
A Unified Processor Architecture for RISC & VLIW DSP
Tay-Jyi Lin, Chie-Min Chao, Chia-Hsien Liu, Pi-Chen Hsiao,

 Shin-Kai Chen, Li-Chun Lin, Chih-Wei Liu, and Chein-Wei Jen
 Department of Electronics Engineering
 National Chiao Tung University, Taiwan

ABSTRACT
This paper presents a unified processor core with two operation
modes. The processor core works as a compiler-friendly MIPS-
like core in the RISC mode, and it is a 4-way VLIW in its DSP
mode, which has distributed and ping-pong register organization
optimized for stream processing. To minimize hardware, the DSP
mode has no control construct for program flow, while the data
manipulation RISC instructions are executed in the DSP datapath.
Moreover, the two operation modes can be changed instruction by
instruction within a single program stream via the hierarchical
instruction encoding, which also helps to reduce the VLIW code
sizes significantly. The processor has been implemented in the
UMC 0.18um CMOS technology, and its core size is 3.23mm
×3.23mm including the 32KB on-chip memory. It can operate at
208MHz while consuming 380.6mW average power.

Categories and Subject Descriptors
C.1 Processor Architectures

General Terms
Design

Keywords
Digital signal processor, dual-core processor, variable-length
instruction encoding, register organization

1. INTRODUCTION
The computing tasks of an embedded multimedia system can be
roughly categorized into control-oriented and data-dominated, and
most computing platforms for media processing contain at least
two processors – a RISC and a DSP to handle the specific tasks
accordingly [1][2]. Fig. 1 shows a dual-core processor example.
The RISC coordinates the system and performs some reactive
tasks such as the user interface. In the meanwhile, the DSP core
performs transformational tasks with more deterministic and
regular behaviors, such as the small and well-defined workloads
in signal processing applications. Recent RISC architectures have
been enhanced for data-intensive tasks by incorporating single-
cycle multiply-accumulators, SIMD (MMX-like) datapaths, or
specific functional units [3] to reduce the needs for an additional
core, but the performance is still far behind that of a DSP with
similar computing resources [4]. This is because data-intensive
tasks are very distinct from general-purpose computations.

This paper presents a unified processor architecture for RISC and
DSP. The processor core functions as a MIPS-like RISC in its
scalar/program control mode, and it becomes a powerful DSP
while switched into its VLIW/data streaming mode. To maximize
the utilization, most hardware resources are shared between these
two modes. Moreover, the VLIW/data streaming mode has no
control construct for program flow, while the data manipulation
RISC instructions are executed in the VLIW datapath. The two
modes can be changed instruction by instruction within a single
program stream via our novel hierarchical instruction encoding,
which also helps to reduce the VLIW code sizes significantly.

TI C'5x
DSPARM926

Shared Memory Controller/DMA

2D Graphics Accelerator

Timer, Interrupt Controller, RTC

Frame Buffer/Internal SRAM

TI OMAP Processor

Fig. 1 Dual-core processor [2]

The rest of this paper is organized as follows. Section 2 first
reviews the architecture of our proprietary DSP with the novel
distributed and ping-pong register organization. What follows is
the unified datapath for the DSP and a MIPS-like RISC. Section
3 then describes the hierarchical instruction encoding that blends
the RISC and the DSP instructions into a single stream and
enables the instruction-by-instruction mode switching. Moreover,
the variable-length encoding scheme significantly reduces the
code sizes of VLIW programs. The simulation results and our
silicon implementation are available in Section 4. Section 5
concludes this paper and outlines our future works.

