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Abstract. Product quantization is an effective quantization scheme, with that a 
high-dimensional space is decomposed into a Cartesian product of low-
dimensional subspaces, and quantization in different subspaces is conducted 
separately.  We briefly discuss the factors for designing a product quantizer, 
and then design experiments to comprehensively investigate how these factors 
influence performance of image search. By this evaluation we reveal design 
principles that have not been well investigated before.  
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1   Introduction 

Measuring distances, e.g., Euclidean distances, between data points is a fundamental 
step for data clustering, classification, and retrieval. In many applications, such as 
video annotation [10] and image retrieval [11], with such distances the nearest 
neighbors to a query data point are thus determined. However, in many multimedia 
applications, we have to process tremendous amount of high-dimensional data points. 
Exact and exhaustive distance measurement thus suffers from efficiency issues and 
curse of dimensionality.  

Rich methods have been proposed for efficient multidimensional indexing. For 
example, the KD-tree [1] describes data points by dividing the data space, and search 
time can be effectively reduced. However, for high-dimensional data, the method is 
not much more efficient than the brute-force search. Approximate nearest neighbor 
(ANN) search is thus proposed. Instead of finding the exact nearest neighbors, ANN 
approaches find N data points that are nearest to a query point with high probability. 
The Euclidean Locality-Sensitive Hashing (E2LSH) [2], for example, is a widely 
adopted ANN approach that hashes similar high-dimensional data points into the 
same bucket with high probability. However, memory needed to store the indexing 
structure of E2LSH is critical. For applications such as large-scale scene recognition 
or content-based image retrieval, the trade-off of memory usage of indexing structure 
and search efficiency becomes severe.  



Jegou et al. [3] propose a scheme called product quantization (PQ) to construct a 
large codebook with little cost. The concept is to “decompose a high-dimensional 
space into a Cartesian product of low-dimensional spaces and to quantize each 
subspace separately.” A high-dimensional vector  is first divided 
into lower-dimensional subvectors , where 

 is the ith -dimensional subvector, . 
For the training vectors , their ith corresponding subvectors  are 
collected and clustered by the K-means algorithm to form a small codebook. The 
codebooks constructed based on each set of subvectors are then combined by the 
Cartesian product to form a large codebook. This scheme effectively constructs a 
large codebook for multidimensional indexing. PQ has been demonstrated to be 
scalable to large amount of data [3] and suitable to mobile visual search [9].  

Overall, PQ significantly reduces the time required to construct a large codebook, 
reduces the influence of the curse of dimensionality, and reduces the memory space 
for storing the codebook. As stated in [3], performance of PQ can be analyzed from 
the following three aspects, but the authors did not conduct deep investigation in their 
paper.  

� The way to splitting vectors 

� The dimension of subvectors 

� The number of quantization levels for each subquantizer 

Details of these factors will be described in the next section. In this paper, we 
describe images by bag of visual words based on various codebooks, which are 
constructed by product quantizers based on different settings. We investigate how 
different codebooks affect performance of content-based image retrieval. From 
experimental results, we make a few suggestions for codebook construction.  

In the following text, we briefly describe product quantization and the issues to be 
addressed in Section 2. Section 3 describes evaluation settings, including feature 
extraction and construction of product quantizers. Various experimental results and 
discussion are provided in Section 4, followed by the conclusion in Section 5. 

2   Product Quantization 

Let  be a query vector and  be the set of vectors in a 
database. We wish to find the nearest neighbor of  from the database. By the 
definition of asymmetric distance [3], the approximate distance between  and a 
database vector  is computed as 

,  (1) 
where  denotes a quantizer with  centroids. The vector  is 
encoded by  bits if  is a power of 2.  

The approximate nearest neighbor of  is obtained by minimizing the distance  



.  (2) 

Note that the “asymmetric” distance means the query vector  is not quantized, 
but the database vector  is. The results reported in [3] show that the asymmetric 
version significantly outperforms the symmetric version (quantizing both the query 
vector and database vectors) in terms of memory usage and search accuracy.  

To obtain good approximation, the number of quantization levels  should be 
large. For example,  if a 64-bit code is desired.  However, learning such a 
big codebook needs tremendous computation, and storing  centroids in floating 
points is not feasible. The work in [3] addresses this issue by decomposing a high-
dimensional space into a Cartesian product of low-dimensional subspaces, and 
quantizes each subspace separately. A database vector  is first equally split 

into  subvectors . A product quantizer is defined as a function  
,  (3) 

which maps the vector  to a tuple of indices. Each quantizer  has  
quantization levels, and is learned by the K-means algorithm based on the set of the 
th subvectors  in the database.  

With the product quantization scheme, the combination of , , forms 
a large codebook consisting of  centroids. The square distance in eq. (1) 
is calculated using the decomposition 

,  (4) 

where  is the th subvector of . Before calculating the distance described in eq. 
(4),  tables are constructed for a given query. For the th entry of the th table, 
the distance between the subvector  and the th centroid of , , is 
stored. The complexity of table generation is . When 

, this complexity can be ignored compared to the summation cost of 
 in eq. (1).  

