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Abstract

Evolution of spatial relationships between objects often provides important clues for
semantic video analysis. We present a symbolic representation that describes
spatiotemporal characteristics and facilitates tactics detection based on string
matching. To find typical spatiotemporal patterns of a targeted tactic, we organize
training sequences as a tree, and effectively discover frequent patterns from the
structure. Tactics detection is conducted by comparing a given test sequence with
these frequent patterns. To realize the proposed idea, we develop elaborate
audio/video processes to transform broadcasting tennis videos into symbolic
sequences, and comprehensively tackle event detection and tactics analysis. We
experiment on ten most important tennis championships in the year 2008, and report
promising detection results on seven events/tactics. We demonstrate not only the
effectiveness of the proposed methods, but also study the impacts brought by the

results of tactics analysis.

Keywords: event detection, tactics analysis, spatiotemporal modeling, tennis video

analysis

1. Introduction

Recently large amounts of studies have been conducted to extract object’s movement
for different purposes. Object tracking is performed by the computer vision society to
facilitate video synthesis, object modeling, and applications related to surveillance.
Motion magnitude and direction are predicted to facilitate efficient coding in video
compression researches. In video analysis studies, object’s movement is extracted to
model semantic events or to describe attractiveness of video clips. Among various
types of videos, sports video is the most prominent media where researchers study the
role of motion information for object detection, event detection, video summarization,
and etc. In this work, we investigate how to model spatiotemporal relationship of two
moving objects and conduct tactics analysis for sports videos.

Sports video analysis is a flourish area in multimedia content researches. From the
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viewpoint of research, sports games take place in a fixed space and convey clear
structure, and therefore ease the development of analysis techniques. Significant
amounts of studies for different sports have been conducted on automatic event
detection, structure analysis, summarization/highlight extraction, three-dimensional
(3D) visualization, and so on. Among these studies, object’s movement provides
important information from many perspectives. Motion information is fused with
audio features to facilitate event model construction in sports videos [1][2][3]. Based
on object motion, trajectories of players and ball are modeled as a function of time to
describe tactics in soccer games [4]. The work in [5] further analyzes the pose of the
player to discover highlights in racket sports videos. Many studies have been
conducted on player tracking in broadcasting sports games [17][18], and some works
focus on extracting ball trajectories [4][19]. Sophisticated models or tracking
techniques have been developed to tackle with multiple objects tracking in complex
environments. On the basis of camera motion, semantic shot classification [20] and
sports video categorization [21] were developed.

Although motion parameters and object motion characteristics have been widely
studied in sports video analysis, spatiotemporal relationships between objects draw
relatively little attention before. How to describe and match spatiotemporal
relationships between objects is still an ongoing research issue. In this paper, we take
more emphasis on modeling the relative spatial relationship between objects along the
time axis for detecting events and tactics in sports videos. Although the proposed
method is not bounded to a specific sports game, we take tennis games as the main
instance. We propose a two-level detection framework to comprehensively detect
events and tactics, such as volley, passing ball and moon ball, in tennis matches. At
the preprocessing stage, court lines and players are detected, and those positions are
mapped to a real-world coordinate system to extract accurate spatiotemporal features.
Audio effects, such as laughter and cheer, are also detected to facilitate event analysis.
At the first-level event detection stage, a discriminative learning approach is used to
detect events, such as ace and double fault, based on audiovisual features. For the
events that contain rich interaction between players, such as passing ball and moon
ball, the spatiotemporal relationships are transformed into symbolic sequences. Then a
pattern mining and matching approach is exploited to accomplish the second-level
tactics analysis.

Novelty and contribution of this paper are summarized as follows:

® We model the evolution of relative spatial information between two objects

rather than absolute motion information. We demonstrate that evolution of
relative movement provides informative clues for tactics analysis.

® Based on transformed symbol sequences, an effective pattern mining
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approach is applied to characterize sports tactics. We develop a framework to
perform tactics analysis for sports games with two opposite sides, such as
tennis, badminton, and table tennis.

® We comprehensively study event detection and tactics analysis in tennis
videos. We realize the proposed ideas with the help of elaborate audio/video
analysis and effective tactics modeling. Very promising experimental results

are reported.

The rest of this paper is organized as follows. Section 2 reviews related works.
Section 3 overviews the system framework, which is divided into two levels, i.e., the
first-level event detection and the second-level tactics analysis. In Section 4, we
describe video and audio processes for extracting audiovisual features, which are then
fed to the discriminative learning module to perform event detection. Section 5
presents the proposed spatiotemporal modeling that describes evolution of spatial
relationship, and how the model used in tactics analysis. Performance of the proposed
method and comparison between different approaches are described in Section 6.

Finally, we conclude this paper with future work in Section 7.

2. Related Work

2.1 Sports Video Analysis

For soccer videos, Ekin et al. [22] detect the goalmouth and analyze shot information
to achieve automatic summarization. Yu et al. [23] propose a trajectory-based ball
detection method and utilize ball trajectories to analyze soccer videos. To
semantically segment soccer games, an approach based on HMMs is proposed to
describe the context of shots and to find play and break segments [24].

For baseball videos, Rui et al. [25] extract game highlights through analyzing
audience’s or anchorpersons’ sound reaction. To detect baseball events, a maximum
entropy model is proposed to characterize events based on shot transition information
[26]. From a different perspective, Zhang and Chang [27] utilize caption information
and domain knowledge to detect events. More specifically, Chu and Wu [28] integrate
rule-based and model-based methods to comprehensively detect events and develop
realistic applications.