2. DATAPATH DESIGN
2.1 VLIW DSP Datapath
Today’s media processing demands extremely high computations
with real-time constraints in audio, image or video applications.
Instruction parallelism is exploited to speedup high-performance
microprocessors. Compared to dynamically hardware-scheduled
superscalar processors, VLIW machines [5] have the low-cost
compiler scheduling with deterministic execution times, and thus
they become the trends of high-performance DSP processors. But
the complexity of the register file grows rapidly as more and more
functional units (FU) are integrated on a chip, which concurrently
operate to achieve the performance requirements. A centralized
register file provides storage for and interconnects to each FU in a
general manner and each FU can access any register location. For

This work was supported by the National Science Council, Taiwan under
Grant NSC93-2220-E-009-034
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
GLSVLSI’05, April 17-19, 2005, Chicago, Illinois, USA.
Copyright ACM 1-59593-057-4/05/0004...$5.00.

N concurrent FU, the area of the centralized register file grows as
N 3, the delay as N 3/2, and the power dissipation as N 3 [6]. Thus,
the register file will soon dominate the area, the delay, and the
power dissipation in the multi-issue processors as the number of
FU increases. To solve this problem, the communications
between FU can be restricted by partitioning the register file to
significantly reduce the complexity with some performance
penalty [7-13]. In other words, each FU can only read and write a
limited subset of registers.
2.1.1 Distributed and ping-pong register file
Fig. 2 shows the proposed distributed and ping-pong register file
for two FU – a load/store (LS) and an arithmetic unit (AU). The
32 registers are divided into four independent groups, and each
group has access ports only for a single FU (two read and two
write ports in our case). The eight address registers (a0~a7) and
the eight accumulators (ac0~ac7) are dedicated to the LS and the
AU respectively, and they are not visible to any other FU. The
remnant 16 registers are shared between the two FU, and they are
divided into ‘ping’ and ‘pong’ register groups. When the LS
access the ping, the AU can only access the pong, and vice versa.
In other words, the data registers are partitioned into two banks
with exclusive accesses. In summary, each FU has 16 registers –
8 registers are private and 8 registers are dynamic mapped (to be
either ping or pong). The mapping is explicitly specified by the
programmers in each VLIW packet as described in Section 2.1.2.

address registers a0~a7

Load/Store Unit (LS)

Arithmetic Unit (AU)

ping registers d0~d7

pong registers d'0~d'7

accumulators ac0~ac7

Fig. 2 Distributed & ping-pong register organization

Our DSP supports very powerful SIMD instructions based on the
distributed and ping-pong register file. For example, the double
load (store) instruction of the form –
dlw rm,(ri)+k,(rj)+l.
It performs two memory accesses concurrently (rm←Mem[ri],
rm+1←Mem[rj]) and simultaneous address updates (ri←ri+k,
and rj←rj+l). The index m must be an even number with m+1
implicitly specified. The double load/store instructions require
six concurrent register file accesses (including two reads and four
writes for dlw, or four reads and two writes for dsw). They do
not cause access conflicts, because ri and rj are private address
registers while rm and rm+1 are ping-pong registers that deliver
data to the AU. These registers are implemented in independent
banks. The AU supports 16-bit SIMD full-precision multiply-
accumulate operations with two 40-bit accumulators:
fmac.d ri, rm, rn.
It performs ri←ri+rm.H×rn.H, and ri+1←ri+1+rm.L×rn.L in
parallel. Similarly, the index i must be even with i+1 implicitly

specified. This SIMD instruction needs six register file accesses
concurrently (four reads and two writes respectively).
2.1.2 Assembly programming
The syntax of the DSP assembly codes starts with the ping-pong
index, followed by the instructions for each issue slot in sequence:
ping-pong index; i0; i1;.
The following is an illustrating example of a 64-tap finite-impulse
response (FIR) filter that produces 1,024 outputs. Assume there is
no delay slot (such as an ALU operation immediately after a load
in the classical 5-stage pipeline [5]) for simplicity. The memory
is byte addressable and the input and output data are 16-bit and
32-bit numbers respectively.

