GPU-ACCELERATED SCENE CATEGORIZATION UNDER MULTISCALE CATEGORY -
SPECIFIC VISUAL WORD STRATEGY

Wei-Ta Chu and Sheng-Chung Tseng

National Chung Cheng University, Chiayi, Taiwan
wtchu@cs.ccu.edu.tw, bittertea0503@gmail.com

ABSTRACT

We utilize GPU to accelerate an essential compofogrdgomputer
vision and multimedia information retrieval, i.e.cese
categorization. To construct bag of word models, medify
calculation of Euclidean distance so that featutestering and
visual word quantization can be processed in allpamaanner.
We provide details of GPU implementations and cehdu
comprehensive experiments to verify the efficiermfyGPU on
multimedia analysis.

Index Terms— GPU, scene categorization, multiscale
category-specific visual words

1. INTRODUCTION

Scene information provides clues about “where” atphwas
captured and “what” objects appeared. As a widespresearch
field, researchers work hard on scene categorizatiothe past
decades. With the popularity of digital consumevicks, scene
categorization is also used in organizing home-njalu®tos and
videos. In recent years, it is more likely conséders a basic tool
for advanced analysis. Therefore, automatic scextegorization
should be efficient and robust.

Some researches on scene categorization already gged
accuracy rate. However, these works often need rmcegs
tremendous amounts of data, and the time costgis. fio tackle
with these problems, we modify methods for feaexeaction and
clustering, and take advantage of the GPU progragmmodel to
reduce execution time. Contributions of this worle dsted as
follows:
® Features are extracted from different scales aaboehtely
combined. By clustering features, visual words &hen
constructed in a category-specific manner, whichprigven
more effective in scene categorization.

Euclidean distances are calculated in a matrix feonthat
GPU can be efficiently used. GPU implementationge ar
proposed for several sub-tasks with the consideraof
hardware limitations.

The reminder of this paper is organized as folldwsSection 2,
we exploit the category-specific visual word model classify
scene images. GPU implementations and acceleratgnrithms
are introduced. We also analyze time complexityfdPmance is
reported in Section 3, and Section 4 concludespéer.

2. GPU-ACCELERATED SCENE CATEGORIZATION
2.1. Overview

Figure 1 illustrates the system framework. In thening part,
images in the same scene are first divided intohet at different
scales, and from which SIFT features [2] are elthc By
respectively clustering feature vectors from thmeacale, visual
codebooks for different scales are generated. Heatare vector
extracted from a patch in scalgeit is quantized into a visual word
by consulting the codebook also generated fromescaBy jointly
considering all patches (in different scales) inimage, a scene
image is finally represented as a vector indicatipgearance of

various visual words. A multi-class SVM classifisrbuilt based

on a set of this representation. The same processexpplied to a

test image, and the trained SVM classifier is usedietermine

scene type of the test image. In this paper, wes@n accelerating

feature extraction and codebook constructipn.

gl
E Testingimage Training Images ﬁ g
1 ‘l' =

¥ i
{ Partition Images into Patches at Different Scales]
v ! ¥
[Extract Featurés from Patches]
I
|
i st alliorc Visual Word
T Codebook
[Visual Wor‘ﬂ Matching](—
v ! v
{ Feature Vecth'r Compilation]

Scene
Type

GPU-accelerated

[Scene Classification by Support Vector Machine]—)

Figure 1. System framework of
categorization.

scene

2.2. Feature Extraction

Inspired by [1], we divide an image into overlappeatches at
different scales in order to capture both local agidbal

information. At scales, the height and width of the patch %l‘g—r

and%, whered andW denote the height and width of the
image, respectively. A set of patches
Ps=4{Ps1,Ps2,.... Ps o, } are sampled from the image at scale
s, wherens; = (2% — 1)2 is the number of patches. Figure 2
illustrates patch sampling at different scalessédle 1, the whole
image is considered as a patch. At scale 2, ninggare sampled
and each patch has size equal to a quarter of Hwewmage.

Unlike traditional SIFT descriptor extraction [Patches may have
different sizes, and by jointly considering featurat different
scales we can more appropriately describe a scene.

T | 17

Scale 1 Scale 3

Figure 2. Patches at different scales.

