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ABSTRACT 
This paper presents a unified processor core with two operation 
modes.  The processor core works as a compiler-friendly MIPS-
like core in the RISC mode, and it is a 4-way VLIW in its DSP 
mode, which has distributed and ping-pong register organization 
optimized for stream processing.  To minimize hardware, the DSP 
mode has no control construct for program flow, while the data 
manipulation RISC instructions are executed in the DSP datapath.  
Moreover, the two operation modes can be changed instruction by 
instruction within a single program stream via the hierarchical 
instruction encoding, which also helps to reduce the VLIW code 
sizes significantly.  The processor has been implemented in the 
UMC 0.18um CMOS technology, and its core size is 3.23mm 
×3.23mm including the 32KB on-chip memory.  It can operate at 
208MHz while consuming 380.6mW average power. 
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General Terms 
Design 

Keywords 
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1. INTRODUCTION 
The computing tasks of an embedded multimedia system can be 
roughly categorized into control-oriented and data-dominated, and 
most computing platforms for media processing contain at least 
two processors – a RISC and a DSP to handle the specific tasks 
accordingly [1][2].  Fig. 1 shows a dual-core processor example.  
The RISC coordinates the system and performs some reactive 
tasks such as the user interface.  In the meanwhile, the DSP core 
performs transformational tasks with more deterministic and 
regular behaviors, such as the small and well-defined workloads 
in signal processing applications.  Recent RISC architectures have 
been enhanced for data-intensive tasks by incorporating single-
cycle multiply-accumulators, SIMD (MMX-like) datapaths, or 
specific functional units [3] to reduce the needs for an additional 
core, but the performance is still far behind that of a DSP with 
similar computing resources [4].  This is because data-intensive 
tasks are very distinct from general-purpose computations. 

This paper presents a unified processor architecture for RISC and 
DSP.  The processor core functions as a MIPS-like RISC in its 
scalar/program control mode, and it becomes a powerful DSP 
while switched into its VLIW/data streaming mode.  To maximize 
the utilization, most hardware resources are shared between these 
two modes.  Moreover, the VLIW/data streaming mode has no 
control construct for program flow, while the data manipulation 
RISC instructions are executed in the VLIW datapath.  The two 
modes can be changed instruction by instruction within a single 
program stream via our novel hierarchical instruction encoding, 
which also helps to reduce the VLIW code sizes significantly. 
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Fig. 1 Dual-core processor [2] 

The rest of this paper is organized as follows.  Section 2 first 
reviews the architecture of our proprietary DSP with the novel 
distributed and ping-pong register organization.  What follows is 
the unified datapath for the DSP and a MIPS-like RISC.  Section 
3 then describes the hierarchical instruction encoding that blends 
the RISC and the DSP instructions into a single stream and 
enables the instruction-by-instruction mode switching.  Moreover, 
the variable-length encoding scheme significantly reduces the 
code sizes of VLIW programs.  The simulation results and our 
silicon implementation are available in Section 4.  Section 5 
concludes this paper and outlines our future works. 

