Evaluation of Product Quantization for | mage Sear ch

Wei-Ta Chd, Chun-Chang HuarigJen-Yu Yd

!Department of Computer Science and Information Eeeging
National Chung Cheng University, Taiwan
wtchu@cs.ccu.edu.tw, icecandyandscheme@gmail.com

2Information and Communication Research Lab,
Industrial Technology Research Institute, Hsinchaiwan
KevinYu@itri.org.tw

Abstract. Product quantization is an effective quantizasocheme, with that a
high-dimensional space is decomposed into a Cantepraduct of low-
dimensional subspaces, and quantization in diffesaibspaces is conducted
separately. We briefly discuss the factors forigitéeg a product quantizer,
and then design experiments to comprehensivelystigate how these factors
influence performance of image search. By this wt#n we reveal design
principles that have not been well investigateieef

Keywords: Product quantization, image search.

1 Introduction

Measuring distances, e.g., Euclidean distancesyeleet data points is a fundamental
step for data clustering, classification, and es@i. In many applications, such as
video annotation [10] and image retrieval [11], lwisuch distances the nearest
neighbors to a query data point are thus determiHesvever, in many multimedia
applications, we have to process tremendous anaiurigh-dimensional data points.
Exact and exhaustive distance measurement thusrsufbm efficiency issues and
curse of dimensionality.

Rich methods have been proposed for efficient oiutensional indexing. For
example, the KD-tree [1] describes data points ikidiohg the data space, and search
time can be effectively reduced. However, for hijimensional data, the method is
not much more efficient than the brute-force seafgbproximate nearest neighbor
(ANN) search is thus proposed. Instead of findimg éxact nearest neighbors, ANN
approaches find N data points that are nearesigieesy point with high probability.
The Euclidean Locality-Sensitive Hashing (E2LSH), [fbr example, is a widely
adopted ANN approach that hashes similar high-dgiegxal data points into the
same bucket with high probability. However, memageded to store the indexing
structure of E2LSH is critical. For applicationscbuas large-scale scene recognition
or content-based image retrieval, the trade-ofhefmory usage of indexing structure
and search efficiency becomes severe.

Jegou et al. [3] propose a scheme called produmttquation (PQ) to construct a
large codebook with little cost. The concept is“decompose a high-dimensional
space into a Cartesian product of low-dimensiom@ces and to quantize each
subspace separately.” A high-dimensional vecto= (1,23, ..., zp) is first divided
into lower-dimensional subvectors {u1,ug, ..., Uy} , where
Wi = (L(—\)xd+1> L(i-1)xd+2s - Lixd) 1S theith d-dimensional subvectory < D.
For the training vectorgz},_,, their ith corresponding subvectorgu;} are
collected and clustered by the K-means algorithnfoton a small codebook. The
codebooks constructed based on each set of subvemte then combined by the
Cartesian product to form a large codebook. Thiese effectively constructs a
large codebook for multidimensional indexing. PQs Heeen demonstrated to be
scalable to large amount of data [3] and suitabliedbile visual search [9].

Overall, PQ significantly reduces the time requitedcconstruct a large codebook,
reduces the influence of the curse of dimensionadihd reduces the memory space
for storing the codebook. As stated in [3], perfante of PQ can be analyzed from
the following three aspects, but the authors didcoaduct deep investigation in their
paper.
® The way to splitting vectors
® The dimension of subvectors
® The number of quantization levels for each subdment

Details of these factors will be described in thlextnsection. In this paper, we
describe images by bag of visual words based omusrcodebooks, which are
constructed by product quantizers based on diffesettings. We investigate how
different codebooks affect performance of conteagdn image retrieval. From
experimental results, we make a few suggestionsddebook construction.

In the following text, we briefly describe prodwptantization and the issues to be
addressed in Section 2. Section 3 describes ei@iuaettings, including feature
extraction and construction of product quantizéfatious experimental results and
discussion are provided in Section 4, followed iy ¢onclusion in Section 5.