1 0; li a0,coef; li ac0,0;
2 0; li a1,X; nop;
3 0; li a2,Y; nop;
4 rpt 1024,8;
5 0; dlw d0,(a0)+4,(a1)+4; li ac1,0;
6 rpt 15,2;
7 1; dlw d0,(a0)+4,(a1)+4; fmac.d ac0,d0,d1;
8 0; dlw d0,(a0)+4,(a1)+4; fmac.d ac0,d0,d1;
9 1; dlw d0,(a0)+4,(a1)+4; fmac.d ac0,d0,d1;

10 0; li a0,coef; fmac.d ac0,d0,d1;
11 0; addi a1,a1,-126; add d0,ac0,ac1;
12 1; sw (a2)+4,d0; li ac0,0;

The zero-overhead looping instructions (RPT at line 4 and line 6)
are carried out in the instruction dispatcher and do not consume
any execution cycle of the datapath. The inner loop (line 7-8)
loads two 16-bit inputs and two 16-bit coefficients into the 32-bit
d0 and the 32-bit d1 with the SIMD load operations (i.e. d0←
Mem32[a0] and d1←Mem32[a1]), and the address registers a0
and a1 are updated simultaneously (i.e. a0←a0+4 and a1←a1+4).
In the meanwhile, the AU performs two 16-bit MAC for two taps
concurrently (i.e. ac0←ac0+d0.H×d1.H and ac1←ac1+d0.L×
d1.L). After accumulating 32 32-bit products respectively with
two 40-bit accumulators, ac0 are ac1 are added together and
rounded back to the 32-bit d0 in the ping-pong registers. Finally,
the 32-bit output is stored in the memory by the LS via d0. In this
FIR example, an output requires 35 cycles or the DSP can
compute 1.83 taps per cycle. Note that, the loops can be unrolled
to achieve similar performance easily if the load slots are taken
into account. By the way, the ping-pong register organization
helps to reduce the code size, for the programmer can specify
different register locations (i.e. to be either in ping or pong) with
the same name via the ping-pong index. We will make use of this
property in the instruction encoding later in Section 3.

2.2 Unified RISC & VLIW DSP
Each register group in Fig. 2 is actually implemented with two
2R/1W (two reads and 1 write) register banks of half sizes (i.e. 4
registers) as shown in the VLIW block in Fig.3, instead of 2R/2W
access ports. Since a RISC core does not contain any data
manipulation instruction other than those performed on the LS (i.e.
load/store instructions) or the AU (i.e. ALU instructions), the
extra resource for the DSP datapath to execute RISC instructions
is an additional register file. To simplify data exchange between
the two modes, the ping-pong data registers are aliased as the
‘saved’ (s0~s7) and the ‘temporary’ (t0~t7) data registers in the
MIPS-compatible scalar/program control mode. The remnant 16

registers are private to the scalar mode (actually, there are only 15
physical registers, for r0 is hardwired to zero [5]). Fig. 3 shows
the unified datapath for the two modes with total nine 2R/1W
register banks.

ping registers d0~d7
even odd

scalar registers
r0~r7;

r24~r31

pong registers d'0~d'7
even odd

address registers a0~a7
even odd

LS

AU

accumulator ac0~ac7
even odd

VLIW / Data Streaming

Scalar /
Program Control

Fig. 3 Unified datapath for RISC & DSP

Fig. 4 shows the add/sub instructions of the unified processor core
and the relationship with those of the MIPS32 ISA. The first
column shows the MIPS add/sub instructions, where the gray ones
denote pseudo instructions. The 2nd column lists the equivalent
instructions of the scalar/program control mode, and the 3rd and
the 4th columns summarize those of the VLIW/data streaming
mode. Note that C compilers do not generate MIPS codes with
addi, add, sub, and neg (i.e. those cause overflow exceptions),
and thus our processor do not support these instructions. Besides,
few pseudo MIPS instructions are mapped to physical instructions.
Finally, the data manipulation instructions of the scalar mode are
actually executed in the DSP datapath, which are highlighted in
the yellow background.