2. DATAPATH DESIGN 
2.1 VLIW DSP Datapath  
Today’s media processing demands extremely high computations 
with real-time constraints in audio, image or video applications.  
Instruction parallelism is exploited to speedup high-performance 
microprocessors.  Compared to dynamically hardware-scheduled 
superscalar processors, VLIW machines [5] have the low-cost 
compiler scheduling with deterministic execution times, and thus 
they become the trends of high-performance DSP processors.  But 
the complexity of the register file grows rapidly as more and more 
functional units (FU) are integrated on a chip, which concurrently 
operate to achieve the performance requirements.  A centralized 
register file provides storage for and interconnects to each FU in a 
general manner and each FU can access any register location.  For 
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N concurrent FU, the area of the centralized register file grows as 
N 3, the delay as N 3/2, and the power dissipation as N 3 [6].  Thus, 
the register file will soon dominate the area, the delay, and the 
power dissipation in the multi-issue processors as the number of 
FU increases.  To solve this problem, the communications 
between FU can be restricted by partitioning the register file to 
significantly reduce the complexity with some performance 
penalty [7-13].  In other words, each FU can only read and write a 
limited subset of registers. 
2.1.1 Distributed and ping-pong register file 
Fig. 2 shows the proposed distributed and ping-pong register file 
for two FU – a load/store (LS) and an arithmetic unit (AU).  The 
32 registers are divided into four independent groups, and each 
group has access ports only for a single FU (two read and two 
write ports in our case).  The eight address registers (a0~a7) and 
the eight accumulators (ac0~ac7) are dedicated to the LS and the 
AU respectively, and they are not visible to any other FU.  The 
remnant 16 registers are shared between the two FU, and they are 
divided into ‘ping’ and ‘pong’ register groups.  When the LS 
access the ping, the AU can only access the pong, and vice versa.  
In other words, the data registers are partitioned into two banks 
with exclusive accesses.  In summary, each FU has 16 registers – 
8 registers are private and 8 registers are dynamic mapped (to be 
either ping or pong).  The mapping is explicitly specified by the 
programmers in each VLIW packet as described in Section 2.1.2. 
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Fig. 2 Distributed & ping-pong register organization 

Our DSP supports very powerful SIMD instructions based on the 
distributed and ping-pong register file.  For example, the double 
load (store) instruction of the form – 
dlw rm,(ri)+k,(rj)+l. 
It performs two memory accesses concurrently (rm←Mem[ri], 
rm+1←Mem[rj]) and simultaneous address updates (ri←ri+k, 
and rj←rj+l).  The index m must be an even number with m+1 
implicitly specified.  The double load/store instructions require 
six concurrent register file accesses (including two reads and four 
writes for dlw, or four reads and two writes for dsw).  They do 
not cause access conflicts, because ri and rj are private address 
registers while rm and rm+1 are ping-pong registers that deliver 
data to the AU.  These registers are implemented in independent 
banks.  The AU supports 16-bit SIMD full-precision multiply-
accumulate operations with two 40-bit accumulators: 
fmac.d ri, rm, rn. 
It performs ri←ri+rm.H×rn.H, and ri+1←ri+1+rm.L×rn.L in 
parallel.  Similarly, the index i must be even with i+1 implicitly 

specified.  This SIMD instruction needs six register file accesses 
concurrently (four reads and two writes respectively). 
2.1.2 Assembly programming 
The syntax of the DSP assembly codes starts with the ping-pong 
index, followed by the instructions for each issue slot in sequence: 
ping-pong index; i0; i1;. 
The following is an illustrating example of a 64-tap finite-impulse 
response (FIR) filter that produces 1,024 outputs.  Assume there is 
no delay slot (such as an ALU operation immediately after a load 
in the classical 5-stage pipeline [5]) for simplicity.  The memory 
is byte addressable and the input and output data are 16-bit and 
32-bit numbers respectively. 

1 0; li a0,coef; li ac0,0; 
2 0; li a1,X; nop; 
3 0; li a2,Y; nop; 
4 rpt 1024,8;  
5 0; dlw d0,(a0)+4,(a1)+4; li ac1,0; 
6 rpt 15,2;  
7 1; dlw d0,(a0)+4,(a1)+4; fmac.d ac0,d0,d1; 
8 0; dlw d0,(a0)+4,(a1)+4; fmac.d ac0,d0,d1; 
9 1; dlw d0,(a0)+4,(a1)+4; fmac.d ac0,d0,d1; 

10 0; li a0,coef; fmac.d ac0,d0,d1; 
11 0; addi a1,a1,-126; add d0,ac0,ac1; 
12 1; sw (a2)+4,d0; li ac0,0; 

