
GPU-ACCELERATED SCENE CATEGORIZATION UNDER MULTISCALE CATEGORY-
SPECIFIC VISUAL WORD STRATEGY

Wei-Ta Chu and Sheng-Chung Tseng

National Chung Cheng University, Chiayi, Taiwan
wtchu@cs.ccu.edu.tw, bittertea0503@gmail.com

ABSTRACT

We utilize GPU to accelerate an essential component for computer
vision and multimedia information retrieval, i.e. scene
categorization. To construct bag of word models, we modify
calculation of Euclidean distance so that feature clustering and
visual word quantization can be processed in a parallel manner.
We provide details of GPU implementations and conduct
comprehensive experiments to verify the efficiency of GPU on
multimedia analysis.

Index Terms— GPU, scene categorization, multiscale
category-specific visual words

1. INTRODUCTION

Scene information provides clues about “where” a photo was
captured and “what” objects appeared. As a widespread research
field, researchers work hard on scene categorization in the past
decades. With the popularity of digital consumer devices, scene
categorization is also used in organizing home-made photos and
videos. In recent years, it is more likely considered as a basic tool
for advanced analysis. Therefore, automatic scene categorization
should be efficient and robust.

Some researches on scene categorization already reach good
accuracy rate. However, these works often need to process
tremendous amounts of data, and the time cost is high. To tackle
with these problems, we modify methods for feature extraction and
clustering, and take advantage of the GPU programming model to
reduce execution time. Contributions of this work are listed as
follows:
� Features are extracted from different scales and elaborately

combined. By clustering features, visual words are then
constructed in a category-specific manner, which is proven
more effective in scene categorization.

� Euclidean distances are calculated in a matrix form so that
GPU can be efficiently used. GPU implementations are
proposed for several sub-tasks with the consideration of
hardware limitations.
The reminder of this paper is organized as follows. In Section 2,

we exploit the category-specific visual word model to classify
scene images. GPU implementations and acceleration algorithms
are introduced. We also analyze time complexity. Performance is
reported in Section 3, and Section 4 concludes this paper.

2. GPU-ACCELERATED SCENE CATEGORIZATION
2.1. Overview

Figure 1 illustrates the system framework. In the training part,
images in the same scene are first divided into patches at different
scales, and from which SIFT features [2] are extracted. By
respectively clustering feature vectors from the same scale, visual
codebooks for different scales are generated. For a feature vector
extracted from a patch in scale , it is quantized into a visual word
by consulting the codebook also generated from scale . By jointly
considering all patches (in different scales) in an image, a scene
image is finally represented as a vector indicating appearance of
various visual words. A multi-class SVM classifier is built based
on a set of this representation. The same processes are applied to a
test image, and the trained SVM classifier is used to determine
scene type of the test image. In this paper, we focus on accelerating
feature extraction and codebook construction.

Figure 1. System framework of GPU-accelerated scene
categorization.

2.2. Feature Extraction

Inspired by [1], we divide an image into overlapped patches at
different scales in order to capture both local and global

information. At scale , the height and width of the patch are

and , where and denote the height and width of the
image, respectively. A set of patches

 are sampled from the image at scale

, where is the number of patches. Figure 2
illustrates patch sampling at different scales. At scale 1, the whole
image is considered as a patch. At scale 2, nine points are sampled
and each patch has size equal to a quarter of the whole image.

Unlike traditional SIFT descriptor extraction [2], patches may have
different sizes, and by jointly considering features at different
scales we can more appropriately describe a scene.

Figure 2. Patches at different scales.

2.3. Feature Vector Extraction

Instructions of extracting features for different patches are almost
the same except for different pixel locations, and thus can be done
in parallel. For a pixel at , , , in an
image, its edge magnitude and orientation are first
calculated. For a patch at scale , we divide it into sixteen regions,
and in each region each pixel’s orientation relative to the main
orientation is calculated. This relative orientation is then quantized
into eight intervals, and by accumulating pixels’ edge magnitudes
in one of eight orientations, we construct an eight-dimensional
orientation histogram for each region. Finally, a 128-dimensional
feature vector () is generated by cascading all
histograms to represent a patch [2].