AU LS
addiu addi addi addi
addu add add add
subu sub sub sub
addi NA NA NA
add NA NA NA
sub NA NA NA
neg NA NA NA
negu neg neg neg
nop nop nop nop
abs abs abs abs

rsbi rsbi
addi.d addi.d
add.d add.d
sub.d sub.d
abs.d abs.d
addi.q addi.q
add.q add.q
sub.q sub.q
bf.d
saa.q

MIPS Scalar
VLIW

Fig. 4 Add/sub instructions

For applications demanding even higher performance, the unified
processor core can integrate three more DSP datapaths (up to four
clusters). Our first prototype described hereafter contains two
clusters – a main cluster as shown in Fig. 3 and a slave cluster as
shown in Fig. 2. In other words, it can be configured as a MIPS-
like RISC or a 4-way VLIW DSP. For most cases, programmers
can exploit the data-level parallelism and arrange the two clusters
to operate independently. Otherwise, inter-cluster communication
can be performed via the memory subsystem.

3. HIERARCHICAL INSTRUCTION
ENCODING

The unified processor core is able to change its operation modes
instruction by instruction within a single program stream. This
section will describe the enabling technology – the hierarchical
instruction encoding, which also helps to reduce the VLIW code
sizes significantly.

3.1 VLIW/Data Streaming Mode
VLIW processors are notorious for their poor code density. It
comes from the redundancy inside (1) the fixed-length RISC-like
instructions, where most operations need not all the control bits
actually, (2) the position-coded VLIW packet, where the unused
instruction slots must be filled by NOP, and (3) the repeated codes
due to loop unrolling or software pipelining. HAT [14] is an
efficient variable-length instruction format to solve the first
problem. Variable-length VLIW [10] eliminates the NOP by
attaching a dispatch code to each instruction for run-time dispatch
and decoding. Moreover, specific marks are required to indicate
the boundaries of the variable-length VLIW packets (i.e. with a
varying number of effective instructions). Indirect VLIW [15]
uses an addressable internal micro-instruction memory for the
VLIW datapath (i.e. the programmable VIM), and the VLIW
packets are executed with only very short indices. The RISC-like
instructions in the existing packets can be reused to synthesize
new packets to reduce the instruction bandwidth. Systemonic
proposes an incremental encoding scheme for the prolog and the
epilog of the software pipelined codes [16] to remove the repeated
codes. In this paper, we propose a novel hierarchical instruction
encoding, which takes into account all the three causes to improve
the VLIW code density.

3.1.1 Variable-length instructions

00000
func: 000(add), 001(add.d), 010(add.q)

100(sub), 101(sub.d), 110(sub.q)

Tail (0~28-bit)Head (20-bit)

add/sub

1000
addi/rsbi

func: 00(addi), 01(addi.d), 10(rsbi), 11(rsbi.d)
DL(immediate length): 00(4-bit), 01(8-bit), 10(16-bit), 11(32-bit)

func rd rs rt

func DL rd rs imm.L imm.H

01000
f: 0(abs), 1(abs.d)

abs
f rd rsu unused

saa.q

bf.d
00100

00100

100

001

rd rs rt

rd rs rt

Fig. 5 Machine codes for add/sub instructions

Fig. 5 shows the variable-length encoding of the AU instructions
listed in Fig. 4. The code length of an instruction depends on the
number of its operands and the frequency of its usage. The
variable-length code is divided into a fixed-length ‘head’ and the
remnant variable-length ‘tail’ as HAT format [14]. This helps to
improve the regularity, and reduces the complexity for instruction
alignment significantly.

3.1.2 VLIW packets without NOP
The effective instructions for an execution cycle (i.e. without NOP)
are packed into a VLIW packet with a fixed-length ‘CAP’. The
CAP has a ‘valid’ field, where each functional unit (FU) has a
corresponding bit to indicate whether it is idle. In other words,
the NOP is eliminated by turning the corresponding valid bit off.
Fig. 6(a) shows the 14-bit CAP format of our prototype with 4-
way VLIW. As the example given in Fig. 6(b), the two addi
instructions are first translated into the machine codes by looking
up Fig.5. The 14-bit CAP is set as 00 for VLIW instruction,
0101 to remove NOP in the 1st and the 3rd slots, 0010 for total
8-bit tails, 00 for the ping-pong indices of the two clusters, and
the ending 00 to disable the SIMD-cluster mode and the
conditional executions.