The zero-overhead looping instructions (RPT at line 4 and line 6) 
are carried out in the instruction dispatcher and do not consume 
any execution cycle of the datapath.  The inner loop (line 7-8) 
loads two 16-bit inputs and two 16-bit coefficients into the 32-bit 
d0 and the 32-bit d1 with the SIMD load operations (i.e. d0← 
Mem32[a0]  and d1←Mem32[a1]), and the address registers a0 
and a1 are updated simultaneously (i.e. a0←a0+4 and a1←a1+4).  
In the meanwhile, the AU performs two 16-bit MAC for two taps 
concurrently (i.e. ac0←ac0+d0.H×d1.H and ac1←ac1+d0.L× 
d1.L).  After accumulating 32 32-bit products respectively with 
two 40-bit accumulators, ac0 are ac1 are added together and 
rounded back to the 32-bit d0 in the ping-pong registers.  Finally, 
the 32-bit output is stored in the memory by the LS via d0.  In this 
FIR example, an output requires 35 cycles or the DSP can 
compute 1.83 taps per cycle.  Note that, the loops can be unrolled 
to achieve similar performance easily if the load slots are taken 
into account.  By the way, the ping-pong register organization 
helps to reduce the code size, for the programmer can specify 
different register locations (i.e. to be either in ping or pong) with 
the same name via the ping-pong index.  We will make use of this 
property in the instruction encoding later in Section 3. 

2.2 Unified RISC & VLIW DSP 
Each register group in Fig. 2 is actually implemented with two 
2R/1W (two reads and 1 write) register banks of half sizes (i.e. 4 
registers) as shown in the VLIW block in Fig.3, instead of 2R/2W 
access ports.  Since a RISC core does not contain any data 
manipulation instruction other than those performed on the LS (i.e. 
load/store instructions) or the AU (i.e. ALU instructions), the 
extra resource for the DSP datapath to execute RISC instructions 
is an additional register file.  To simplify data exchange between 
the two modes, the ping-pong data registers are aliased as the 
‘saved’ (s0~s7) and the ‘temporary’ (t0~t7) data registers in the 
MIPS-compatible scalar/program control mode.  The remnant 16 



registers are private to the scalar mode (actually, there are only 15 
physical registers, for r0 is hardwired to zero [5]).  Fig. 3 shows 
the unified datapath for the two modes with total nine 2R/1W 
register banks. 
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Fig. 3 Unified datapath for RISC & DSP 

Fig. 4 shows the add/sub instructions of the unified processor core 
and the relationship with those of the MIPS32 ISA.  The first 
column shows the MIPS add/sub instructions, where the gray ones 
denote pseudo instructions.  The 2nd column lists the equivalent 
instructions of the scalar/program control mode, and the 3rd and 
the 4th columns summarize those of the VLIW/data streaming 
mode.  Note that C compilers do not generate MIPS codes with 
addi, add, sub, and neg (i.e. those cause overflow exceptions), 
and thus our processor do not support these instructions.  Besides, 
few pseudo MIPS instructions are mapped to physical instructions.  
Finally, the data manipulation instructions of the scalar mode are 
actually executed in the DSP datapath, which are highlighted in 
the yellow background. 

AU LS
addiu addi addi addi
addu add add add
subu sub sub sub
addi NA NA NA
add NA NA NA
sub NA NA NA
neg NA NA NA
negu neg neg neg
nop nop nop nop
abs abs abs abs

rsbi rsbi
addi.d addi.d
add.d add.d
sub.d sub.d
abs.d abs.d
addi.q addi.q
add.q add.q
sub.q sub.q
bf.d
saa.q

MIPS Scalar
VLIW

 
Fig. 4 Add/sub instructions 

For applications demanding even higher performance, the unified 
processor core can integrate three more DSP datapaths (up to four 
clusters).  Our first prototype described hereafter contains two 
clusters – a main cluster as shown in Fig. 3 and a slave cluster as 
shown in Fig. 2.  In other words, it can be configured as a MIPS-
like RISC or a 4-way VLIW DSP.  For most cases, programmers 
can exploit the data-level parallelism and arrange the two clusters 
to operate independently.  Otherwise, inter-cluster communication 
can be performed via the memory subsystem. 