Scale 2

GPU Procedure 1
Initial — blockldx.x, blockldx.y and threadlidx refer to the 2D block
index and the 1D thread index, respectively.
Step 1— Calculate the height/;, and width¥4, of each patch.
Step 2— Calculate the block offs&®, for each patch:
Oy = blocklds.z x F xw
Step 3— Transfer 1D thread index into a 2D coordindhesadl dx.x

andthreadldx.y:
threadldz.x = threadldx/H),

threadldz.y = threadldr mod W,
Step 4— Calculate the targeted access location of thethg in A
andR
O = Op + threadldz.x x W + Threadldz.y
Step 5~ UseO,, to access¥ andR, and accumulate magnitudes and
orientations to generate the orientation histograms
Note 1: Block offset is the offset of the firstlent of the patch
relative to the first element of the image.
1, ifs=1,

25 otherwise.

Note 2:ns = {

1

2.3. Feature Vector Extraction

Instructions of extracting features for differerstghes are almost
the same except for different pixel locations, #mas can be done
in parallel. For a pixel dt,7),1 <i<W,1<j <H, inan
image, its edge magnitud&f; ; and orientation; ; are first
calculated. For a patch at scaleve divide it into sixteen regions,
and in each region each pixel's orientation retatfe the main
orientation is calculated. This relative orientatie then quantized
into eight intervals, and by accumulating pixeldge magnitudes
in one of eight orientations, we construct an emjhensional
orientation histogram for each region. Finally, 284imensional
feature vector {6 x 8 = 128) is generated by cascading all
histograms to represent a patch [2].

By utilizing GPU, we process patches at the sanaeso a
parallel manner. In the CUDA (Compute Unified Devic
Architecture) architecture [6], device can be déddinto blocks
and threads to access different portions of datu¥é threads in a
block to access pixels in a patch, and use diffdsatks to access
different patches.

Since number of threads is limited, threads shbeldeused. A
thread can access different memory locations hirshithe thread
index. To generate an orientation histogram, akblfcthreads is
used. Threads in different blocks access diffengottions of
matricesM and R, whereM = [M, ;] andR = [R; ;]. Hence,
the accessed location of every thread must be lesédcliprecisely.

The procedures to generate orientation histogranscales are
listed in GPU Procedure 1. In this way, feature vectors can be
computed in parallel. Note that in step 5 atomi@ragons in
CUDA are used to avoid a race condition.

2.4. Category-Specific Visual Word M odel

In the conventional BoW model, scene images ircatigories are
taken as input, and features of different scenesrixed together.
This representation is less discriminative. In wark, images of
different categories form independent visual wdadsonstruct the
category-specific visual word model. Assume thatréhareX
scene categories in the training set, Ghd= {I,} denotes a set
of images in the categofy. Features extracted at scalécom C'
form a feature pooF) = {f7}. Feature in this pool are then
clustered to generate a set of visual words, whieim be
represented ag’ = {v}}. Feature pools from different scales are
clustered independently, and thus independent visoads are
constructed. Thereford” (V' = 0 if 51 # sz ori # j.

To take advantage of GPU computing in visual word
construction, we modify conventional vector quaatian as
follows. If we want to quantize vectors intom target vectors,
totally n x rn Euclidean distances are needed to compute. For two
d -dimensional vectors U = (w1, U2, s Ug) and
V= (1,71, V2, enny 11,1), we can calculate Euclidean distance as

1T~ =VIwR+ v -2d 7. @
The calculation is broken into smaller steps, aflJGhreads can
be utilized more effectively. With the decomposedclilean
distance, the algorithm for quantizimgvectors intorn targets is
shown in GPU Procedure 2 [3].

The ith row of then x d matrix A corresponds to théth
vector in the space. Each rowBfindicates a target vector. Line 1
to line 6 calculate sum of squares of each veatod iand B.
LengthsA and LengthsB are two arrays storing thesetors’
squares of L2-norms. Line 7 computes the inner ycoderm
defined in equation (1). Note that this step isoagglished by a
matrix multiplication P = ABT . Elements ofP are the dot
products of the vector pairs fror and 3. From line 8 to line 16,
the vector fromB that is closest to a vector froshis found.

GPU Procedure 2

1—fori=1tondo

2—> lengthsA[] < ||u;||? // u; is theith row of A
3— end for

4— for j=1tomdo

5 lengthsB[j]<||7;||? // v; is thejth row of B
6 — end for

7 — P < MatrixMultiply(-4, MatrixTransposeg))

8— fori=1tondo

9— minDist < oo

10—~ lengthA< lenghsA[]

11— for j =1 tomdo

12— d < lengthA + lengthsB[—2 £; ;

13— if d < minDistthen minDist < d, best— |
14—~ end for

15—~ assignTal] < best

16— end for

17— return assignTo

® GPU Implementations
Each thread on the GPU device controls differemtigo of data.