For tennis video analysis, Kolonias et al. [29] propose a generic architecture to
describe the evolution of tennis events, but they only report limited experimental
results. Rea et al. [30] track the player’s position and use HMMs to characterize
events. Similarly, Han et al. [31] utilize player’s spatial information and integrate
tennis heuristics to detect events. Kijak et al. [32] model shot transition patterns to

detect specific scenes, such as rally and replay. Recently, Huang et al. [41] analyze
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match structure and extract aural and visual information, such as audio excitement,
close-ups, and slow-motion segments, to detect highlights of tennis matches.
Although the aforementioned works conduct considerable studies on tennis video
analysis, which is the main instance of this paper, few of them report comprehensive
event detection results or fine tactics analysis.

For generic sports video analysis, a series of works [33][34] have been conducted
to build a unified framework that fuses visual and aural information to detect events in
various sports. The authors propose a mid-level representation framework to bridge
the gap between low-level features and high-level events or highlights. Multimodal
mechanisms, such as fusing motion vector model and audio keyword model [34], are

also devised to achieve semantic analysis.

2.2 Spatiotemporal Modeling

Spatiotemporal characteristics of objects were mostly used to model video
shots[35][36][37]. The VideoQ system [35] supports spatiotemporal queries that
specify an object’s moving trajectory. A pyramid-based structure was proposed to
facilitate efficient spatiotemporal matching for sports videos [36]. The techniques of
spatiotemporal modeling were also applied to other problems, such as salient frames
detection [38] and facial expression modeling [40].

Temporal pattern mining is developed for finding the interactions and
interrelations of spatial patterns in [39]. The most frequent spatial patterns are
discovered for volleyball games, which initiates the possibility of using mining
techniques to conduct sports video analysis. As compared with modeling video shots
by object motion, describing objects’ interaction and spatial evolution to conduct
semantic video analysis draws relatively little attention in the past. In this paper, we
would not only elaborate analysis by extracting real-world audiovisual features, but
also emphasize the effects of modeling interactions between objects for semantic

video analysis.

3. System Framework

3.1 Tennis Events and Tactics

In broadcasting tennis videos, the camera always captures the court view when two
players combat against each other. We can focus on the video segments presenting the
court and detect which kinds of events or tactics are invoked. In this work, we briefly
call these kinds of video segments plays. According to tennis regulations, an event in
a play would be one of the followings: net approach, rally, ace/unreturned serve, and

double fault. More specifically, according to how a player gets his/her points, rally



and net approach can be further categorized into passing ball, moon ball, drop shot,

unforced error, or volley.

Figure 1 shows the ontology of tennis events and tactics, and Figure 2 gives

illustrated examples about spatiotemporal characteristics of four tactics.

1)

2)

3)

4)

S)

6)

7)

Double fault: In double fault, the camera doesn’t switch out of the court view
after the first failed serve, and a player successively fails the second serve.

Ace or unreturned serve: A player successfully serves, and his/her opponent
fails to return the ball. In an ace event, the opponent is not able to touch the
ball and therefore fails to return. In an unreturned serve event, the opponent
barely touches the ball but is still unable to successfully return (the returned
ball can’t cross the net or is out-of-court).

Volley: A player successfully serves and the opponent successfully returns.
One of them approaches the net and volleys to get points. Figure 2(a) is a
typical example about how players move in a volley tactic. Player A
approaches the net and volleys, and player B quickly moves right but fails to
return the ball.

Passing ball: A tactic to counter the net approach strategy. As shown in Figure
2(b), player A approaches the net to stress player B, but player B quickly hits a
line drive so that player A can’t even touch the ball.

Moon ball: Another tactic to counter the net approach strategy. As shown in
Figure 2(c), player A tries to stress his/her opponent by approaching the net,
but player B hits a lofty ball so that player A has to go towards the baseline.
Drop shot: A tactic to beat the player who stands far from the net. In Figure
2(d), player A hits softly such that the ball drops immediately after crossing
the net, and player B is not able to approach the net and returns the ball in
time.

Unforced error: All rally and net approach plays without passing ball, moon
ball, or drop shot are categorized as unforced errors. A player is claimed to
make an unforced error when the opponent doesn’t approach the net to stress
him/her, but he/she makes the ball out-of-court or fails to return the ball.

Note that only action that makes some player get the point in a play is considered.

For example, player A may approach the net and smash the ball, but player B

successfully hits back a line drive to get the point. We would say that this play

contains a passing ball, since that’s the factor player B gets his points.
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Figure 1. Ontology of tennis events and tactics.
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Figure 2. [llustrated examples of spatiotemporal characteristics of four tennis tactics.

3.2 Overview of Framework
Figure 3 shows the system framework that is composed of audiovisual feature
extraction and two detection modules. From visual information, we segment videos
into semantics-meaningful clips and extract high-level features, such as player’s
moving direction and speed. From aural information, we model special audio effects
to be the basis for event detection.

A two-level detection approach is developed to detect the prescribed events and
tactics. The audiovisual features extracted from each play are concatenated for

discriminative learning in the first-level event detection. The events detected by the
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first-level detection module either contain simple action, such as ace and double fault,
or are needed to be discriminated further. There are complex interactions between
players in different tennis tactics, and therefore the consideration of spatial evolution
is needed at the second-level tactics analysis. Spatial evolution is transformed into
symbolic representation, and spatiotemporal relationships between players are used to

detect tactics.
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Figure 3. Tennis event tactics analysis framework.

4. First-Level Event Detection
In this section, we first describe audiovisual feature extraction and then develop a
discriminative learning approach to detect four events, including ace/unreturned serve,

double fault, rally, and net approach.

4.1 Video Processing
Because shot changes in broadcasting tennis matches are usually simple, we apply a
typical shot change detection method [8] based on color histogram difference between

adjacent video frames to detect shot boundaries.