3. HIERARCHICAL INSTRUCTION 
ENCODING 

The unified processor core is able to change its operation modes 
instruction by instruction within a single program stream.  This 
section will describe the enabling technology – the hierarchical 
instruction encoding, which also helps to reduce the VLIW code 
sizes significantly. 

3.1 VLIW/Data Streaming Mode  
VLIW processors are notorious for their poor code density.  It 
comes from the redundancy inside (1) the fixed-length RISC-like 
instructions, where most operations need not all the control bits 
actually, (2) the position-coded VLIW packet, where the unused 
instruction slots must be filled by NOP, and (3) the repeated codes 
due to loop unrolling or software pipelining.  HAT [14] is an 
efficient variable-length instruction format to solve the first 
problem.  Variable-length VLIW [10] eliminates the NOP by 
attaching a dispatch code to each instruction for run-time dispatch 
and decoding.  Moreover, specific marks are required to indicate 
the boundaries of the variable-length VLIW packets (i.e. with a 
varying number of effective instructions).  Indirect VLIW [15] 
uses an addressable internal micro-instruction memory for the 
VLIW datapath (i.e. the programmable VIM), and the VLIW 
packets are executed with only very short indices.  The RISC-like 
instructions in the existing packets can be reused to synthesize 
new packets to reduce the instruction bandwidth.  Systemonic 
proposes an incremental encoding scheme for the prolog and the 
epilog of the software pipelined codes [16] to remove the repeated 
codes.  In this paper, we propose a novel hierarchical instruction 
encoding, which takes into account all the three causes to improve 
the VLIW code density. 

3.1.1 Variable-length instructions 

00000
func: 000(add), 001(add.d), 010(add.q)

100(sub), 101(sub.d), 110(sub.q)

Tail (0~28-bit)Head (20-bit)

add/sub

1000
addi/rsbi

func: 00(addi), 01(addi.d), 10(rsbi), 11(rsbi.d)
DL(immediate length): 00(4-bit), 01(8-bit), 10(16-bit), 11(32-bit)

func rd rs rt

func DL rd rs imm.L imm.H

01000
f: 0(abs), 1(abs.d)

abs
f rd rsu unused

saa.q

bf.d
00100

00100

100

001

rd rs rt

rd rs rt  

Fig. 5 Machine codes for add/sub instructions 



Fig. 5 shows the variable-length encoding of the AU instructions 
listed in Fig. 4.  The code length of an instruction depends on the 
number of its operands and the frequency of its usage.  The 
variable-length code is divided into a fixed-length ‘head’ and the 
remnant variable-length ‘tail’ as HAT format [14].  This helps to 
improve the regularity, and reduces the complexity for instruction 
alignment significantly.   

3.1.2 VLIW packets without NOP 
The effective instructions for an execution cycle (i.e. without NOP) 
are packed into a VLIW packet with a fixed-length ‘CAP’.  The 
CAP has a ‘valid’ field, where each functional unit (FU) has a 
corresponding bit to indicate whether it is idle.  In other words, 
the NOP is eliminated by turning the corresponding valid bit off.  
Fig. 6(a) shows the 14-bit CAP format of our prototype with 4-
way VLIW.  As the example given in Fig. 6(b), the two addi 
instructions are first translated into the machine codes by looking 
up Fig.5.  The 14-bit CAP is set as 00 for VLIW instruction, 
0101 to remove NOP in the 1st and the 3rd slots, 0010 for total 
8-bit tails, 00 for the ping-pong indices of the two clusters, and 
the ending 00 to disable the SIMD-cluster mode and the 
conditional executions.  