Valid Tail Length PP

2-bit 4-bit 4-bit 2-bit

00: VLIW/data streaming mode
11: Scalar/program control mode
01: Differential encoding (for VLIW)
10: End of bundle

M

e.g. 00 nop; addi d0,ac4,64; nop; addi d0,ac4,64;

0101 0010 0000

0100

Cap

01001000 100000H1

H3

T1

T3

S C

Conditional execution
SIMD encoding

0 0

01 0100 0000

1000 100000 01 0100 0000

(a)

Fig. 6 Instruction packet for a 4-way VLIW (with 2 clusters)

For an N-way VLIW processor, our approach uses only N ‘valid’
bits to remove NOP in a packet. Variable-length VLIW either
uses log2(N+1) bits for a VLIW packet to indicate the number of
active issue slots, or one bit for each effective instruction to
indicate the packet boundary. Moreover, additional log2N bits are
required for each instruction to dispatch it to the correspondent
slot. Assume a packet has P instructions in average (0≤P≤N), and
Variable-length VLIW needs log2(N+1)+Plog2N or P(log2N+1)
bits for a packet accordingly. Therefore, it has better compression
only for codes with very low parallelism (i.e. with small P).

In the VLIW/data streaming mode, the clusters can be configured
into SIMD execution by turning on the S bit in the CAP. The
instructions of the main cluster will be replicated to all clusters to
reduce to code sizes. For the example in Fig. 6(b), 24 bits can be
saved by setting S=1 in the CAP. Moreover, the hierarchical
encoding supports the differential mode using a CAP starting with
01. The VLIW packet of the previous execution cycle will be
reused with small updates, such as the ping-pong indices, the

destination register for the load instructions, and the source
registers for the multiply-accumulate instructions, etc. Finally, all
instructions can be conditionally executed by turning on the C bit
in the CAP.

3.1.3 Instruction Bundle
The variable-length VLIW packets are packed into fixed length
instruction bundles to simplify the instruction memory accesses.
In order to pipeline the instruction fetch, alignment, and decoding,
the fixed-length CAP and the variable-length VLIW packet are
placed from the two ends of an instruction bundle respectively as
depicted in Fig. 7. For each VLIW packet, the fixed-length heads
are placed in order ahead of the variable-length tails. By the way,
because the CAP is fixed-length and placed in order, instruction
look-ahead is possible to reduce the control overheads.

Cap H1H3T1

instruction packet

512-bit instruction bundle

14-bit

T3

Fig. 7 Instruction bundle

An instruction bundle contains various numbers of VLIW packets,
and the code 10 of the leading two bits of the CAP is reserved to
denote the bundle end. The total length of the tails is attached in
the CAP to locate the next VLIW packet in the pipelined
instruction aligner. Finally, depending on the implementations of
the instruction aligners described later and our simulations of real
programs, the 512-bit instruction bundles are optimal, which have
practical decoder complexity and acceptable fragment (i.e. unused
bits in a bundle).

3.2 Scalar/Program Control Mode
The scalar instructions are also variable-length encoded, which
are similar to those depicted in Fig. 5. But a scalar instruction is
decomposed into a fixed-length CAP with leading 11 (instead of
head) and a variable-length tail for the remnant bits. The branch
instructions change the program flow to a new instruction bundle
with the packet index. To easily locate the target VLIW packet,
the pointer for its first instruction head is also encoded in the
branch instructions. Our first prototype contains a 16KByte on-
chip instruction memory, which is equal to a page of 256 bundles.

3.3 Decoder Architecture
To extract from an instruction bundle the appropriate bit fields for
decoding is very complicated, especially for the variable-length
VLIW packets. Instead of huge multiplexers, we use incremental
and logarithmic shifters for instruction alignment, as depicted in
Fig. 8. The VLIW packets are continuously shifted out from the
two ends of an instruction bundle, and the decoders can operate
on the fixed positions. The lengths of the two buffers can be
calculated as follows.

