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Circuit Optimization by Rewiring 
 

Abstract 

This paper presents a very efficient optimization method suitable for multi-level 
combinational circuits. The optimization is based on incremental restructuring of a circuit 
through a sequence of additions and removals of redundant wires. Our algorithm applies 
the techniques of Automatic Test Pattern Generation (ATPG) which can efficiently detect 
redundancies. During the ATPG process, certain nodes in the circuit must have particular 
logic assignments for a test to exist. Based on the properties of these mandatory 
assignments we have developed theorems to eliminate unnecessary wire redundancy 
checking. This results in significant performance improvement. The fast run time and the 
excellent scaling to large circuits make our Boolean optimization method practical for 
industrial applications.  

Keywords: Rewiring, Logic Optimization, Logic Synthesis, Redundancy, and ATPG. 

1 Introduction 

The goal of logic synthesis is to realize, in some optimal way, a set of logic expressions 

using cells from a technology library. The process is typically divided into technology 

independent and technology dependent optimization. In this paper we discuss the problem 

of technology independent optimization for multi-level combinational Boolean networks. 

We assume that an initial multi-level Boolean network is given and it has to be optimized 

with respect to some cost function. The problem has been studied before and conventional 

methods are summarized in [11]. Because many of these methods do not scale well for 

large circuits, Automatic Test Pattern Generation (ATPG) based algorithms have become 

an attractive alternative [2] [5] [6] [8] [10] [13] [15] [16] [20]. In comparison to the 

majority of BDD based methods, an ATPG algorithm requires little memory to process 

large circuits. Although the running time of an ATPG algorithm may be exponential, the 

memory requirement is linear in the size of the circuit. The amount of computational effort 

spent in searching for test patterns can be accurately controlled. In addition, ATPG based 

optimizers can implicitly use circuit’s observability and controllability don’t cares without 

the need to calculate them explicitly.  
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ATPG based logic optimizers incrementally restructure a network without changing its 

functionality. The elementary operation is a single wire addition or removal. A wire which 

can be added or removed without changing the circuit’s functionality is referred to as a 

redundant wire. One can consider redundant wires as a restructuring freedom during circuit 

optimization. Because ATPG allows us to detect redundant wires efficiently, most of the 

ATPG based algorithms optimize circuits by adding and removing redundant connections. 

For example consider the circuit [13] in Fig. 1. An ATPG algorithm can detect that a 

2-input AND gate m and wire e->m will be redundant if added to the circuit. After adding 

e->m, two originally irredundant wires e->g and a->f will become redundant. Adding wire  

e->m and removing wires e->g and a->f results in a smaller circuit. This is the principle of 

the area optimization algorithms described in [6], [8] and [13]. Incremental restructuring 

achieved through wire addition and removal has many other applications. This technique 

can be used to remove particular wires to improve routability or performance [5]. In [9], 

circuit’s structure is perturbed to improve partitioning.  

 

Fig. 1 Redundant wires caused by adding another redundant wire 
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In this paper we develop theory of single wire addition and removal. We investigate 

some necessary conditions for a wire to be redundant. These conditions are then used to 

improve and speed up the wire addition and removal process. The key question addressed 

here is which wires can be removed after adding a particular redundant wire. 

To resolve this problem, we study characteristics of mandatory assignments [1], which 

must be satisfied for every test vector of a given fault. We introduce the forced and 

observability mandatory assignments. These two attributes of mandatory assignments can 

be computed efficiently with very little computational overhead. Based on the properties of 

mandatory assignments, we derive theorems that improve the results of ATPG based 

optimization. The speedup is achieved by eliminating many unnecessary redundancy 

checks on wires, which cannot be made redundant as a result of a particular incremental 

transformation. 

This paper is organized as follows. In Section 2 we discuss previous work. Section 3 

reviews ATPG concepts related to this paper. In Section 4 we introduce and discuss two 

important attributes of mandatory assignments, which are the forced mandatory 

assignment and the observability mandatory assignment. In Section 5 we derive some 

necessary conditions for a wire to become redundant. Section 6 describes the 

implementation of our algorithm. The efficiency is achieved by making use of the 

theorems described in Sections 4 and 5. Finally results and conclusions are presented. 

2 Previous Work 

In this section, we review several multi-level logic optimization algorithms [6] [8] [13] 

which all apply the principle of iterative addition of a redundant wire and/or gate followed  

by the removal of other redundant wires and/or gates. In all these works, ATPG techniques 

are used to determine whether a particular connection is redundant or not. Though the basic 

principle is about the same for most of the ATPG based logic optimization algorithms, they 

differ in where a redundant structure is added and what types of transformations are 

admissible. The speed of ATPG based multi-level logic optimizers depends on how 

efficiently the wires which become redundant after addition of a particular redundant wire, 

can be identified. The procedures to identify redundancies induced in the circuit by an 
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added redundant wire, are different in particular ATPG based optimizers. Note that when a 

redundant wire ni ->nj is added, a wire whose redundancy is caused by this change can be 

topologically “far” away from ni ->nj. After adding one wire, [8] tries to remove wires in 

the input cone of nj, while [6] considers the input and the output cones. The algorithm [13], 

after adding one redundant wire to a circuit, applies redundancy test on the entire circuit. 

As stated in [17], though these ATPG algorithms are very powerful, their run times are 

unacceptable for large circuits because of many redundancy checks. In the following, we 

briefly summarize the strategies used in earlier algorithms.  