Valid Tail Length PP

2-bit 4-bit 4-bit 2-bit

00: VLIW/data streaming mode
11: Scalar/program control mode
01: Differential encoding (for VLIW)
10: End of bundle

M

e.g.  00 nop; addi d0,ac4,64; nop; addi d0,ac4,64;

0101 0010 0000

0100

Cap

01001000 100000H1

H3

T1

T3

S C

Conditional execution
SIMD encoding

0 0

01 0100 0000

1000 100000 01 0100 0000

(a)

 
Fig. 6 Instruction packet for a 4-way VLIW (with 2 clusters) 

For an N-way VLIW processor, our approach uses only N ‘valid’ 
bits to remove NOP in a packet.  Variable-length VLIW either 
uses log2(N+1) bits for a VLIW packet to indicate the number of 
active issue slots, or one bit for each effective instruction to 
indicate the packet boundary.  Moreover, additional log2N bits are 
required for each instruction to dispatch it to the correspondent 
slot.  Assume a packet has P instructions in average (0≤P≤N), and 
Variable-length VLIW needs log2(N+1)+Plog2N or P(log2N+1) 
bits for a packet accordingly.  Therefore, it has better compression 
only for codes with very low parallelism (i.e. with small P). 

In the VLIW/data streaming mode, the clusters can be configured 
into SIMD execution by turning on the S bit in the CAP.  The 
instructions of the main cluster will be replicated to all clusters to 
reduce to code sizes.  For the example in Fig. 6(b), 24 bits can be 
saved by setting S=1 in the CAP.  Moreover, the hierarchical 
encoding supports the differential mode using a CAP starting with 
01.  The VLIW packet of the previous execution cycle will be 
reused with small updates, such as the ping-pong indices, the 

destination register for the load instructions, and the source 
registers for the multiply-accumulate instructions, etc.  Finally, all 
instructions can be conditionally executed by turning on the C bit 
in the CAP. 

3.1.3 Instruction Bundle 
The variable-length VLIW packets are packed into fixed length 
instruction bundles to simplify the instruction memory accesses.  
In order to pipeline the instruction fetch, alignment, and decoding, 
the fixed-length CAP and the variable-length VLIW packet are 
placed from the two ends of an instruction bundle respectively as 
depicted in Fig. 7.  For each VLIW packet, the fixed-length heads 
are placed in order ahead of the variable-length tails.  By the way, 
because the CAP is fixed-length and placed in order, instruction 
look-ahead is possible to reduce the control overheads. 

Cap H1H3T1

instruction packet

512-bit instruction bundle

14-bit

T3

 
Fig. 7 Instruction bundle 

An instruction bundle contains various numbers of VLIW packets, 
and the code 10 of the leading two bits of the CAP is reserved to 
denote the bundle end.  The total length of the tails is attached in 
the CAP to locate the next VLIW packet in the pipelined 
instruction aligner.  Finally, depending on the implementations of 
the instruction aligners described later and our simulations of real 
programs, the 512-bit instruction bundles are optimal, which have 
practical decoder complexity and acceptable fragment (i.e. unused 
bits in a bundle). 

3.2 Scalar/Program Control Mode 
The scalar instructions are also variable-length encoded, which 
are similar to those depicted in Fig. 5.  But a scalar instruction is 
decomposed into a fixed-length CAP with leading 11 (instead of 
head) and a variable-length tail for the remnant bits.  The branch 
instructions change the program flow to a new instruction bundle 
with the packet index.  To easily locate the target VLIW packet, 
the pointer for its first instruction head is also encoded in the 
branch instructions.  Our first prototype contains a 16KByte on-
chip instruction memory, which is equal to a page of 256 bundles. 

