average time needed by
each component to process a street view imageght eiatasets. Note that our program has not been
optimized, so that we should pay more attentioth&orelative time complexity rather than the abtolu
execution time. From Table 4 we can clearly se¢ tia computation bottleneck is inpainting, i.e.,
averagely sixty percentage of execution time isibaited to the inpainting process. Searching for
appropriate patches (including patch searchingpatch evaluation) for each missing patch takes much
time. One possible direction to accelerate the i process is to utilize parallel algorithmsdan

hardware like GPU (graphics processing unit), s thany targeted patches can be evaluated in @arall
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Another direction is to relax the criterion to selan appropriate patch, making sort of sacrifioetloe

quality of inpainting results.

Table 4. Average time (in seconds) needed by eastponent to process a street view image in eight

datasets.
ID | Car detection| Road Car Structure Inpainting %Inpainting
detection segmentation propagation
1 1.11 3.99 2.06 6.25 30.93 69.76%
2 0.92 3.74 2.05 12.77 17.19 46.87%
3 1.04 3.63 2.08 8.76 22.06 58.73%
4 1.05 3.47 2.08 6.95 32.28 70.43%
5 0.91 15.04 2.23 4.14 40.20 64.30%
6 0.67 3.74 2.10 6.52 11.54 46.98%
7 0.98 4.35 2.16 5.31 23.31 64.55%
8 0.75 3.73 2.25 7.65 23.82 62.34%
7.5 Limitation

Because there are various road conditions and leetyipes in street view images of various viewing

angles, the current system is not able to hantllgoakible cases. One of the most challenging dases

downtown scene, where many cars move on the ro@@rrat the roadside, and many buildings with

various facades are located along the street.dar€i1l3, we show four sample images captured at the

same place but from different viewpoifitsand these samples’ processing results, as thdiaayx

information to describe the limitations of this &ys.

Limitation of road detection. The main idea of tdgorithm depicted in Figure 3 is to determine
the most dominant colors in the bottom halves dges. For the roads different from the straight
roads, e.g., “intersection of roads”, “streets owdtown”, “roads with wider middle lane”, and
“non-straight roads”, this algorithm can still sassfully work if the color of road is really
dominant in the bottom halves of images. The “roadls thicker shadows” or “roads jammed with

cars” would be the most harmful case. It is ofteat the shade of trees or buildings around the road

2«Front,” “Back,” “Left,” and “Right” mean streetiew images captured by the cameras facing forwsadkward, leftward, and rightward,
respectively.
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largely covers the road region. The shade regionldvoause the dominant colors, and make our
road detection algorithm fail. Figure 13(b) showss tchallenging case where the bottom halves of
the “Left” image and the “Right” image are moreless occupied by parking cars or buildings’
shade. Results of road detection are thus not gingin these cases.

® Limitation of car detection. The cars that are vaose to or very far from the camera are difficult
to be detected. In addition, detecting cars onrarjad street is difficult, where preceding cars may
be occluded by following cars. We found the geneaalcade DPM for “car” provided by [3] is able
to detect cars with appropriate sizes in both fibniew and side view. Theoretically, we can
construct a car model for each type of vehicleg likis or concrete mixer lorry. However, we did
not do this because there are relatively fewer stedticles on the road, and using an existing
general car model makes us more focus on the ragks ti.e., car segmentation and inpainting. In
the “Front” and “Back” images of Figure 13(c), caerking at the roadside are often miss-detected
because of occlusion. The motorcycles in the “Righage are not detected because currently the
motorcycle cascade DPM is not specially constructed

® Limitation of inpainting. Currently the inpaintingrocess is mainly designed to handle street view
images in frontal views. For side-view images wHagade of building occupies most space or cars
are very close to the camera, cars may still bectied and removed, but road structure cannot be
easily defined and extracted, and consequentlyiripainting process without road structure
propagation often obtains worse results. To onlyskthe influence of road structure propagation
on the inpainting results, for the “Left” and “Rijhmages in Figure 13, we manually remove the
car/motorcycle regions and accomplish the inpagnpirocess without road structure propagation to
obtain the results shown in Figure 13(d). Ovesatjsfactory inpainting results can still be obégin

except that structure of the boundary between apadsidewalk cannot be strongly reconstructed.