Each||#; || % and||v; || in this algorithm is computed by a singl

implementation contains a caching mechanism whioh anly
reduces execution time but also memory accessing ti
Table 1. Time cost of different implementations.

thread, and all threads are executed in parallehcH, the two

loops from line 1 to line 6 can be done immediaielfthe GPU

implementation. Moreover, the valdgs; || just needs to be
computed for once, and we put it into the sharedhamg on the

device. Accessing shared memory is much fasterttietrof global

memory, and we can thereby save more time especidien a

1) 2 (3 4
Total 3nmd-1| 3nmd-1 | 3nmd-1 | (hm+n+m)(2d-1) +
operations 3nm
Utilized 1 n nxm nxm+n+m
thread
Time cos 3nmd-1 | 3mc 3d 2d + ¢
Complexity | O(hmd) O(md) O(d) O(d)

great number of shared memory access is needed.

The elements of share the row index of and the column
index of B, With the CUDA architecture, all threads are ingtx
in a 2D manner, and totalty x 7n threads are utilized. A thread
with index (%, j) can access both thigh row of A and thejth
column of BT, As a resultp x m dot products can be executed
in parallel with only one loop.

Due to hardware limitations, all 2D arrays on theUsdevice
are simulated by a 1D array by shifting indices.nMdey reading is
linear when we access a row of a matrix. Howevlemwe access
a column of a matrix, memory reading becomes geattd-or this
reason, we skip the matrix transpose step, andeadhwill access
a row of matrixZ3 in place of a column aB*"in practice.

2.5. Visual Word M atching and Scene Classification

Quantizing feature points into visual words is daeparately at
different scales. That is, features extracted feospecific scale
can only be quantized into the visual words geeerdtom the

same scales. After feature quantization, each scene image is

comprised of a set of visual words from differectles.
A multi-class SVM classifier is then constructedsé@ on
features extracted from the training data:

D= {(zi,y)ly: € {1, 2... K}}},,)
wherez; is a vector representing thi training image, ang; is a
label indicating one of thé(categories. This SVM classifier
predicts scene label by giving the vector repregent of a test
image.

2.6. Complexity Analysis

In calculating edge magnitude and orientation,G&U two loops
are used to control rows and columns, and therefbre W
calculations are needed. For GPU, these calcuktian be done
immediately sincefd x W threads are used. Magnitude and
orientation of each pixel are accumulated withirpatch, and
complexity for this step iSO(K, X 5t X 5ot + ¢), which
can be simplified a&(K;HW), whereK is the patch number
in scales. Likewise, complexity of the GPU implementation is

reduced td)(1 + ¢) since each pixel is dealt with a thread.

We analyze time costs of the following four implertaions
for vector quantization: (1) Original Euclideantdisce with CPU;
(2) Original Euclidean distance plus 1D thread d¢edi with GPU
[4]; (3) Original Euclidean distance plus 2D threadices with
GPU [4]; (4) Our implementation. Time cost is defihas number
of operations per thread, and Table 1 lists thalt®sWe see that
time cost of our work is much less than settings dfd (2).
Although setting (3) has the same time complexityerms of the
big-O notation, our work actually has less timetcsieice our

3. EXPERIMENTAL RESULTS

To evaluate performance, a PC with a quad-coreessmr (Intel
Core i7) with 3.5GB RAM plus a graphics card withGPU
(NVIDIA Geforce GTX 580) is used. The GPU has 51®es in
physical, and the number of available threads @athmost 1024
x 65535 when programming. We evaluate feature et
vector quantization, and scene categorization basedsing the
CPU only, and based on using GPU.

The scene dataset “13 Natural Scene Categoriegiopenl by
Fei-Fei [5] is used for evaluation. We employ atpdirthis dataset
which contains totally 2688 outdoor scene imagesmfr8
categories, including coast, forest, highway, iasiity, mountain,
open country, street and tall building. Resoluti@fighese scene
images are 256x256.

500x500 1000x1000 2000x2000

mGPU Scale 1

)
®

mGPU Scale 2
BGPUScale 3

°
S

HCPU Scale 1

°
=

EICPU Scale 2

Extraction Time per Image (s)

TCPU Scale 3

o
o

0

250x250 Image Size

Figure 3. Average time for feature extraction.

)] —a

3
£ s
‘:" ® 80
H — 5
2 T
& 10 § 60
,g —#—Scalel s == GPU v.s CPU - i7
¢ H
E

—8—CPU v CPU - core 2

Scale3

250x250 500x500 1000x1000 2000x2000 300 600 1250 2500 5000

Image Size Group Numbers

Figure 4. Ratios of speed-up for (a) feature esimac and (b)
vector quantization.