4.1.1 Court view detection

Tennis videos are composed of court view shots and non-court view shots. Court view

shots contain a large ratio of pixels with the court’s colors, which are dominant colors

in frames. In this work, the adaptive playfield detection method proposed in [9] is

referred. We model the HSI (hue, saturation, intensity) histograms from training data

by a Gaussian mixture model (GMM) 4, which consists of M Gaussian densities:
P(E1Y) = 00 wibi(€), (M
where £ is the color vector of a pixel and w; is the weight of the ith mixture.

The parameters of mixture components b; and weights are estimated by the EM
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(expectation maximization) algorithm [9].

Based on the obtained GMM, we determine two dominant color ranges. The
reason for selecting two ranges is that a tennis court often has two dominant color
ranges, such as the court of US open. Colors in the selected ranges are set as the initial
guess of dominant colors. As the analysis proceeds, the ranges are adaptively adjusted
according to newly-decoded video frames. In our work, we periodically adjust the
dominant color ranges every ten minutes [6].

For each video shot, without loss of generality, we extract the first frame as its
keyframe to do court view detection. According to the ratio of the number of
dominant-color pixels to that of the whole frame, we can classify shots into court
view or non-court view. Court view and non-court view shots respectively represent

plays and breaks in tennis matches. Details of implementation please refer to [6].

4.1.2 Court line detection

For the (suspected) court view shots, we detect the court lines based on the techniques
of line detection and camera calibration [10]. We first detect white pixels in frames,
and then apply a standard Hough transform line detector to find the white lines. We
can obtain the court position if all court lines are perfectly detected. However, because
of noises caused by players or characteristics of different stadiums, many misses or
false alarms may occur in line detection.

Fortunately, the specification of a tennis court is fixed in all matches. Based on the
intersections of detected lines, we can map them with a predefined court model and
find the parameters of camera. Since this mapping is plane-to-plane, the
corresponding transformation can be seen as an eight-parameter perspective
transformation [11]. To solve these eight parameters, we choose at least four line
intersections in video frames to map the corresponding ones in the predefined court
model. After calibration, we map the real-world court onto the displayed plane and

obtain all court lines. Details of the court detection process please refer to [10].

4.1.3 Player detection/tracking

For court view shots, we detect and track player’s positions to characterize each play.
The essential idea of player detection is to find the region that has pre-defined
uniforms. For a tennis match, we first manually select two players’ uniform regions
and calculate these regions’ HSI histograms, respectively. From the samples that are
taken every ten video frames, we track two players’ positions by comparing the
histograms of neighborhood in consecutive frames. The basic idea is the same as

motion estimation in video compression. We find the minimum bounding box that



covers a player, and the midpoint of the bottom line of the bounding box is set as the
player’s position.

By combining the results of court detection and player detection, we can map the
player’s position onto a virtual map, which describes where the player is in the court.
Figure 4 shows two sample results of player detection. The right bottom of the figures

shows player’s relative positions in the court.

Figure 4. Two sample results of player detection.

4.2 Audio Processing

Aural information often provides significant cues for event detection. In this work, we
detect the sound effect of applause mixed with cheer. Audiences are often kind to give
applauses or cheers after good plays, such as ace or rallies. On the other hand, they
often keep quiet if a player invokes a double fault. Sound effects recognition has been
widely studied in recent years [12][13]. In this work, we apply an HMM-based
method to model/detect applause mixed with cheer [13].

Two types of training data are collected from several tennis matches. The first
dataset includes the clamor that is mixed by cheer and applause after plays. The
second dataset consists of the sounds other than cheer and applause in playing,
including quiet, anchorperson’s speech, player’s shouts, and sounds of racket hits. For
these audio data, audio features are extracted for modeling, including energy, band
energy ratio, zero-crossing rate, frequency centroid, bandwidth, and mel-frequency
cepstral coefficient (MFCC) [14]. These features have been shown to be beneficial to
sound effects recognition [12]. We respectively construct an HMM for these two types
of audio data based on the Baum-Welch algorithm. After event modeling, how likely
an audio segment belongs to an audio effect is evaluated. Details of sound effects

modeling and testing please refer to [13].

4.3 First-Level Event Detection
We segment a tennis match into clips with each representing a single play. With the

helps of audio/video processes described above, we extract high-level features from
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each play to represent tennis matches:

® Player’s relative position in the court: The court can be partitioned into the
region near the net and the region near the baseline. If a player ever moves to
the region near the net, this play most likely contains a net approach. A
binary feature is extracted to represent whether players step into the region
near the net or not.

® Moving distance of players: We map the player’s position to the real-world
coordinate system and calculate the moving distance between every ten
frames. Generally, the player moves more in rallies than in aces. Overall, this
feature is calculated by averaging the moving distances of two players.

® Length of play: It’s apparent that the play length of a baseline rally is likely
longer than that of an ace. With court view detection, we can easily calculate
the length of a play.

® Applause/cheer sound effects: According to tennis etiquette, the audiences
clamor after ace or unreturned serve but not after double fault. A binary

feature is extracted to represent whether this kind of audio effect occurs.

Many studies have demonstrated that the discriminative learning approach
achieves promising detection results [15]. On the basis of the features described above,
we exploit a discriminative learning method in the first-level event detection module.
Audiovisual features are concatenated as vectors to describe a play, and the problem
of event detection is transformed into classifying a given test feature vector into one
subspace, which is part of the hyperspace constructed from features representing a
specific tennis event.

We exploit support vector machines (SVM) to construct a 4-class classifier. We
construct the SVM classifier by using LIBSVM [16], which supports multiclass
classification. At the detection stage, a play is represented as a feature vector and is

detected as a double fault, ace/unreturned server, rally, or net approach.