To briefly describe the idea of product quantization, both [3] and the 
aforementioned example assume that a high-dimensional vector is equally split into 

 subvectors. However, different splitting schemes may have significantly different 
performance. We can investigate a product quantizer from three aspects:  

� The way to splitting vectors: It would be better that different subvectors are 
uncorrelated. On the contrary, consecutive components are usually correlated, and 
they are better quantized using the same subquantizer.  

� The dimension of subvectors: Dimensions of subvectors should be appropriately 
chosen to avoid the curse of dimensionality.  

� The number of quantization levels for each subquantizer: Numbers of quantization 
levels for different subvectors may be different, depending on the “importance” of 
corresponding subvectors for a given task.  

It is obvious that these three issues are not independent. In [3], by equally splitting 
SIFT descriptors [4] and GIST descriptors [5] into four or eight subvectors, the 



authors verify that different component grouping schemes give significantly different 
performance. They just briefly discuss the first issue. In this paper, we would deeply 
investigate search accuracy and memory usage from all these three aspects. 

3   Evaluation Settings 

3.1  Dataset and Features 

Similar to [3], we extract feature vectors from three datasets: learning, database, and 
query. The learning set comes from the first 100k images of the MIRFLICKR image 
collection [6]. Based on the learning set, various product quantizers are constructed. 
Both the database set and the query set are from the Holidays image collection [7]. 
Given a query image, we would like to find its nearest images, based on the 
representation with product quantization. Figure 1 shows some sample images from 
the Holidays image collection. They were all captured by amateur photographers with 
low-end cameras. In retrieving nearest images, some of them are relatively simpler 
(the left part of Figure 1), and some of them are extremely challenging (the right part).  

In contrast to [3], we extract pyramid of histogram of oriented gradients (PHOG) 
[8] to describe images. For each image, oriented gradients are first computed using a 

 Sobel mask with Gaussian smoothing. Orientations of pixels are quantized into 
 bins. For a given image region, a -dimensional histogram of oriented gradients 

(HOG) can be constructed. To form the level  pyramid, the image is divided into  
cells horizontally and vertically. The final level  PHOG descriptor is a 
concatenation of all HOG descriptors extracted from cells in levels . 
Therefore, for example, a level 1 PHOG descriptor has dimension of 

, and a level 2 PHOG descriptor has dimension of 
.  

Figure 2 illustrates examples of level 1 PHOG and level 2 PHOG if . The 
first 16 components (denoted by ) in level 1 PHOG correspond to the HOG of the 
cell in level 0, and the following 64 components (denoted by ) correspond to the 
HOG of the 4 cells in level 1. Similarly, the last 256 components (denoted by ) in 
level 2 PHOG correspond to HOG of the 16 cells in level 2.  

The reasons to use PHOG for evaluation are that different scales of information are 
concatenated as a high-dimensional vector, and components in different dimensions 
are often not independent. Figure 3 shows two sample correlation matrices between 
components in different dimensions of level 1 PHOG and level 2 PHOG, respectively. 
We clearly see that some dimensions are correlated, and from the viewpoint of 
subvector splitting, they are better categorized into the same subvector. In contrast to 
SIFT that just encodes gradient information of a local patch and GIST that encodes 
the global shape distribution, we can design much more variations of splitting 



schemes for PHOG, and investigate how quantization within levels and across levels 
affect the performance.  
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Fig. 1. Sample images from the Holidays image collection.   
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Fig. 2. Illustration of level 1 PHOG and level 2 PHOG.  

 

Fig. 3. Two sample correlation matrices for the level 1 PHOG (left) and level 2 PHOG (right). 
Gradients in both PHOGs are quantized into 32 bins.  

3.2  Experiment Settings 

We design experiments to investigate how different product quantization schemes 
influence the performance of nearest image search. The search quality is measured by 



recall@100, i.e., the proportion of query vectors for which the nearest neighbor is 
ranked in the first 100 positions [3]. To construct different PHOGs, the orientation of 
gradients is quantized into 16 or 32 bins (  or ). Two levels of PHOGs, i.e., 
level 1 and level 2, are extracted for evaluation. Table 1 shows the overview of our 
experiment settings.  

Two main factors determine how we implement product quantization: how to split 
a high-dimensional vector into subvectors, and the length of code using to represent a 
subvector (the number of quantization level of each subquantizer determines the code 
length). By varying the two factors, we divide our experiments into three categories:  

� Category 1: A vector is equally divided into  subvectors, and for different 
subquantizers the same number of quantization levels is used. As shown in Table 
1, a level 1 PHOG may be equally divided into 5, 10, or 20 subvectors. Note that 
the first two of the 10 subvectors, for example, correspond to the HOG of the cell 
at level 0. That is, the  in Figure 2 is split into two subvectors  and . 
Components in the same subvector , , belong to the same level of HOG. 
However, the components  convey information of orientations different from 
that conveyed by the components in . A level 2 PHOG may be equally divided 
into 21, 42, or 84 subvectors.  