Comparing with inpainting results, the mosaic resghown in Figure 13(e) totally ignore scene
structure, and we can clearly see the mosaic edifdo simply protect privacy, mosaicking car oegi
would be enough. However, completely removing Gard recovering with the inpainting technique

simultaneously protect privacy and maintain visi@ahpleteness.
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Figure 13. Sample images captured by four cametathea same place and their corresponding
processing results. (a) Original images; (b) roakction results; (c) car detection results; (ggrinting

results; (e) mosaic results.

8. CONCLUSION AND FUTURE WORKS

We have presented an automatic approach that setedtremoves cars in street view images. Based on
the cascade deformable part model, line deteciod road detection, the proposed system automnigtical
determines foreground seeds and background sedilsh are later fed to the GrabCut algorithm to
locate car regions. After removing cars, the migsagions are reconstructed by the proposed inpgint
technigue that especially considers characterisficead to determine the filling order and to coctd

preliminary road structure propagation. A hieracehitexture propagation method and a randomized
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texture propagation method are integrated to snhpatbconstruct the road region and sharply
reconstruct line structure in the meanwhile. Thaleation results show that our method especially
works better in street view images.
The current work is limited by the following issy@gich give the hints for developing future works:
® The DPM-based car detection module does not warnkwell for challenging street view images,
and motorbikes, bikes, and other vehicles like buse not considered in this work. More
advanced vehicle detection methods are needee ifuthre.
® Google Street View images are actually 3D imagefliethis work, only images in a single view
along a street are considered. More studies adedde extend the current work to a 3D imagery
obtained from Google Street View.
® Performance of car detection and inpainting for plax scenes with large-area shadows and
traffic jams is not good now. As for inpainting,opagating information from neighboring
images may not work in these cases.
® For a large-scale street view image collection,eticonsumption is a big issue. Parallel

processing by the GPU programming model would kestigated in the future.

Acknowledgement
The work was partially supported by the Nationak8ce Council of Taiwan under the grants NSC101-
2221-E-194-055-MY2.

9. REFERENCES

[1] A. Frome, G. Cheung, A. Adbulkader, M. Zennaro\V1, A. Bissacco, H. Adam, H. Neven, and L.
Vincent. 2009. Large-scale Privacy Protection iro@e Street View. IrProc. of ICCV, pp. 2373-
2380.

[2] J. Weir and W. Yan. 2010. Resolution Variant VisGgptography for Street View of Google Maps.
In Proc. of ISCAS, pp. 1695-1698.

[3] P. Felzenszwalb, R. Girshick, and D. McAllesters€ale Object Detection with Deformable Part
Models. 2010. IrfProc. of CVPR, pp. 2241-2248.

[4] C. Rother, V. Kolmogorov, and A. Blake. 2004. Gnabdnteractive Foreground Extraction using
lterated Graph Cuté&CM Trans. on Graphics, vol. 23, no. 3, pp. 309-314.

28



[5] O. Le Meur, J. Gautier, and C. Guillemot. 2011. fepéar-based Inpainting based on Local
Geometry. IrProc. of ICIP, pp. 3401-3404.

[6] C. Barnes, E. Shechtman, A. Finkelestein, and G&dman. 2009. PatchMatch: A Randomized
Correspondence Algorithm for Structural Image BdjitACM Trans. on Graphics, vol. 28, no. 3.

[7] L. Vincent. 2007. Taking Online Maps down to Streetel. Computer, vol. 40, no. 12, pp. 118-120.
[8] Y. Yoshimoto, T.H. Dang, A. Kimura, F. Shibata, aHd Tamura. 2011. Interaction Design of
2D/3D Map Navigation on Wall and Tabletop DisplalysProc. of ACM International Conference

on Interactive Tabletops and Surfaces, pp. 254-255.