5. Second-Level Tactics Analysis
Rally and net approach events are further examined in the second-level detection
module. In rallies, players often have some strategies to beat opponents. For example,
a player may suddenly hit the ball lightly so that the ball drops immediately after
crossing the net. This makes his opponent barely catch the ball and cause an error. In
net approaches, a player may approach the net to volley the ball or give a drop shot.
On the other hand, the opponent can hit back quickly (if he can) to beat the net
approach strategy and gets points by a passing shot.

The tactics described above are involved with interaction between two players.
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The evolution of movements reveals the occurrence of different tactics. In this section,
we first transform video content into a symbolic representation, and then an effective
structure is developed to find typical moving patterns of each targeted tactics. With
typical moving patterns, tactics analysis is accomplished by performing approximate

sequence matching.

5.1 Symbolic Representation
To describe spatial evolution, we uniformly examine one out of ten video frames. The
characteristics of moving players are described in three aspects:
® [ocation: We segment the tennis court into eight regions, as shown in Figure
5. Note that the court on screen and the positions of players have been
calibrated to the real-world coordinate, by the method described in Section
4.1.3. The position of each player in a sample is spatially quantized into one
of the regions. The region where a player locates at the sth sample is denoted
as R'.
® Direction: Based on the positions of a player in the current sample and the
previous sample, we can estimate his moving direction. Horizontal and
vertical directions are described separately. Generally, we quantize the
horizontal direction into “left”, “right”, and “still”’; and quantize the vertical
direction into “up”, “down”, and “still.” The notations of Dj and D,
denote the horizontal and vertical direction at the tth sample, respectively.
® Speed: Based on the distance between a player in the current sample to the
previous sample and the time difference between two samples, we can
calculate this player’s moving speed. Similarly, we quantize the moving
speed into “fast”, “medium”, and “still.” The notations of S and S
denotes the horizontal and vertical speed at the ¢#th sample, respectively.

\\ N |@4 @
S \\ @ & @
: £2% e

(a) 2D court image (b) Real-world court
coordinate system

Figure 5. (a) The 2D court image; (b) player movements mapping into the real-world

coordinate system.
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Based on the information extracted above, the symbol sequence of each sample is
described in six parts: (1) position of the object in the previous frame; (2) horizontal
moving direction; (3) horizontal moving speed; (4) vertical moving direction; (5)
vertical moving speed; and (6) position of the object in the current frame. The symbol
sequence for the ith player at the h sample is represented as
Q= (i, R, D. S D! S! R'). At each sample, the moving characteristics of both
players are transformed and concatenated as (Q%, @%), in which the player IDs are 4
and B, respectively.

In tennis video analysis, the locations of each player are quantized into four
regions, their speeds are quantized into three levels (fast, medium, slow), and their
vertical/horizontal movements are also described in three directions (up/left,
down/right, still). From the example of Figure 5(b), solid-line triangles and dash-line
triangles denote the locations of players in current and previous samples, respectively.
Because locations of players are mapped to the real-world coordinate system, we can
precisely identify the location, moving speed, and moving direction of players. In this
example, we obtain that player A moves from region 1 to region 3 in medium speed,
and player B moves from region 8 to region 5 in fast speed.

Table 1 shows symbol definitions of the proposed tennis analysis system. By these
definitions, the symbol pair (Q%, Q%) = (A, 1R, F.D,F.4)(B,8,L,S,N,S,7)
means that player 4 moves right-down quickly from region 1 to region 4, and player B

moves left slowly from region 8 to region 7.

Table 1. Definitions of symbols used in tennis tactics analysis.

Types Meaning (Symbols)
Object Object ID (A, B)
Location Regions (1,2,...,8)
Horizontal moving direction Still (N) Left (L) Right (R)
Vertical moving direction Still (N) Up (U) Down (D)
Speed of horizontal & vertical Fast (F) Medium (M) Slow (S)
moving

To further describe relative moving characteristics between two players, their
locations, moving speeds, and moving directions are jointly considered. The symbol
pair (@', Q%) at each sample is further transformed into an appropriate meta-symbol.
Figure 6 shows some examples of relative moving patterns in tennis videos. In Figure
6(a), player A4 stands in the left-top region, and player B stands in the right-bottom

region. Both may move in three directions, in different speeds. For example, in the
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moving situation as illustrated by the bold lines, player 4 moves down quickly and
player B moves left-top quickly, and this symbol pair (Q%, Q%) is further denoted by
a meta-symbol. If player 4 moves down quickly but player B moves left-top slowly,
another meta-symbol will be used to describe this case. Therefore, the number of
meta-symbols that represent possible moving relationships between two players in
Figure 6(a) is 3 (player A’s moving directions) x 3 (player B’s moving directions) X
3 (player A’s moving speed) x 3 (player B’s moving speed) = 81. Similarly, each
possible relationship in different cases (Figure 6(b), (¢), (d), and others) is represented
by a meta-symbol.

For a video clip, we uniformly take samples and transform each sample into a
meta-symbol. Spatial evolution between two players is represented by a meta-symbol

sequence, which we briefly call it a moving sequence in the following.

Il @—— 2 %79 <« —
RN ! ¢
6
AN ~N_ 1 T 10
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(a) (b) () (d)

Figure 6. Examples of moving patterns between two objects in tennis videos.

5.2 Moving Pattern Mining

For each targeted tactic, we collect thirty plays and transform them into meta-symbol
sequences as training data, which provide the templates of each tactic. Note that we
only consider the last 5-second segment in each play, because only the actions in the
last part of a play indicate what tactic drives the point. At the stage of tactics detection,
the meta-symbol sequence corresponding to a test video clip is compared with
templates, and is claimed to contain a specific tactic if it has the closest relationship to
some template.