� Category 2: A vector is equally divided into  subvectors, but for different 
subquantizers different numbers of quantization levels are used. In the first 
subcategory Category 2-1, taking the same instance as Category 1, we may 
respectively construct a subquantizer with 16 quantization levels for  and , 
and respectively construct a subquantizer with 32 quantization levels for 

. In the second subcategory Category 2-2, oppositely, the numbers of 
quantization levels from  to  change from large to small.  

� Category 3: A vector is unequally divided into  subvectors, and for different 
subquantizers the same number of quantization levels is used. The level  HOG 

 is equally split into two subvectors. That is, for a level 2 PHOG, , , and 
 are split into six subvectors, , , and , respectively. 

If , the dimensions of the three sets of subvectors are 8, 32, and 128, 
respectively. Note that  and  respectively represents half of orientation 
information of level 0 HOG. The subvectors  and  respectively represents 
the level 1 HOG in the left half and right half of an image (please refer to [8] for 
details of PHOG). We can further equally split each subvectors into shorter 
subvectors. In this category, dimensions of subvectors corresponding to different 
levels are different.  



Table 1. Overview of experiment settings. The bold-faced numbers correspond to the examples 
we give in the text.  

 #bins of HOG PHOG 
levels 

#subvectors ( ) #quantization levels 

Cat 1    
 

 

Cat 2-1    
  

 
Cat 2-2    

 

 

4   Experiments 

4.1  Experiment Settings 

We first describe performance variations of different splitting schemes, i.e., Category 
1 vs. Category 3. In Category 1, subvectors corresponding to different levels have the 
same dimension, while in Category 3, subvectors corresponding to level 0 have lower 
dimension than that corresponding to level 1, and so on.  

Figure 4 shows performance variations of different splitting schemes, based on 
level 1 and level 2 PHOGs. From both subplots, we clear see that with non-uniform 
splitting (Category 3), we achieve the same recall@100 with shorter code lengths than 
that based on uniform splitting (Category 1). This trend conforms to studies in many 
multimedia applications. Generally, slightly better performance is obtained based on 
PHOGs with gradients quantizing into 32 bins. We also observe that level 2 PHOGs 
provide slightly better performance. Therefore, in the following experiments, we 
mainly do performance comparison based on level 2 PHOGs with gradients 
quantizing into 32 bins. 

4.2  Number of Quantization Intervals 

Experiments in Category 2 are designed to investigate how numbers of quantization 
intervals for different levels of HOG influence the nearest image search. Figure 5 
shows performance variations of experiments in Category 2-1 and Category 2-2. As 
we can see, Category 2-2 obviously provides better performance because the same 



search accuracy can be achieved based on codes of shorter lengths. In Category 2-2, 
coarse representations of HOGs (levels 0/1) are more finely quantized. This figure 
reveals a fact about product quantization that has never been verified before: we are 
able to derive a more effective descriptor if more important information (in this case, 
lower level HOGs) is quantized more finely.  

 
Fig. 4. Performance comparison of Category 1 vs. Category 3 experiments, based on level 1 
(top) and level 2 (bottom) PHOGs.  



 
Fig. 5. Performance comparison of two experiments in Category 2, based on level 2 PHOGs.  

4.3  The Influence on Retrieval Rank 

All experiments described above and the ones reported in [3] show retrieval 
performance in terms of recall@100, but not reflect how different product 
quantization schemes influence the rank of retrieval results. Based on the Category 2 
settings, we evaluate the rank of the first correctly retrieved image for each query. 
Figure 6 shows the average rank versus code lengths. The curves again show that 
Category 2-2 provides better retrieval results, because lower rank values mean this 
representation more accurately captures the characteristics of images. Combining the 
results in Figures 5 and 6, we know that if more important information is quantized 
more finely, both recall (represented by recall@100 in Figure 5) and precision 
(represented by rank values in Figure 6) can be improved.  

 
Fig. 6. Average retrieval rank of two experiments in Category 2, based on level 2 PHOGs. 



5   Conclusion 

In this paper we design experiments to deeply investigate how different product 
quantization schemes influence the performance of nearest image retrieval. Based on 
the PHOG descriptors, three categories of experiments are conducted for evaluating 
the factors of how subvectors are split and how subvectors are quantized. The 
experimental results reveal some information that has not been verified before: 1) 
appropriate nonuniform splitting yields better performance; 2) if more important 
information is quantized more finely, both recall and precision can be improved. In 
the future, product quantization can be applied to applications with large-scale nearest 
neighbor search, with appropriate designs of splitting and subvector quantization.  
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