(bits) 280
26

51214

lengthscalar average
size bundlesize CAPsizebuffer CAP

(bits) 456
170
51214512

lengthinstr max
size bundlesize CAP-size bundlesizebuffer HT

=



×=









×=

=



×−=









×=

The buffer size for heads and tails (HT) is the bundle size minus
the bits impossible to be HT (i.e. the minimum number of VLIW
packets in a bundle multiplied by the fixed length of CAP). The
CAP buffer size can be estimated using the average number of
instructions in a bundle when the processor stays in the scalar/
program control mode. Note that the CAP and the HT buffers
contain overlapped bits, because the boundary between CAP and
HT is not deterministic.

16KByte On-Chip Instruction Memory
(including 256 instruction bundles)

Cap shifter (14-bit)

Cap buffer (280-bit)

Cap decoder

14+2

280

H0 shifter (20-bit)

H1 shifter (20-bit)

H2 shifter (20-bit)

H3 shifter (20-bit)

Tail & fine branch shifter (0~60-bit)

HT buffer (456-bit)

Tail
decoder

456

20

20

20

20

Coarse
branch shifter

(0~452-bit)

456

60

Head
decoder

456280

Coarse
branch shifter

(0~266-bit)

Fig. 8 Instruction aligner

The CAP decoder only examines the leading 16 bits of the 280-bit
buffer and shifts out a 14-bit CAP each cycle. Then, the four
incremental shifters at the right-hand-side Fig. 8 shift out the 20-
bit fixed-length heads depending on the ‘valid’ bits in the CAP.
The logarithmic tail shifter follows to shift out all tails of a VLIW
packet. Therefore, the HT buffer will be aligned to the next
VLIW packet as the CAP buffer. Finally, two coarse logarithmic
shifters are added for branches to align a new bundle with the
index and the packet pointer respectively.

4. RESULTS
We have completely verified the proposed Packed Instruction &
Clustered Architecture (Pica) from the instruction set simulation
in C++, the micro-architecture design in cycle-accurate SystemC,
to FPGA prototyping and the cell-based silicon implementation.
This section will summarize the remarkable results.

4.1 Instruction Set Simulation
We have hand-coded several DSP kernels in assembly to evaluate
the performance of the processor core with our instruction set
simulator. Table I summarizes the performance comparisons
between the state-of-the-art high-performance DSP processors
and Pica DSP. The second row shows the number of cycles
required for N-sample T-tap FIR filtering on 16-bit samples,
which reveals the on-chip MAC resources. The third row
compares the number of execution cycles to perform 2-D discrete
cosine transform (DCT). The fourth row lists the performance of
the 256-point radix-2 fast Fourier transform (FFT), which is also
measured in the execution cycles. Finally, the last row compares
the performance of the motion estimation under the MAE (mean
absolute error) criteria. The block size is 16×16 and the search
range is within ±15 pixels. The simulation results show that the
performance of our proposed DSP processor is comparable with
the state-of-the-art DSP for various benchmarks once the dataflow
is appropriately arranged through the ping-pong register file.

Table I. Performance comparison on various DSP kernels
 TI C64

[10]
TI C55

[17]
NEC

SPXK5 [18]
Intel/ADI
MSA [19]

Pica

FIR NT/4 NT/2 NT/2 NT/2 NT/4
DCT 126 238 240 296 127
FFT 2,403 4,768 2,944 3,176 2,510
ME 36,538 82,260 - 90,550 41,372

(Unit: cycle)

Table II summarizes the performance of Pica for JPEG still image
compression [20]. Two 512×512-pixel color images – Lena and
Baboon are used in this simulation. The JPEG program written in
C is first compiled onto Pica in its MIPS-like scalar/program
control mode with a proprietary compiler modified from the GNU
tool. The execution cycles are listed in the 2nd and the 3rd
columns. Then, the four kernels are hand-coded and optimized
for the VLIW/data streaming mode, and the results are given in
the 4th and the 5th columns. Note that the performance can be
significantly improved by a factor of 10~15.