By utilizing GPU, we process patches at the same scale in a
parallel manner. In the CUDA (Compute Unified Device
Architecture) architecture [6], device can be divided into blocks
and threads to access different portions of data. We use threads in a
block to access pixels in a patch, and use different blocks to access
different patches.

Since number of threads is limited, threads should be reused. A
thread can access different memory locations by shifting the thread
index. To generate an orientation histogram, a block of threads is
used. Threads in different blocks access different portions of
matrices and , where and . Hence,
the accessed location of every thread must be calculated precisely.

The procedures to generate orientation histograms at scale are
listed in GPU Procedure 1. In this way, feature vectors can be
computed in parallel. Note that in step 5 atomic operations in
CUDA are used to avoid a race condition.

2.4. Category-Specific Visual Word Model

In the conventional BoW model, scene images in all categories are
taken as input, and features of different scenes are mixed together.
This representation is less discriminative. In our work, images of
different categories form independent visual words to construct the
category-specific visual word model. Assume that there are
scene categories in the training set, and denotes a set
of images in the category . Features extracted at scale from
form a feature pool . Feature in this pool are then
clustered to generate a set of visual words, which can be
represented as . Feature pools from different scales are
clustered independently, and thus independent visual words are
constructed. Therefore, if or .

To take advantage of GPU computing in visual word
construction, we modify conventional vector quantization as
follows. If we want to quantize vectors into target vectors,
totally Euclidean distances are needed to compute. For two

-dimensional vectors and

, we can calculate Euclidean distance as

. (1)
The calculation is broken into smaller steps, and GPU threads can
be utilized more effectively. With the decomposed Euclidean
distance, the algorithm for quantizing vectors into targets is
shown in GPU Procedure 2 [3].

The th row of the matrix corresponds to the th
vector in the space. Each row of indicates a target vector. Line 1
to line 6 calculate sum of squares of each vector in and .
LengthsA and LengthsB are two arrays storing these vectors’
squares of L2-norms. Line 7 computes the inner product term
defined in equation (1). Note that this step is accomplished by a
matrix multiplication . Elements of are the dot
products of the vector pairs from and . From line 8 to line 16,
the vector from that is closest to a vector from is found.

GPU Procedure 2
1 → for i = 1 to n do

2 → lengthsA[i] ← // is the th row of
3 → end for
4 → for j = 1 to m do

5 → lengthsB[j] ← // is the th row of
6 → end for
7 → ← MatrixMultiply(, MatrixTranspose())
8 → for i = 1 to n do
9 → minDist ← ∞
10→ lengthA ← lenghsA[i]
11→ for j = 1 to m do
12→ d ← lengthA + lengthsB[j]－2
13→ if d < minDist then minDist ← d, best ← j
14→ end for
15→ assignTo[i] ← best
16→ end for
17→ return assignTo

GPU Procedure 1
Initial → blockIdx.x, blockIdx.y and threadIdx refer to the 2D block

index and the 1D thread index, respectively.
Step 1 → Calculate the height and width of each patch.
Step 2 → Calculate the block offset for each patch:

Step 3 → Transfer 1D thread index into a 2D coordinates threadIdx.x
and threadIdx.y:

Step 4 → Calculate the targeted access location of the thread in
and

Step 5 → Use to access and , and accumulate magnitudes and

orientations to generate the orientation histograms.
Note 1: Block offset is the offset of the first element of the patch

relative to the first element of the image.

Note 2:

� GPU Implementations
Each thread on the GPU device controls different portion of data.

Each and in this algorithm is computed by a single
thread, and all threads are executed in parallel. Hence, the two
loops from line 1 to line 6 can be done immediately in the GPU

implementation. Moreover, the value just needs to be
computed for once, and we put it into the shared memory on the
device. Accessing shared memory is much faster than that of global
memory, and we can thereby save more time especially when a
great number of shared memory access is needed.

The elements of share the row index of and the column

index of . With the CUDA architecture, all threads are indexed
in a 2D manner, and totally threads are utilized. A thread
with index can access both the th row of and the th

column of . As a result, dot products can be executed
in parallel with only one loop.