2 Product Quantization

Let z € R? be a query vector andy = {y,,...,y,} be the set of vectors in a
database. We wish to find the nearest neighbor dfom the database. By the
definition of asymmetric distance [3], the approaim distance betweem and a
database vectoy, is computed as

(J’C(:B7y7l)2 - HCB - qc(y,;)|\2, (1)
where ¢.(-) denotes a quantizer witi centroids. The vector; = ¢.(y;) € B¢ is
encoded bylog, K bits if K is a power of 2.

The approximate nearest neighbormfis obtained by minimizing the distance

NN, (z) = arg min||z — q.(y;)]| 2

Note that the “asymmetric” distance means the queigtor z is not quantized,
but the database vectay; is. The results reported in [3] show that the aswatnic
version significantly outperforms the symmetric sien (quantizing both the query
vector and database vectors) in terms of memorgeuaad search accuracy.

To obtain good approximation, the number of quatiin levels K should be
large. For exampleK = 2% if a 64-bit code is desired. However, learningtsa
big codebook needs tremendous computation, anthgt@f* centroids in floating
points is not feasible. The work in [3] addresdw@s tssue by decomposing a high-
dimensional space into a Cartesian product of lowedsional subspaces, and
quantizes each subspace separately. A databas® yeet R? is first equally split
into m subvectorsy’, ...,y™ € R¥™_ A product quantizer is defined as a function

ac(y) = (¢" ("), ... a™(y™)), 3)
which maps the vectoy to a tuple of indices. Each quantizet(-) has K
guantization levels, and is learned by the K-mealgerithm based on the set of the
jth subvectors{y?} in the database.

With the product quantization scheme, the comtomatif ¢, j = 1,...,m, forms

a large codebook consisting éf = (K ;)™ centroids. The square distance in eg. (1)
is calculated using the decompaosition

de(z,9,)* = |2 — q(y)IIP = 22T 127 — ¢ ()11, (4)
where z/ is the jth subvector ofz. Before calculating the distance described in eq.
(4), m tables are constructed for a given query. Foritheentry of the jth table,
the distance between the subvectsr and theith centroid of¢’, i = 1,..., K, is
stored. The complexity of table generatiorazé% xmx Ky)=0(d x Kg). When
K, < n, this complexity can be ignored compared to thenrsation cost of
O(d x n) ineq. (1).

To briefly describe the idea of product quantizatioboth [3] and the
aforementioned example assume that a high-dimealsi@ttor is equally split into
m subvectors. However, different splitting schemesy have significantly different
performance. We can investigate a product quantiaer three aspects:

® The way to splitting vectors: It would be betteatthdifferent subvectors are
uncorrelated. On the contrary, consecutive comptsnene usually correlated, and
they are better quantized using the same subgeantiz

® The dimension of subvectors: Dimensions of subvecstiould be appropriately
chosen to avoid the curse of dimensionality.

® The number of quantization levels for each subgmantNumbers of quantization
levels for different subvectors may be differergpending on the “importance” of
corresponding subvectors for a given task.

It is obvious that these three issues are not iedidgnt. In [3], by equally splitting
SIFT descriptors [4] and GIST descriptors [5] irftur or eight subvectors, the

authors verify that different component groupingesoes give significantly different
performance. They just briefly discuss the firsus. In this paper, we would deeply
investigate search accuracy and memory usage filadheae three aspects.

3 Evaluation Settings

3.1 Dataset and Features

Similar to [3], we extract feature vectors fromethrdatasets: learning, database, and
qguery. The learning set comes from the first 10@&ges of the MIRFLICKR image
collection [6]. Based on the learning set, varipusduct quantizers are constructed.
Both the database set and the query set are frerhitiidays image collection [7].
Given a query image, we would like to find its restrimages, based on the
representation with product quantization. Figurshbws some sample images from
the Holidays image collection. They were all captliby amateur photographers with
low-end cameras. In retrieving nearest images, softthem are relatively simpler
(the left part of Figure 1), and some of them atteegnely challenging (the right part).