The method described above is not efficient and is easily affected by variations of
spatiotemporal relationships related to a tactic. Therefore, we introduce the idea of
mining frequent patterns from meta-symbol sequences. The mined frequent patterns
are viewed as canonical representations of a tactic, and are used as the foundation of
tactics detection.

The essential idea of finding frequent patterns is that specific moving patterns
would occur in a tactic. For example, the “passing ball” tactic often occurs when

player A approaches the net, and player B hits the ball quickly to pass through player
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A so that he/she cannot touch the ball. Player 4 often has to move back quickly to
save this point. The idea of finding typical moving pattern is also motivated from the
58 winning patterns recommended by United States Tennis Association [7].

To efficiently find typical representations, we construct a moving sequence tree
for each targeted tactic, based on the meta-symbol sequences transformed from
training data. The node in a moving sequence tree corresponds to a meta-symbol, and
each node is associated with a number that indicates the times this meta-symbol
appears in moving sequences. The procedure of moving sequence tree construction is

described as follows.

Algorithm 1: Moving Sequence Tree Construction
Input: A set of meta-symbol sequences O = {01,0,....0x5} corresponding to a
specific tactics. Let 0;(j) denote the jth meta-symbol of the sequence o,,j=1,2, ...,
M.
lFori=1toN
2 If 0,(1) is not a root of any existing moving sequence tree, then
Initialize a moving sequence tree rooted by 0;(1). The following
procedures will act on this newly-initiated tree. Set the appearance count
associated with the root node as 1.
Otherwise, increase the appearance count associated with the node by 1. The
following procedures will act on this existing tree.
3 Forj=2toM
If 0;(7) is not a child of 0;(j — 1), create a child node 0;(j) for o0;(j — 1),
and set the associated appearance count as 1. Otherwise, increase the

appearance count associated to 0;(j) by 1.

Table 2 shows a set of meta-symbol sequences, and Figure 7 illustrates the
corresponding moving sequence tree. In each node, the first item denotes the
meta-symbol, and the number indicates times the meta-symbol being visited by the
tree construction process.

After constructing the moving sequence tree, we traverse this tree by the
depth-first-search algorithm and calculate “support” for each path from the root to a
leaf. The value of support is calculated by summing the number associated with each
node on a path. For example, support value of the leftmost path in Figure 7 is
5+4+2+2+2 = 15. Based on this moving sequence tree, the paths with support values
larger than a minimum support threshold min_sup are extracted as frequent moving

patterns. There are totally 30 meta-symbols (6 sequences, 5 meta-symbols in each
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sequence) in Table 2. If the value of min_sup is set as 0.3, the sequence “a,b,c,d,e”
with support value larger than 30x0.3=9 is claimed as a frequent moving pattern. On
the contrast, the sequence “a, h, f, h, 1’ in the rightmost of the tree doesn’t count to be
frequent.

Table 2. Examples of meta-symbol sequences

Video ID | Meta-symbol sequence
S1 a,b,c,d, e
S2 a,b,c,d, e
S3 a,b,f,ge
S4 a,a f he
S5 a, b, f,de
S6 a,h,f,h,i
la2] (g1 [a2]  [ha] w1
\
\ﬂ/ ‘e:l‘ ‘e:l‘ ‘e:l‘

Figure 7. The constructed moving sequence tree corresponding to Table 2.

Table 3. Number of frequent moving patterns determined by the processes with

different min_sup values.

min_sup Passing ball Moon ball Drop shot Volley
10% 24 8 10 16
30% 18 7 6 12
50% 6 2 7

Larger min_sup value means that higher thresholds are set to determine frequent
moving patterns, and therefore fewer frequent patterns are obtained. Because passing
ball and volley are involved with more complex interactions between players,
generally more frequent moving patterns are found. Table 3 shows the number of
frequent moving patterns determined by the processes with different min_sup values.
In the experiment section, we will further study the influence of different min_sup
values on the performance of tactics detection.

The essence of utilizing frequent moving patterns to characterize tennis tactics is
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that similar spatial evolution will occur in the same tactic. Figure 8 illustrates a
frequent moving pattern mined from training data of passing balls. Note that this
moving pattern is represented as a meta-symbol sequence in our system, and Figure 8
just visualizes the corresponding spatiotemporal relationship. From Figure 8(c) to (e),
it’s likely that the following actions took place: Figure 8(c) — player A approaches the
net, while player B stands near the baseline; Figure 8(d) — player A hits softly to make
the ball drop immediately after crossing the net, and player B approaches the net fast
and save this point; Figure 8(e) — player A returns the ball quickly to through the
coverage of player B such that player B has to move towards the baseline to save the
ball. This play ends immediately after the last action. We can imagine that this is a

typical case of a passing ball.

1 2 1 2 1 2 1 2 1 2
@ ® »
3 4 3 4 3 s 4 3 @ 4 3 @ 4
2 1 2 1 2 1 2 1 2
F Sgl@
3 ® 4 3 ®+F— 4 ; @ 4 3 4 3 4
(a) (b) (c) (d (e)

Figure 8. A frequent moving pattern mined from training data of passing balls.

5.3 Pattern Matching

After finding frequent patterns for each tactic, we compare a test meta-symbol
sequence with them to accomplish detection. Similarity between sequences is
typically evaluated based on string matching algorithms. Among the widely-studied
matching algorithms, finding the longest common subsequence (LCS) is one of the
methods that jointly finds the optimal matching between two sequences and evaluates
the extent of matching. Therefore, a dynamic programming approach is used to find
LCS in this work.

For an unknown video clip that conveys the meta-symbol sequence Y, we
compare Y with the mined patterns X={X;, X5, ..., Xy}. The play with the
meta-symbol sequence Y is identified as the class corresponding to the pattern X;« if

i* = argmax; |[LCS(Y, X;)|, ()

where |LCS(Y . X;)| denotes the length of the longest common subsequence
between Y and X;.