Table II. Performance evaluation of JPEG
Pica (scalar only) Pica (dual-mode)
Lena Baboon Lena Baboon

RGB to YCbCr 33,734,912 487,066
DCT 11,181,312 850,946

Q & RLC 12,491,008 1,187,849
Huffman 6,441,701 12,997,472 1,814,286 3,800,285

Total 63,848,933 70,404,704 4,340,149 6,326,148
(Unit: cycle)

Finally, three instruction encoding schemes are compared using
the above application programs, and the results are given in Table
III. The fixed-length encoding uses 152 bits for a VLIW packet,
where an AU instruction occupies 36 bits and an LS instruction
needs 40 bits respectively. The scalar version of JPEG (JPEG_S)
is exceptional, of which the encoding follows the standard 32-bit
MIPS instructions. The variable-length VLIW encoding follows
the approach by TI [10]. The instructions are first encoded as 40-
bit words, and each of them are attached with 1 bit for packet
boundary and 2 bits for dispatch. Therefore, every effective
instruction requires 43 bits. Finally, all programs are encoded
with our hierarchical instruction encoding. The effective
instruction bits and the memory requirements while packed into
512-bit bundles are both shown in the table. Note that the hand-
optimized JPEG with almost 15× performance requires less
instruction memory after the proposed instruction encoding.

Table III. Code size comparison
Hierarchical Fixed-

length
Variable-

length Effective Bundled
FIR 5,016 4,559 1,742 1,834
DCT 10,944 9,588 3,840 4,226
FFT 60,648 50,760 20,946 22,258
ME 12,160 10,669 3,948 4,146

JPEG_S 36,096* - 26,690 27,521
JPEG 62,472 42,253 19,654 20,666

* 32-bit fixed-length RISC instructions (Unit: bit)

4.2 Silicon Implementation
We have implemented the unified processor core in Verilog RTL,
which is cross-verified with the cycle-accurate SystemC model to
achieve 100% code coverage. The design is synthesized using
Physical Compiler from Synopsys with the 0.18um cell library
from Artisan. The net-lists are then placed and routed using SoC
Encounter from Cadence for the UMC 1P6M CMOS technology.
Fig. 9 shows the layout of the proposed unified processor core
with on-chip 16-Kbyte data and 16-Kbyte instruction memories.
Its gate count is 643,952 (343,284 for core only) and the core area
is 3.23mm×3.23mm. The processor has a nine-stage pipeline (4
stages for instruction dispatch and 5 stages for execution), and it
can operate at 208 MHz and consume 380.6mW average power
(running 2-D DCT).

Instrunction Memory

Main Cluster

Distributed &
Ping-Pong RF

Cluster 1

Scalar
RF

Instruction Dispatcher

Data Memory

Distributed &
Ping-Pong RF

Fig. 9 Layout of the unified processor core

5. CONCLUSIONS
This paper presents the design and the silicon implementation of a
unified processor core for RISC and scalable VLIW DSP. The
two modes can be changed instruction by instruction within a
single program stream via the hierarchical instruction encoding,
which also helps to reduce the code sizes. In order to minimize
the hardware resources, the DSP has no control construct for
program flow, and the data manipulation RISC instructions are
performed by DSP. Besides the general applications as the dual-
core multimedia systems, new application programs can be easily
targeted on its compiler-friendly RISC mode and the performance
is then improved by selectively optimizing the kernels on the DSP
mode. The tightly-coupled operation modes make such design
strategy much more straightforward and efficient. We are now
studying the code optimization techniques for the distributed and
ping-pong register file and developing a single-pass automatic
code generator for the two modes of the unified processor core.