[9] R. Guy and K. Truong. 2012. CrossingGuard: Expbptimformation Content in Navigation Aids for
Visually Impaired Pedestrians. Broc. of CHI, pp. 405-414.

[10] J. Kopf, B. Chen, R. Szeliski, and M. Cohen. 2030eet Slide: Browsing Street Level Imagery.
ACM Trans. on Graphics, vol. 29, no. 4.

[11] A. Flores and S. Belongie. 2010. Removing Pedestrieom Google Street View Images.Rnoc.
of CVPR, pp. 53-58.

[12] D. Tschumperle and R. Deriche. 2005. Vector-Valuethge Regularization with PDEs: A
Common Framework for Different Application&EE Trans. on PAMI, vol. 27, no. 4, pp. 206-517.

[13] A. Criminisi, P. Perez, and K. Toyama. 2004. Redtating and Object Removal by Examplar-
based Image Inpaintint£EE Trans. on Image Processing, vol. 13, no. 9, pp. 1200-1212.

[14] Y.Y. Boykov and M.-P. Jolly. 2001. Interactive GhaCuts for Optimal Boundary & Region
Segmentation of Objects in N-D ImagesPhoc. of ICCV, pp. 105-112.

[15] P.F. Felzenszwalb, R.B. Girshick, D. McAllesterddd. Ramanan. 2010. Object Detection with
Discriminatively Trained Part-Based ModdIEEE Trans. on PAMI, vol. 32, no. 9, pp. 1627-1645.

[16] N. Dalal and B. Triggs. 2005. Histograms of Orieh@radients for Human Detection. Bnoc. of
CVPR, pp. 886-893.

[17] Y. Li, J. Sun, C.-K. Tang, and H.-Y. Shum. 2004zy.&napping. IfProc. of ACM SIGGRAPH, pp.
303-308.

[18] K. He and J. Sun. 2012. Statistics of Patch Offemtsmage Completion. IiProc. of ECCV, pp.
16-29.

[19] S. Di Zenzo. 1986. A Note on the Gradient of a Minttage.Computer Vision, Graphics, and
Image Processing, vol. 33, no. 1, pp. 116-125.

29



[20] N. Komodakis and G. Tziritas. 2007. Image Comptetidsing Efficient Belief Propagation via
Priority Scheduling and Dynamic PruningEE Trans. on Image Processing, vol. 16, no. 11, pp.
2649-2661.

[21] A. Telea. 2004. An Image Inpainting Techniques tase the Fast Matching Methodoburnal of
Graphics Toals, vol. 9, no. 1, pp. 25-36.

[22] S. Agarwal, A. Awan, and D. Roth. 2004. LearningdDetect Objects in Images via a Sparse, Part-
Based RepresentatioiieEE Trans. on PAMI, vol. 26, no. 11, pp. 1475-1490.

[23] R.N. Hota, K. Jonna, and P.R. Krishna. 2010. OneRéahicle Detection by Cascaded Classifiers.
In Proc. of the Third Annual ACM Bangal ore Conference.

[24] W. Zheng and L. Liang. 2009. Fast Car Detectiomngdmage Strip Features. FProc. of IEEE
Conference on Computer Vision and Pattern Recognition, pp. 2703-2710.

[25] C.-H. Kuo and R. Nevatia. 2009. Robust Multi-ViewarCDetection using Unsupervised Sub-
Categorization. IfProc. of Workshop on Applications on Computer Vision.

[26] J. Shi and J. Malik. 2000. Normalized Cuts and ken&ggmentation EEE Trans. on PAMI, vol.

22, no. 8, pp. 888-905.

[27] P.F. Felzenszwalb and D.P. Huttenlocher. 2004.cigfit Graph-Based Image Segmentation.
International Journal of Computer Vision, vol. 59, no. 2, 167-181.

[28] J.-B. Huang, S.B. King, N. Ahuja, and J. Kopf. 201shage Completion using Planar Structure
Guidance. IrProc. of ACM SGGRAPH, 2014.

30