Due to hardware limitations, all 2D arrays on the GPU device
are simulated by a 1D array by shifting indices. Memory reading is
linear when we access a row of a matrix. However, when we access
a column of a matrix, memory reading becomes scattered. For this
reason, we skip the matrix transpose step, and a thread will access
a row of matrix in place of a column of in practice.

2.5. Visual Word Matching and Scene Classification

Quantizing feature points into visual words is done separately at
different scales. That is, features extracted from a specific scale
can only be quantized into the visual words generated from the
same scale . After feature quantization, each scene image is
comprised of a set of visual words from different scales.

A multi-class SVM classifier is then constructed based on
features extracted from the training data:

, (2)
where is a vector representing the th training image, and is a
label indicating one of the categories. This SVM classifier
predicts scene label by giving the vector representation of a test
image.

2.6. Complexity Analysis

In calculating edge magnitude and orientation, for CPU two loops
are used to control rows and columns, and therefore
calculations are needed. For GPU, these calculations can be done
immediately since threads are used. Magnitude and
orientation of each pixel are accumulated within a patch, and

complexity for this step is: , which
can be simplified as , where is the patch number
in scale . Likewise, complexity of the GPU implementation is
reduced to since each pixel is dealt with a thread.

We analyze time costs of the following four implementations
for vector quantization: (1) Original Euclidean distance with CPU;
(2) Original Euclidean distance plus 1D thread indices with GPU
[4]; (3) Original Euclidean distance plus 2D thread indices with
GPU [4]; (4) Our implementation. Time cost is defined as number
of operations per thread, and Table 1 lists the results. We see that
time cost of our work is much less than settings (1) and (2).
Although setting (3) has the same time complexity in terms of the
big-O notation, our work actually has less time cost since our

implementation contains a caching mechanism which not only
reduces execution time but also memory accessing time.

Table 1. Time cost of different implementations.
 (1) (2) (3) (4)
Total
operations

3nmd - 1 3nmd - 1 3nmd - 1 (nm+n+m)(2d-1) +
3nm

Utilized
threads

1 n n×m n×m + n + m

Time cost 3nmd -1 3md 3d 2d + c
Complexity O(nmd) O(md) O(d) O(d)

3. EXPERIMENTAL RESULTS

To evaluate performance, a PC with a quad-core processor (Intel
Core i7) with 3.5GB RAM plus a graphics card with a GPU
(NVIDIA Geforce GTX 580) is used. The GPU has 512 cores in
physical, and the number of available threads can be at most 1024
× 65535 when programming. We evaluate feature extraction,
vector quantization, and scene categorization based on using the
CPU only, and based on using GPU.

The scene dataset “13 Natural Scene Categories” proposed by
Fei-Fei [5] is used for evaluation. We employ a part of this dataset
which contains totally 2688 outdoor scene images from 8
categories, including coast, forest, highway, inside city, mountain,
open country, street and tall building. Resolutions of these scene
images are 256×256.

0

0.2

0.4

0.6

0.8

1

1.2

250x250 500x500 1000x1000 2000x2000

E
x

tr
a
ct

io
n

 T
im

e
 p

e
r

Im
a
g

e
 (

s)

GPU Scale 1

GPU Scale 2

GPU Scale 3

CPU Scale 1

CPU Scale 2

CPU Scale 3

Image Size
Figure 3. Average time for feature extraction.

0

5

10

15

20

25

250x250 500x500 1000x1000 2000x2000

R
a
ti

o
 o

f
S
p

e
e

d
-u

p
 (

ti
m

e
s)

Scale1

Scale2

Scale3

Image Size

0

20

40

60

80

100

120

140

300 600 1250 2500 5000

R
a
ti

o
 o

f
S
p

e
e

d
-u

p
 (

ti
m

e
s)

GPU v.s CPU - i7

CPU v.s CPU - core 2

Group Numbers
Figure 4. Ratios of speed-up for (a) feature extraction, and (b)
vector quantization.

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

300 600 1250 2500 5000

T
im

e
 P

e
r

Im
ag

e
 (

s)

GPU

CPU - i7

CPU - core2

Number of SIFT

Descripotrs Per Image
Figure 5. Time cost of vector quantization versus number of
descriptors for different implementations.