The description above reveals conventional string-based matching, in which a
symbolic sequence represents just spatial relation or temporal relation. However, to
evaluate the sequences describing spatiotemporal relationship, we not only have to

find the LCS, but also have to constrain the distance between matched symbols. A
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targeted tactic should contain continuous spatiotemporal evolution similar to typical
patterns. From the example in Figure 9, we see that the test pattern has the
same-length LCSs to two different frequent patterns. However, the test pattern
continuously matches with the first frequent pattern at the first four meta-symbols,
while it matches with the second frequent pattern at the first two and the last two
meta-symbols. The breach of matched sequence in the second case means that the test
pattern is similar to a tactic at the beginning, but breaks down in the middle of the
progress of a play. On the contrary, the test pattern continuously matches with the first
frequent pattern, and only differs with it at the end, which is often a short period
before the camera switches out of the court view. According to the description above,
intervals between matched symbols degrade the degree of correspondence between
two sequences. We should further take this characteristic into account in tactics

detection.

Xi={a b b d e} Xo={a b d e ¢}

ILCS| =4

Y={a b b d ¢}

Figure 9. An example of pattern matching.

For the meta-symbol sequence Y={y|,»,....,v»} and a frequent pattern X={xi,
X2, ..., X»}, assume that the LCS between them is Z={zy, z», ..., Zicsyx}- If 21 = yi
and z, = y;, the number of j-i means the distance between two matched symbols in the
test meta-symbol sequence, and is denoted by g;. Similarly, we can calculate the
distances g, g3, ..., gLcsyrx)-1 based on Z and Y. With the sequence Z, the probability
of the meta-symbol sequence Y corresponding to the class with the pattern X is
defined as

P(CILCS(Y, X)) = [[i5y e, 3)

where ¢ is |[LCS(Y,X)|, and C is the tactic class corresponding to the pattern X.
With this definition, the play with the meta-symbol sequence Y is identified as the
class C; corresponding to the pattern X« if

i* = arg max; P(C{|LCS(Y, X;)). 4)

Corresponding to the example in Figure 9, the probabilities corresponding to the
tactic presented by two frequent patterns are:

P(CILCS(Y , X)) = e Wl x e x o=U=D = 1, (3)

P(OILOS(Y, X3)) = e 1l x e @D o (1) = o1, (6)

Therefore, the test pattern is viewed as conveying the tactic as that in the first
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frequent pattern.

With the determined moving patterns, rally and net approach are further
categorized into passing ball, moon ball, drop shot, volley, and unforced error. Each of
the first four tactics can be described by several frequent moving patterns. Unforced
errors have no specific pattern, and the plays that have very small probability to other
four tactics are claimed to contain unforced errors. According to the descriptions
above, we can more precisely express tactics detection in the following:

Assume that X ; is the jth frequent moving pattern corresponding to the tactic
C;. The targeted tactics are {C;: passing ball, C;: moon ball, Cs: drop shot, Cy:
volley}. The tactic in the play with a meta-symbol sequence Y is identified as

Cy, if (i*,j*) = argmax; ; P(C;|LCS(Y, X, ;)) and
P(CH|LCS(Y , X« j+) > €, (7)

unforced error, otherwise,

where the parameter ¢ is the threshold of the minimal required probability for a
play to be claimed as one of the four targeted tactics. In this work, the parameter € is
set as €'’ which means that only the meta-symbol sequence has less than ten time
gaps to the most similar frequent moving pattern can be categorized into one of the

four tactics.

6. Experimental Results

6.1 Performance of Event Tactics Detection

Ten important tennis matches in the year 2008 are used to evaluate the proposed event
tactics detection methods. Table 4 shows the detailed information of evaluation data.
There are totally about 15 hours of videos, including more than 4400 plays in the
evaluation data. The courts in these matches include grass (Wimbledon), clay (French
Open), and hardcourt (Others).

®  Overall detection performance

The number of frequent moving patterns is determined by the value of min_sup.
When the value of min_sup is set higher, fewer moving patterns will be claimed as
being frequent. We study the variation of detection performance when different
min_sups are set, say 0%, 10%, 30%, and 50%.

Figure 10 shows overall detection performance in terms of F-measure with
different min_sup values. F-measure jointly considers precision and recall values, and
is defined as follows. Larger F-measure value means better performance in both
precision and recall values.

2 % Precision x Recall

F-measure = '
measure Precision + Recall v
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When larger min_sup values are set, fewer moving patterns are determined to be
frequent, and fewer plays are correctly detected. Although precision value of detecting
tactics increases when larger min_sup values are set, those plays that don’t match any
frequent moving pattern are detected as unforced errors, which degrades the precision
of detecting unforced errors. Therefore, F-measure values for larger min_sup cases
decrease. Overall, F-measure values over ten tennis matches and seven events/tactics
are 0.74, 0.71, 0.64, and 0.57, for min_sup = 0%, 10%, 30%, and 50%, respectively.

From Figure 10, we can see the detection performances for M9 and M10 are
especially worse than others. The main reason for this is that French Open is held in
clay tennis courts, and white court lines are often annoyed by red dust. Errors in count
line detection cause the errors of court segmentation, and therefore degrade accuracy

of events/tactics detection.

Table 4. Detailed information of evaluation data.