16.00
14.00

1200

10.00

8

Time Per Image (s)

8

Number of SIFT
5000 Descripotrs Per Image

Figure 5. Time cost of vector quantization versusnber of
descriptors for different implementations.

300 600 1250 2500

~

S~

=4 GPU5000 /
- GPU10000 /

/
/
/
/:ﬂi

¥ L
10 50 100 500
Number of Groups

w

=>&=CPU10000

N}
~ n

=
n

o

Processing Time in a Single Iteration (seconds)

<
@

o

1000

90

80

40
30 /
20

10 /[

10 50 100 500

v

3

8§ =#=GPU20000 f
8 70

H ==~ GPU40000 /
% 60

]

= CPU20000 /
°

w50

@ —3=GPU40000

£

©

£

15

w

£

g

g

&

1000 5000

Number of Groups

Figure 6. Processing time of K-means clusterindhw#) upmost
10000 data points, (b) upmost 40000 data points.

3.1 Execution Speed

Figure 3 shows average time for feature extradiiom images of
different sizes. Differences between CPU and GRigesse when
the image size gets larger. In fact, GPU can beagt 20 times
faster than CPU in extracting features. Figure 4(ajtrates the
ratio of speed-up for two implementations at déferscales.

In evaluating vector quantization, feature dimens®128 and
the codebook size is 4000. Figure 5 shows time obstector
quantization versus number of descriptors. Perfaomaof an
implementation based on another CPU (core 2) is alown.
Time cost grows as the number of descriptor in@gaand there is
a huge gap between three implementations. In femg cost of
CPU vector quantization can be at most 120 timeeertitan that
of the GPU (Figure 4(b)).

Figure 6(a) and 6(b) show execution time with atipalar
number of vectors in a single iteration of the Kame clustering.
For example, the curve “GPU5000” shows the time wasiation
for quantizing five thousands vectors into severambers of
groups based on GPUs. Curves of the GPU impleniensatire
close to zero all along, and time cost of CPU impetations
increases with the group number significantly.

3.2 Performance of Classification

The 10-fold cross validation strategy is adopteahtain average
classification performance. We compare performabeéveen

CPU and GPU implementations based on features camgbscale
1 and scale 2. As Figure 7 reveals, differencesaafuracies
between the two implementations are quite smaik Vhrifies that
our GPU-accelerated scene classification is cotpetivith the

CPU version without dropping in accuracy rates.

90.00%

80.00%

70.00%

— 60.00%
B

8 | mcry
< B6Py

Street Tall
Building

Coast Forest Highway Inside City Mountain Open

Country

Figure 7. Classification accuracies.

Average

4. CONCLUSION

We propose a fast and efficient scene categorizatystem which
utilizes a category-specific visual word model @édccelerated by
GPU. A multiscale feature extraction approach iglieg to jointly

capture global and local characteristics of a sc@adculating of

Euclidean distance is modified to facilitate vectprantization

accelerated by GPUs. Theoretical analysis and erpatal results
reveal that the accelerated vector quantizationdsietewer

instructions. GPU implementations are proven to2Beto 100

times faster than CPU does.

Acknowledgement

The work was partially supported by the NationakeSce Council
of Taiwan, Republic of China under research cobtN@C 100-
2221-E-194-061.

5. REFERENCES

[1] J. Qin and N. H. C. Yung. Scene Categorization with
Multiscale Category-specific ~ Visual Words. Optical
Engineering, vol. 48, no. 4, 2009.

[2] D.G. Lowe. Object Recognition from Local Scale-insat
Features. IEEE International Conference on CompViigon,
vol. 2, pp. 1150-1157, 1999.

[3] K.E.A. van de Sande, T. Gevers, and C.G.M. Snoek.
Empowering Visual Categorization with the GPU. IEEE
Transactions on Circuits and Systems Society, 7@ 2011.

[4] D. Chang, N. A. Jones, D. Li and M. Quyang. Compute
Pairwise Euclidean Distances of Data Points withU&P
IASTD International Conference on Intelligent Sysgeand
Control, pp 278-283, 2008.

[5] 13 Natural Scene Categories
http://vision.stanford.edu/resources_links.html

[6] J. Sanders and E. Kandrot. CUDA by Example: An
Introduction to General-purpose GPU Programming X
Corporation, 2010.

Dataset,