In contrast to [3], we extract pyramid of histograforiented gradients (PHOG)
[8] to describe images. For each image, orientadignts are first computed using a
3 x 3 Sobel mask with Gaussian smoothing. Orientatidnsxels are quantized into
B bins. For a given image region, Za-dimensional histogram of oriented gradients
(HOG) can be constructed. To form the levepyramid, the image is divided int2*
cells horizontally and vertically. The final levef PHOG descriptor is a
concatenation of all HOG descriptors extracted froglls in levelsO,1,.... 7.
Therefore, for example, a level 1 PHOG descriptoas hdimension of
(20 x 29 42! x 21) x B=5B, and a level 2 PHOG descriptor has dimension of
(1+4+16) x B=21B.

Figure 2 illustrates examples of level 1 PHOG ancel 2 PHOG if B = 16. The
first 16 components (denoted W) in level 1 PHOG correspond to the HOG of the
cell in level 0, and the following 64 componenteridted byh:) correspond to the
HOG of the 4 cells in level 1. Similarly, the 1&86 components (denoted i) in
level 2 PHOG correspond to HOG of the 16 cellsirel 2.

The reasons to use PHOG for evaluation are thigrdift scales of information are
concatenated as a high-dimensional vector, and eoems in different dimensions
are often not independent. Figure 3 shows two saropirelation matrices between
components in different dimensions of level 1 PH&T@ level 2 PHOG, respectively.
We clearly see that some dimensions are correlated, from the viewpoint of
subvector splitting, they are better categorized the same subvector. In contrast to
SIFT that just encodes gradient information of ealgpatch and GIST that encodes
the global shape distribution, we can design mualremvariations of splitting

schemes for PHOG, and investigate how quantizatidimn levels and across levels
affect the performance.

Query ! Nearest neighbor Query i Nearest neighbor

Fig. 1. Sample images from the Holidays image collection.

P

Level 1 PHOG } i |
ho ha 336-dim
//,/ 256-din\
Level 2 PHOG | ! f \:
hy ' hy ! hy

Fig. 2. lllustration of level 1 PHOG and level 2 PHOG.

Fig. 3. Two sample correlation matrices for the level 10 (left) and level 2 PHOG (right).
Gradients in both PHOGs are quantized into 32 bins.

3.2 Experiment Settings

We design experiments to investigate how diffengrdduct quantization schemes
influence the performance of nearest image seditwd.search quality is measured by

recall@100, i.e., the proportion of query vectass Which the nearest neighbor is
ranked in the first 100 positions [3]. To constrdifferent PHOGS, the orientation of
gradients is quantized into 16 or 32 bils= 16 or 32). Two levels of PHOGs, i.e.,

level 1 and level 2, are extracted for evaluatibable 1 shows the overview of our
experiment settings.

Two main factors determine how we implement produantization: how to split
a high-dimensional vector into subvectors, andehgth of code using to represent a
subvector (the number of quantization level of esulbquantizer determines the code
length). By varying the two factors, we divide @xperiments into three categories:

® Category 1: A vector is equally divided inte subvectors, and for different
subquantizers the same number of quantizationdagalsed. As shown in Table
1, a level 1 PHOG may be equally divided into 5, di020 subvectors. Note that
the first two of the 10 subvectors, for examplarespond to the HOG of the cell
at level 0. That is, thévy in Figure 2 is split into two subvectors; and v;.
Components in the same subvectar : = 0, 1, belong to the same level of HOG.
However, the components, convey information of orientations different from
that conveyed by the componentsan. A level 2 PHOG may be equally divided
into 21, 42, or 84 subvectors.

® Category 2: A vector is equally divided inte. subvectors, but for different
subquantizers different humbers of quantizationelevare used. In the first
subcategory Category 2-1, taking the same instascdéCategory 1, we may
respectively construct a subquantizer with 16 gaatibn levels forvy and vy,
and respectively construct a subquantizer with 3fantjzation levels for
vg, ..., 9. In the second subcategory Category 2-2, oppwgsitee numbers of
guantization levels fromvg to vg change from large to small.