ID Tennis match Duration Number
of plays

M1 | 2008 Beijing Olympics Men’s Single — Finals 1 hr 29 min 407
R. Nadal vs. F. Gonzalez: 6-3, 7-6, 6-3

M2 | 2008 Beijing Olympics Women’s Single — Finals | 1 hr 18 min 393
E. Dementieva vs. D. Safina: 3-6, 7-5, 6-3

M3 | 2008 US Open Men’s Single — Finals 1 hr 15 min 389
R. Federer vs. A. Murray: 6-2, 7-5, 6-2

M4 | 2008 US Open Women'’s Single — Finals 1 hr 23 min 415
S. Williams vs. J. Jankovic: 6-4, 7-5

M5 | 2008 Australian Open Men’s Single — Finals 1 hr 50 min 573
N. Djokovic vs. J.-W. Tsonga: 4-6, 6-4, 6-3, 7-6

M6 | 2008 Australia Open Women’s Single — Finals 1 hr 17 min 395
M. Sharapova vs. A. Ivanovic: 7-5, 6-3

M7 | 2008 Wimbledon Men’s Single — Finals 2 hr 5 min 587
R. Nadal vs. R. Federer: 6-4, 6-4, 6-7, 6-7, 9-7

M8 | 2008 Wimbledon Women’s Single — Finals 1 hr 53 min | 498
V. Williams vs. S. Williams: 7-5, 6-4

M9 | 2008 French Open Men’s Single — Finals 1 hr 8 min 377
R. Nadal vs. R. Federer: 6-1, 6-3, 6-0

M10 | 2008French Open Women’s Single — Finals 1 hr 46 min 412
A. Ivanovic vs. D. Safina: 6-4, 6-3

Total 15 hr 24 min | 4446
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Figure 10. Overall detection performance with different min_sup values.

® Evaluation of execution time

Although increasing min_sup values degrades detection performance, we can
largely save time for events/tactics detection. Table 5 shows comparison of the ratios
of execution time and F-measure values. The ratios are calculated by dividing the
execution time (F-measure) with frequent moving patterns derived from the case of
min_sup=10% by that from the case of min_sup=0%. The case of min_sup=0%
corresponds to that all meta-symbol sequences in training data are exhaustively
matched with a given test sequence.

execution time of the case of min_sup = 10%

R, = ©)

execution time of the case of min_sup = 0%’

R F-measure of the case of min_sup = 10%
=

(10)

From the tennis match M1 in Table 5, for example, we see although the F-measure

F-measure of the case of min_sup = 0%

performance in the case of min_sup = 10% degrades to 94% of the exhaustive
approach, we only need half of execution time. Overall, only 58% of execution time is
needed in detection with frequent moving patterns derived from min_sup=10%, while

96% accuracy relative to the exhaustive approach can be maintained.
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Table 5. Relationships between execution time ratio and F-measure ratio.

ID Ratio of execution time (R,) Ratio of F-measure (Ry)
M1 0.5 0.94
M2 0.52 0.91
M3 0.58 0.89
M4 0.53 0.97
M5 0.47 0.87
M6 0.56 0.94
M7 0.60 0.97
M8 0.67 0.96
M9 0.64 1.13
M10 0.66 1.04
Overall | 0.58 0.96

® Detailed events/tactics detection performance

To see the variation of detection performance, we show confusion matrices of
detection results. Due to space limitation, we only show confusion matrices for M2
and M3, in the case of min_sup=10%. We think that, when min_sup is set as 10%,
better balance between execution time and detection performance is achieved.

In Tables 6 and 7, columns mean the truth events/tactics, and the rows mean the
detection results. We can see that most plays are correctly detected, and the detection
performance is very promising. The worst detection performance in M2 lies on
passing balls. Ten passing balls are erroneously detected as unforced errors. Plays
with a passing ball tactic are often involved with relatively complex interaction
between two players. Thus, the detection performance for passing balls is slightly
worse than others. For the same reason, plays with volley have slightly worse
performance. There are similar trends in Table 7.

Table 6. Confusion matrix of events/tactics detection for M2.

Unforced | Passing | Moon | Drop | Volley Ace Double
error ball ball shot fault
Unforced error | 27 10 4 2 4 0 0
Passing ball 0 28 4 0 0 0 0
Moon ball 0 2 30 1 0 0 0
Drop shot 0 1 0 46 5 0 0
Volley 6 3 5 2 53 0 0
Ace 0 0 0 0 0 10 0
Double fault 0 0 0 0 0 0 9
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Table 7. Confusion matrix of events/tactics detection for M3.

Unforced | Passing | Moon | Drop | Volley Ace Double
error ball ball shot fault
Unforced error | 5() 10 5 5 3 0 0
Passing ball 0 47 4 0 0 0 0
Moon ball 0 2 20 1 0 0 0
Drop shot 0 1 0 23 5 0 0
Volley 6 3 5 2 31 0 0
Ace 0 0 0 0 15 0
Double fault 0 0 0 0 6

® Comparison

Comprehensive comparison of tactics detection performance is important but is hardly
to be achieved, because there is no standard dataset and the targeted tactics are
different in different works. Therefore, we are just able to compare the most relevant
works in terms of methodology.

Wang and Parameswaran [42] proposed a Bayesian network approach to classify
tennis matches into 58 winning patterns based on ball movement. Theoretically, if we
can detect all landing positions of the ball in the whole progress of a tennis match, we
can infer almost all actions that would occur. However, detecting the tennis ball is
difficult, especially when there is camera motion and video quality degradation due to
compression. That’s why most tactics analysis works focus on player’s movement.

Zhu et al. [5] track player’s trajectory and recognize player’s action as
forehand-stroke or backhand-stroke. Based on player’s trajectory, game highlight is
generated. Based on action recognition results, interesting statistics were
demonstrated to show the relationship between the ratio of forehand to backhand
strokes and game results. However, the reported results only show rough statistics,
and their targeted tactics are not clearly defined. Moreover, interaction between
players is not considered.