6. REFERENCES
[1] Intel PXA800F Cellular Processor – Development Manual, Intel

Corp., Feb. 2003
[2] OMAP5910 Dual Core Processor – Technical Reference Manual,

Texas Instruments, Jan. 2003
[3] M. Levy, “ARM picks up performance,” Microprocessor Report,

4/7/03-01
[4] R. A. Quinnell, “Logical combination? Convergence products

need both RISC and DSP processors, but merging them may not
be the answer,” EDN, 1/23/2003

[5] J. L Hennessy, and D. A. Patterson, Computer Architecture – A
Quantitative Approach, 3rd Edition, Morgan Kaufmann, 2002

[6] S. Rixner, W. J. Dally, B. Khailany, P. Mattson, U. J. Kapasi,
and J. D. Owens, “Register organization for media processing,”
in Proc. HPCA-6, 2000, pp.375-386

[7] J. Zalamea, J. Llosa, E. Ayguade, and M. Valero, “Hierarchical
clustered register file organization for VLIW processors,” in
Proc. IPDPS, 2003, pp.77-86

[8] P. Faraboschi, G. Brown, J. A. Fisher, G. Desoll, and F. M. O.
Homewood, “Lx: a technology platform for customizable VLIW
embedded processing,” in Proc. ISCA, 2000, pp.203-213

[9] E. F. Barry, G. G. Pechanek, and P. R. Marchand, “Register file
indexing methods and apparatus for providing indirect control of
register file addressing in a VLIW processor,” International
Application Published under the Patent Cooperation Treaty
(PCT), WO 00/54144, Mar. 9 2000

[10] TMS320C64x DSP Library Programmer's Reference, Texas
Instruments Inc., Apr 2002

[11] K. Arora, H. Sharangpani, and R. Gupta, “Copied register files
for data processors having many execution units” U.S. Patent
6,629,232, Sep. 30, 2003

[12] A. Kowalczyk et al., “The first MAJC microprocessor: a dual
CPU system-on-a-chip,” IEEE J. Solid-State Circuits, vol. 36,
pp.1609-1616, Nov. 2001

[13] A. Terechko, E. L. Thenaff, M. Garg, J. Eijndhoven, and H.
Corporaal, “Inter-cluster communication models for clustered
VLIW processors,” in Proc. HPCA-9, 2003, pp.354-364

[14] H. Pan and K. Asanovic, “Heads and tails: a variable-length
instruction format supporting parallel fetch and decode,” in Proc.
CASES, 2001

[15] G. G. Pechanek and S. Vassiliadis, “The ManArray embedded
processor architecture,” Euromicro Conf., vol.1, pp.348-355,
Sep., 2000

[16] G. Fettweis, M. Bolle, J. Kneip, and M. Weiss, “OnDSP: a new
architecture for wireless LAN applications,” Embedded
Processor Forum, May 2002

[17] TMS320C55x DSP Programmer’s Guide, Texas Instruments Inc.,
July 2000

[18] T. Kumura, M. Ikekawa, M. Yoshida, and I. Kuroda, “VLIW
DSP for mobile applications,” IEEE Signal Processing Mag.,
pp.10-21, July 2002

[19] R. K. Kolagotla, et al, “A 333-MHz dual-MAC DSP architecture
for next-generation wireless applications,” in Proc. ICASSP,
2001, pp.1013-1016

[20] W. B. Pennebaker and J. L. Mitchell, JPEG – Still Image Data
Compression Standard, Van Nostrand Reinhold, 1993

[21] T. J. Lin, C. C. Chang, C. C. Lee, and C. W. Jen, “An efficient
VLIW DSP architecture for baseband processing,” in Proc.
ICCD, 2003

[22] P. Lapsley, J. Bier, A. Shoham, and E. A. Lee, DSP Processor
Fundamentals – Architectures and Features, IEEE Press, 1996

[23] TriCore 2-32-bit Unified Processor Core v.2.0 Architecture –
Architecture Manual, Infineon Technology, June 2003

[24] Y. H. Hu, Programmable Digital Signal Processors –
Architecture, Programming, and Applications, Marcel Dekker
Inc., 2002