0

0.5

1

1.5

2

2.5

3

3.5

4

10 50 100 500 1000

P
ro

ce
ss

in
g

 T
im

e
 i

n
 a

 S
in

g
le

 I
te

ra
ti

o
n

 (
se

co
n

d
s)

GPU5000

GPU10000

CPU5000

CPU10000

Number of Groups

0

10

20

30

40

50

60

70

80

90

10 50 100 500 1000 5000

P
ro

cc
e

si
n

g
 T

im
e

 i
n

 a
 S

in
g

le
 i

te
ra

ti
o

n
 (

se
co

n
d

s)

GPU20000

GPU40000

CPU20000

GPU40000

Number of Groups

Figure 6. Processing time of K-means clustering with (a) upmost
10000 data points, (b) upmost 40000 data points.

3.1 Execution Speed

Figure 3 shows average time for feature extraction from images of
different sizes. Differences between CPU and GPU increase when
the image size gets larger. In fact, GPU can be at most 20 times
faster than CPU in extracting features. Figure 4(a) illustrates the
ratio of speed-up for two implementations at different scales.

In evaluating vector quantization, feature dimension is 128 and
the codebook size is 4000. Figure 5 shows time cost of vector
quantization versus number of descriptors. Performance of an
implementation based on another CPU (core 2) is also shown.
Time cost grows as the number of descriptor increases, and there is
a huge gap between three implementations. In fact, time cost of
CPU vector quantization can be at most 120 times more than that
of the GPU (Figure 4(b)).

Figure 6(a) and 6(b) show execution time with a particular
number of vectors in a single iteration of the K-means clustering.
For example, the curve “GPU5000” shows the time cost variation
for quantizing five thousands vectors into several numbers of
groups based on GPUs. Curves of the GPU implementations are
close to zero all along, and time cost of CPU implementations
increases with the group number significantly.

3.2 Performance of Classification

The 10-fold cross validation strategy is adopted to obtain average
classification performance. We compare performance between
CPU and GPU implementations based on features combining scale
1 and scale 2. As Figure 7 reveals, differences of accuracies
between the two implementations are quite small. This verifies that
our GPU-accelerated scene classification is competitive with the
CPU version without dropping in accuracy rates.

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

Coast Forest Highway Inside City Mountain Open

Country

Street Tall

Building

Average

A
cc

u
ra

cy

(%
)

CPU

GPU

Figure 7. Classification accuracies.

4. CONCLUSION

We propose a fast and efficient scene categorization system which
utilizes a category-specific visual word model and is accelerated by
GPU. A multiscale feature extraction approach is applied to jointly
capture global and local characteristics of a scene. Calculating of
Euclidean distance is modified to facilitate vector quantization
accelerated by GPUs. Theoretical analysis and experimental results
reveal that the accelerated vector quantization needs fewer
instructions. GPU implementations are proven to be 20 to 100
times faster than CPU does.

Acknowledgement

The work was partially supported by the National Science Council
of Taiwan, Republic of China under research contract NSC 100-
2221-E-194-061.

5. REFERENCES
[1] J. Qin and N. H. C. Yung. Scene Categorization with

Multiscale Category-specific Visual Words. Optical
Engineering, vol. 48, no. 4, 2009.

[2] D.G. Lowe. Object Recognition from Local Scale-invariant
Features. IEEE International Conference on Computer Vision,
vol. 2, pp. 1150-1157, 1999.

[3] K.E.A. van de Sande, T. Gevers, and C.G.M. Snoek.
Empowering Visual Categorization with the GPU. IEEE
Transactions on Circuits and Systems Society, pp. 60-70, 2011.

[4] D. Chang, N. A. Jones, D. Li and M. Quyang. Compute
Pairwise Euclidean Distances of Data Points with GPUs.
IASTD International Conference on Intelligent Systems and
Control, pp 278-283, 2008.

[5] 13 Natural Scene Categories Dataset,
http://vision.stanford.edu/resources_links.html

[6] J. Sanders and E. Kandrot. CUDA by Example: An
Introduction to General-purpose GPU Programming. NVIDIA
Corporation, 2010.