Sudhir et al. [44] developed models to detect court lines and players. They claim
that this information facilitates detection of specific tactics, such as volley and passing
shot. However, they focused on court line detection and player tracking, and just
describe the possibility of tactics detection without real implementation.

Wang et al. [43] jointly consider movements of two players, and discover salient
moving patterns from games. Although they detect frequent moving patterns and
mention that they would be caused by specific tactics, the mined frequent moving
patterns are not used for tactics detection.

Table 8 summarizes comparison of different methods in terms of (1) what kind of
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object is detected; (2) whether interaction between players is used; and (3) whether
targeted tactics are clearly defined and detected. As compared to other methods, we
model spatiotemporal relationships between players and clearly detect events and

tactics in tennis videos.

Table 8. Comparison of different tennis analysis methods.

[42] [5] [44] [43] Ours
Object Ball Player Player Player Player
Interaction No No No Yes Yes
Definition and No Subtle No No Clear
detection of tactics

6.2 Discussion
® Game analysis based on results of tactics detection

Results of events/tactics detection can be applied to many aspects. For example,
with the detected boundaries of plays and the associated events/tactics,
event-on-demand services can be provided. For game abstraction, exciting events,
such as ace and passing ball, can be especially selected to generate game highlights.

The major contribution of this work is that we model spatiotemporal relationships
between players and therefore detect tennis tactics that have not been studied well
before. We argue that deeper analysis can be achieved when we achieve such
elaborate tactics detection. A good indicator about a player’s performance is the
number of unforced error. By manually selecting uniforms of players and
continuously tracking them in a play, we can determine whether the player in white or
the player in black, for example, draws an unforced error. With this information, we
can calculate the number of unforced errors issued by two players and study the
correspondence between unforced errors and game results.

Table 9 shows the number of unforced errors in seven tennis matches and the
corresponding game results. Surprisingly, although the number of detected unforced
errors may not exactly match game ground truth, we can see high correlation between
it and the corresponding game result. The player who issued fewer unforced errors
won the game. This correspondence shows that detecting tactics like unforced error
largely approaches semantic video analysis. These detection results provide a different
perspective for semantic analysis other from that in [5], which conducted analysis

based on player action recognition.

23




Table 9. The correspondence between the number of unforced errors and game results.

ID Number of unforced error Result

Mi Red (R. Nadal) vs. White (F. Gonzalez) R. Nadal Won
Number of unforced error — 6 : 21

M2 White (E. Dementieva) vs. Black (D. Safina) E. Dementieva Won
Number of unforced error — 11 : 16

M3 Red (R. Federer): White (A. Murry) R. Federer Won
Number of unforced error — 16 : 34

M5 Blue (N. Djokovic) vs. Black (J.-W. Tsonga) N. Djokovic Won

Number of unforced error — 39 : 45

M6 White (M. Sharapova) vs. Blue (A. Ivanovic) M. Sharapova Won
Number of unforced error — 23 : 30

M9 Green (R. Nadal) vs. Black (R. Federer) R. Nadal Won
Number of unforced error — 9 : 23
M10 Red (A. Ivanovic) vs. White (D. Safina) A. Ivanovic Won

Number of unforced error — 16 : 27

® Limitation of the framework

Recently, the proposed spatiotemporal modeling and matching methods can only
be applied to two opposite objects. More objects with more complex interaction
would be described in more sophisticated approaches. Even so, we demonstrate that
the proposed method is effective in detecting tennis tactics.

In real implementation, the major shortage lies on manual selection of players’
uniforms. It seems easy to detect players by finding the moving objects on screen.
However, size of the player at upper part of the court is small, and is often mixed with
the audience or advertisement boards. Detecting this player solely based on frame
difference or block-based motion estimation doesn’t work well. In this work, we
manually select the initial position of players’ uniform and then perform tracking.
More elegant approaches that automatically detect players based on statistical

information of motion and color will be developed in the future.

®  Generality of spatiotemporal modeling

Although we focus on tennis tactics analysis, the proposed spatiotemporal
modeling method is not limited to this domain. It should be able to be applied to other
domains in which two objects’ movements represent targets of interest. For example,
badminton and table tennis have very similar court settings to tennis, and how players
or ball move reveal the progress of games.

In badminton games, we can detect players as done in tennis, segment the court
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into appropriate regions, transform players’ movement into symbols, and then model
spatial evolution by the proposed method. Players’ moving patterns corresponding to
important tactics, such as smash and cross net shot, are likely to be modeled.

Note that “object” in the spatiotemporal modeling is not limited to human. If the
placement of the pingpong in table tennis can be detected, we can describe the spatial
evolution of the pingpong. Which object should be detected depends on domain
knowledge of specific domains and what kind of goals are targeted. In Sections 4 and
5, we specially develop modules and extract features for tennis videos, which would

be replaced by other modules when other domains of videos are analyzed.

7. Conclusion
We have presented a two-level detection framework to comprehensively detect events
and tactics in tennis matches. At the preprocessing stage, court lines and players are
detected, and those positions are mapped to a real-world coordinate system. Audio
effects are also modeled to facilitate event detection. At the first-level event detection
stage, a discriminative learning approach is used to detect events, such as ace and
double fault, based on audiovisual features. At the second-level tactics detection,
plays that contain rich interaction between players are transformed into symbolic
sequences. Frequent moving patterns are mined effectively based on a tree structure,
and the probability of a test symbolic sequence corresponding to a specific tactic is
evaluated based on the idea of longest common subsequence. Comprehensive
experiments were conducted, and the results not only show that the proposed method
is promising, but also provide some extensive impacts on semantic video analysis.

In the future, we will extend the proposed approach to modeling the interaction of
multiple objects. We also plan to utilize the spatiotemporal modeling to detect events

in surveillance videos.
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