® Category 3: A vector is unequally divided into subvectors, and for different
subquantizers the same number of quantizationdeselised. The level HOG
hy is equally split into two subvectors. That is, fotevel 2 PHOG hy, h;, and
h, are split into six subvectordwy, v1}, {vs,vs}, and {vy, v5}, respectively.
If B =16, the dimensions of the three sets of subvectozs8ar32, and 128,
respectively. Note thaty and v, respectively represents half of orientation
information of level 0 HOG. The subvectors and v; respectively represents
the level 1 HOG in the left half and right half ai image (please refer to [8] for
details of PHOG). We can further equally split eastibvectors into shorter
subvectors. In this category, dimensions of sulmreatorresponding to different
levels are different.

Table 1. Overview of experiment settings. The bold-facethhars correspond to the examples
we give in the text.

#bins of HOG | PHOG #subvectorsr) | #quantization levels
levels
Catl {16, 32} {1,2} {5,10,20} {8,16,32,64,128}
{21,42,84}
Cat 2-1| {16,32} {1,2} {5,10,20} {(8,16), (186, 32),
{21,42,84} (32,64)}
{(8,16,32)
(16,32, 64),
(32,64,128)}
Cat2-2| {16,32} {1,2} {5,10, 20} (64, 32), (32, 16),
{21,42, 84} (16,8)}
(128,64, 32)
(64, 32,16),
(32,16,8)}

4 Experiments

4.1 Experiment Settings

We first describe performance variations of différsplitting schemes, i.e., Category
1 vs. Category 3. In Category 1, subvectors coarding to different levels have the
same dimension, while in Category 3, subvectorsesponding to level O have lower
dimension than that corresponding to level 1, andrs

Figure 4 shows performance variations of differsplitting schemes, based on
level 1 and level 2 PHOGs. From both subplots, {earcsee that with non-uniform
splitting (Category 3), we achieve the same recal@with shorter code lengths than
that based on uniform splitting (Category 1). Tinénd conforms to studies in many
multimedia applications. Generally, slightly bet@rformance is obtained based on
PHOGs with gradients quantizing into 32 bins. Wsoabbserve that level 2 PHOGs
provide slightly better performance. Therefore,tive following experiments, we
mainly do performance comparison based on level HO®s with gradients
guantizing into 32 bins.

4.2 Number of Quantization Intervals

Experiments in Category 2 are designed to invetstigaw numbers of quantization
intervals for different levels of HOG influence tinearest image search. Figure 5
shows performance variations of experiments in @ate2-1 and Category 2-2. As
we can see, Category 2-2 obviously provides bggeformance because the same

search accuracy can be achieved based on codésrtérslengths. In Category 2-2,
coarse representations of HOGs (levels 0/1) aresrfioely quantized. This figure

reveals a fact about product quantization thatrteagr been verified before: we are
able to derive a more effective descriptor if mongortant information (in this case,

lower level HOGS) is quantized more finely.

Category 1 vs. Category 3 (Level 1 PHOG)

8-

751

70F
651
S
o
S 60+
9
©
o
o 551
sor @~ Cat1-16bins
—&— Cat3-16bins
-8 Cat1-32bins
45 —¥— Cat3-32bins
0 20 40 60 80 100 120 140
Category 1 vs. Category 3 (Level 2 PHOG)

S
o
=)
9
©
o
@ 60+
4 3
sl - Cat1-16bins
A —&— Cat3-16bins
<@ Cat1-32bins
J —%— Cat3-32bins

0 1(‘10 260 360 4(I)O 560

code length (bits)

Fig. 4. Performance comparison of Category 1 vs. Categogxp@riments, based on level 1
(top) and level 2 (bottom) PHOGs.

50

Category 2-1 vs. Category 2-2 (Level 2 PHOG)
80

78

76+ >

74t - ~

~
N

Recall @100 (%)
~
o

100 200 300 400
code length (bits)

Fig. 5. Performance comparison of two experiments in Cayegobased on level 2 PHOGs.