3.3 Decoder Architecture 
To extract from an instruction bundle the appropriate bit fields for 
decoding is very complicated, especially for the variable-length 
VLIW packets.  Instead of huge multiplexers, we use incremental 
and logarithmic shifters for instruction alignment, as depicted in 
Fig. 8.  The VLIW packets are continuously shifted out from the 
two ends of an instruction bundle, and the decoders can operate 
on the fixed positions.  The lengths of the two buffers can be 
calculated as follows. 
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The buffer size for heads and tails (HT) is the bundle size minus 
the bits impossible to be HT (i.e. the minimum number of VLIW 
packets in a bundle multiplied by the fixed length of CAP).  The 
CAP buffer size can be estimated using the average number of 
instructions in a bundle when the processor stays in the scalar/ 
program control mode.  Note that the CAP and the HT buffers 
contain overlapped bits, because the boundary between CAP and 
HT is not deterministic. 

16KByte On-Chip Instruction Memory
(including 256 instruction bundles)

Cap shifter (14-bit)

Cap buffer (280-bit)

Cap decoder

14+2

280

H0 shifter (20-bit)

H1 shifter (20-bit)

H2 shifter (20-bit)

H3 shifter (20-bit)

Tail & fine branch shifter (0~60-bit)

HT buffer (456-bit)

Tail
decoder

456

20

20

20

20

Coarse
branch shifter

(0~452-bit)

456

60

Head
decoder

456280

Coarse
branch shifter

(0~266-bit)

 

Fig. 8 Instruction aligner 

The CAP decoder only examines the leading 16 bits of the 280-bit 
buffer and shifts out a 14-bit CAP each cycle.  Then, the four 
incremental shifters at the right-hand-side Fig. 8 shift out the 20-
bit fixed-length heads depending on the ‘valid’ bits in the CAP.  
The logarithmic tail shifter follows to shift out all tails of a VLIW 
packet.  Therefore, the HT buffer will be aligned to the next 
VLIW packet as the CAP buffer.  Finally, two coarse logarithmic 
shifters are added for branches to align a new bundle with the 
index and the packet pointer respectively. 

4. RESULTS 
We have completely verified the proposed Packed Instruction & 
Clustered Architecture (Pica) from the instruction set simulation 
in C++, the micro-architecture design in cycle-accurate SystemC, 
to FPGA prototyping and the cell-based silicon implementation.  
This section will summarize the remarkable results. 

4.1 Instruction Set Simulation  
We have hand-coded several DSP kernels in assembly to evaluate 
the performance of the processor core with our instruction set 
simulator.  Table I summarizes the performance comparisons 
between the state-of-the-art high-performance DSP processors 
and Pica DSP.  The second row shows the number of cycles 
required for N-sample T-tap FIR filtering on 16-bit samples, 
which reveals the on-chip MAC resources.  The third row 
compares the number of execution cycles to perform 2-D discrete 
cosine transform (DCT).  The fourth row lists the performance of 
the 256-point radix-2 fast Fourier transform (FFT), which is also 
measured in the execution cycles.  Finally, the last row compares 
the performance of the motion estimation under the MAE (mean 
absolute error) criteria.  The block size is 16×16 and the search 
range is within ±15 pixels.  The simulation results show that the 
performance of our proposed DSP processor is comparable with 
the state-of-the-art DSP for various benchmarks once the dataflow 
is appropriately arranged through the ping-pong register file. 

Table I. Performance comparison on various DSP kernels 
 TI C64 

[10] 
TI C55 

[17] 
NEC 

SPXK5 [18] 
Intel/ADI 
MSA [19]

Pica 

FIR NT/4 NT/2 NT/2 NT/2 NT/4 
DCT 126 238 240 296 127 
FFT 2,403 4,768 2,944 3,176 2,510 
ME 36,538 82,260 - 90,550 41,372

(Unit: cycle) 

Table II summarizes the performance of Pica for JPEG still image 
compression [20].  Two 512×512-pixel color images – Lena and 
Baboon are used in this simulation.  The JPEG program written in 
C is first compiled onto Pica in its MIPS-like scalar/program 
control mode with a proprietary compiler modified from the GNU 
tool.  The execution cycles are listed in the 2nd and the 3rd 
columns.  Then, the four kernels are hand-coded and optimized 
for the VLIW/data streaming mode, and the results are given in 
the 4th and the 5th columns.  Note that the performance can be 
significantly improved by a factor of 10~15. 