4.3 Thelnfluence on Retrieval Rank

All experiments described above and the ones regom [3] show retrieval
performance in terms of recall@100, but not refldmw different product
guantization schemes influence the rank of rettiessults. Based on the Category 2
settings, we evaluate the rank of the first colyertrieved image for each query.
Figure 6 shows the average rank versus code lengties curves again show that
Category 2-2 provides better retrieval results,abee lower rank values mean this
representation more accurately captures the claistats of images. Combining the
results in Figures 5 and 6, we know that if mor@antant information is quantized
more finely, both recall (represented by recall@if00Figure 5) and precision
(represented by rank values in Figure 6) can beduga.

Category 2-1 vs. Category 2-2 (Level 2 PHOG)

160

150

140+

1301

average rank

120+

1101

100 . L . I ,
0 100 200 300 400 500 600

code length (bits)
Fig. 6. Average retrieval rank of two experiments in Catgdt based on level 2 PHOGs.

5 Conclusion

In this paper we design experiments to deeply igate how different product

guantization schemes influence the performancesafast image retrieval. Based on
the PHOG descriptors, three categories of expetgnare conducted for evaluating
the factors of how subvectors are split and howvsotors are quantized. The
experimental results reveal some information tred hot been verified before: 1)
appropriate nonuniform splitting yields better penfiance; 2) if more important

information is quantized more finely, both recatidaprecision can be improved. In
the future, product quantization can be applieddplications with large-scale nearest
neighbor search, with appropriate designs of smijithnd subvector quantization.

Acknowledgement. The work was partially supported by the NationalieSce
Council of Taiwan, Republic of China under researchtract NSC 101-2221-E-194-
055-MY2.

References

1. Friedman, J.H., Bentley, J.L., and Finkel, R.A.: Agogithm for finding best matches in
logarithmic expected time. ACM Trans. on Mathemat®aftware (1977), vol. 3, no. 3,
pp. 209-226.

2. Datar, M., Immorlica, N., Indyk, P., and Mirrokn\,: Locality-sensitive hashing scheme
based on p-stable distributions. Proc. of Annuahfysium on Computational Geometry
(2004), pp. 253-262.

3. Jegou, H., Douze, M., and Schmid, C.: Product gmatitin for nearest neighbor search.
IEEE Trans. Pattern Analysis and Machine Intellge(2011), vol. 33, no. 1, pp. 117-128.

4. Lowe, D.: Distinctive image features from scaledriant keypoints. International Journal
of Computer Vision (2004), vol. 60, no. 2, pp. 9011

5. Oliva, A., and Torralba, A.: Modeling the shapetlod scene: a holistic representation of
the spatial envelope. International Journal of CapVMision (2001), vol. 42, no. 3, pp.
145-175.

6. Huiskes, M.J., and Lew, M.S.: The MIR Flickr retréévevaluation. Proc. of ACM
International Conference on Multimedia Informatiorti®wal (2008), pp. 39-43.

7. Jegou, H., Douze, M., and Schmid, C.. Hamming emingdénd weak geometric
consistency for large scale image search. Pro&Eurbpean Conference on Computer
Vision (2008).

8. Bosch, A, Zisserman, A., and Munoz, X.: Represenshgpe with a spatial pyramid
kernel. Proc. of ACM International Conference on Imagd Video Retrieval (2007), pp.
401-408.

9. Wang, C., Duan, L.-Y., Wang, Y., and Gao, W.: PQ-WIBL: A bit-rate scalable local
feature descriptor. Proc. of IEEE International féoence on Acoustics, Speech, and
Signal Processing (2012), pp. 941-944.

10. wang, M., Hua, X.-S., Tang, J., and Hong, R.: Beyatidtance measurement:
constructing neighborhood similarity for video atatmn. IEEE Transactions on
Multimedia, vol. 11, no. 3, pp. 465-476, 2009.

11. Wang, M., Yang, K., Huan, X.-S., and Zhang, H.-Dowards a relevant and diverse
search of social images. IEEE Transactions on kheltiia, vol. 12, no. 8, pp. 829-842,
2010.