Table II. Performance evaluation of JPEG 
Pica (scalar only) Pica (dual-mode)  
Lena Baboon Lena Baboon 

RGB to YCbCr 33,734,912 487,066 
DCT 11,181,312 850,946 

Q & RLC 12,491,008 1,187,849 
Huffman 6,441,701 12,997,472 1,814,286 3,800,285

Total 63,848,933 70,404,704 4,340,149 6,326,148
(Unit: cycle) 

Finally, three instruction encoding schemes are compared using 
the above application programs, and the results are given in Table 
III.  The fixed-length encoding uses 152 bits for a VLIW packet, 
where an AU instruction occupies 36 bits and an LS instruction 
needs 40 bits respectively.  The scalar version of JPEG (JPEG_S) 
is exceptional, of which the encoding follows the standard 32-bit 
MIPS instructions.  The variable-length VLIW encoding follows 
the approach by TI [10].  The instructions are first encoded as 40-
bit words, and each of them are attached with 1 bit for packet 
boundary and 2 bits for dispatch.  Therefore, every effective 
instruction requires 43 bits.  Finally, all programs are encoded 
with our hierarchical instruction encoding.  The effective 
instruction bits and the memory requirements while packed into 
512-bit bundles are both shown in the table.  Note that the hand-
optimized JPEG with almost 15× performance requires less 
instruction memory after the proposed instruction encoding. 

Table III. Code size comparison 
Hierarchical  Fixed-

length 
Variable-

length Effective Bundled
FIR 5,016 4,559 1,742 1,834 
DCT 10,944 9,588 3,840 4,226 
FFT 60,648 50,760 20,946 22,258 
ME 12,160 10,669 3,948 4,146 

JPEG_S 36,096* - 26,690 27,521 
JPEG 62,472 42,253 19,654 20,666 

* 32-bit fixed-length RISC instructions                             (Unit: bit) 



4.2 Silicon Implementation  
We have implemented the unified processor core in Verilog RTL, 
which is cross-verified with the cycle-accurate SystemC model to 
achieve 100% code coverage.  The design is synthesized using 
Physical Compiler from Synopsys with the 0.18um cell library 
from Artisan.  The net-lists are then placed and routed using SoC 
Encounter from Cadence for the UMC 1P6M CMOS technology.  
Fig. 9 shows the layout of the proposed unified processor core 
with on-chip 16-Kbyte data and 16-Kbyte instruction memories.  
Its gate count is 643,952 (343,284 for core only) and the core area 
is 3.23mm×3.23mm.  The processor has a nine-stage pipeline (4 
stages for instruction dispatch and 5 stages for execution), and it 
can operate at 208 MHz and consume 380.6mW average power 
(running 2-D DCT). 
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Fig. 9 Layout of the unified processor core 

5. CONCLUSIONS 
This paper presents the design and the silicon implementation of a 
unified processor core for RISC and scalable VLIW DSP.  The 
two modes can be changed instruction by instruction within a 
single program stream via the hierarchical instruction encoding, 
which also helps to reduce the code sizes.  In order to minimize 
the hardware resources, the DSP has no control construct for 
program flow, and the data manipulation RISC instructions are 
performed by DSP.  Besides the general applications as the dual-
core multimedia systems, new application programs can be easily 
targeted on its compiler-friendly RISC mode and the performance 
is then improved by selectively optimizing the kernels on the DSP 
mode.  The tightly-coupled operation modes make such design 
strategy much more straightforward and efficient.  We are now 
studying the code optimization techniques for the distributed and 
ping-pong register file and developing a single-pass automatic 
code generator for the two modes of the unified processor core. 
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