In [8], the optimization algorithm first chooses a node n in a circuit. For each wire w in 

the input cone of node n, a search is performed to find new connections which when added 

to the circuit would cause w to be redundant. The wire w and the corresponding new 

connections will be stored in a table. Using this table, the algorithm selects and adds one 

new connection followed by the redundancy removal phase. This optimization process will 

iterate through all the nodes in the circuit. 

The work [6] improves the results of [8] by allowing several new transformations such as 

adding two-input AND/OR/XOR gates to the circuit. Also, the search space is not confined 

to the input cone of any particular node. Techniques to filter out some of the unsuccessful 

transformations to reduce the computational effort are proposed.  

In [13], each iteration step consists of adding one redundant wire or a redundant 

two-input AND/OR gate followed by the redundancy check in the entire circuit. Instead of 

building a table as in [8], a heuristic is used to decide where to add a redundant 

transformation. This heuristic, which is the key of the algorithm, is based on the 

observation that a circuit after optimization has less mandatory assignments of a certain 

type. This heuristic allows them to limit the choices of where to add a redundant 

transformation. Still, the time per iteration spent on whole-circuit redundancy removal can 

be very large. 

3  Background and Definitions 

In the following we review some standard logic synthesis terminology and ATPG related 

concepts which will be used throughout the paper. Here we consider only circuits 
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composed of AND, OR and INV gates. Complex gates can be handled by decomposing 

them into such gates. 

If there is a directed path from a node ni to a node nj, we say that ni is in transitive fanin of 

nj and nj is in transitive fanout of ni. A dominator [12] g of a wire w is such a gate that all 

paths from w to any primary output have to pass through g.  The value of an input to a gate 

is controlling if it determines the value of the gate’s output regardless of the values on  the 

other inputs. The controlling value is 1 for an OR gate, and 0 for an AND gate. The inverse 

of the controlling value is called the noncontrolling value or sensitizing value. 

Consider a dominator of a wire w=ni->nj. The side inputs of a dominator are its inputs not 

in the transitive fanout of nj. To generate a test for a stuck-at fault at wire w, all the side 

inputs of w’s dominators must be assigned their sensitizing values. In addition, to test a 

wire for a stuck-at-1 {0} fault, a test vector must generate the activating value of 0 {1} at 

the source node of the wire.  

Let wr be a wire tested for a stuck-at 0 {1} fault; the faulty circuit is the circuit in which 

wr is replaced by a constant 0 {1}. An input combination v is a test vector if an output of the 

good (original) circuit and the faulty circuit are different when applying v. If no such a test 

vector exists, then the wire under stuck-at fault test is redundant.  

The mandatory assignments (MAs) are the value assignments to nodes required for a test 

to exist and must be satisfied by any test vector. The process of computing these MAs and 

checking their consistency is referred to as implication and proceeds as follows. For a wire 

stuck-at fault, the MAs on the side inputs of the wire’s dominators are set to the sensitizing 

values and the MA on the source node of the wire is set to the activating value. These MAs 

can then be propagated by using some simple rules such as if the output of an AND {OR} 

gate is 1 {0}, the inputs are 1 {0}. If all the inputs of an AND {OR} gate are 1 {0}, the 

output is 1 {0} etc. [1]. This process is called direct implication. More MAs can be found 

by more complicated approaches [14] [19]. During the process of direct implication, if the 

output of an AND {OR} gate is 1 {0}, all the inputs must be 1 {0}. We refer to this process 

as backward implication.  

If the MAs of a stuck-at fault test cannot be consistent, the fault is untestable and 

therefore, the wire is redundant. A wire to be removed is referred to as the target wire. The 

corresponding stuck-at fault is called the target fault.  
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4  Forced Mandatory Assignments and Observability 
Mandatory Assignments 

In this section, we discuss the observability and forced MAs. As mentioned in Section 3, 

an MA of a stuck-at fault can be implied from the MAs that activate the fault or sensitize a 

fault propagating path to one primary output. In the case of five-value logic [1], an MA can 

be X, 0, 1, D or D .  

We define an MA to be an observability MA if its purpose is to sensitize a 

fault-propagating path to one primary output during a stuck-at fault test. The observability 

MAs are those MAs that are necessary to make the fault observable at a primary output. 

The observability MAs are the MAs that are set to sensitize a fault propagating path but 

excluding the effect of the activating MA on the source of the fault. Therefore, the 

observability MAs are a subset of all MAs. Note that since the activating value does not 

play a role, the observability MAs do not depend on the source node of the target wire for 

which the test is sought. The set of observability MAs derived for the s-a-1 fault of a wire is 

the same as the set of observability MAs for the s-a-0 fault of the same wire; therefore the 

observability MAs can be defined for a wire (not for a particular fault).  

 

Fig. 2 Example of a single alternative wire. 
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For example, in the Fig 2(a), to make the g1->g4 s-a-1 fault observable at outputs, the 

MAs {c=1, g2=0, g7=0, f=1} must be set. These are the observability MAs. Note that MAs 

{g1=0, g5=0} are not observability MAs because they need to be derived from the 

activating MA g1=0.   

Let n be a node in a circuit C. Suppose that after a stuck-at fault test on wire w, node n has 

an MA. We build a new circuit C’( n) as follows. (See Fig. 3.) If the MA of n is 1 or D, we 

disconnect n from its fanouts and connect a constant 0 to these fanouts. If the MA is 0 or D , 

we connect a constant 1 to those fanouts. We say that node n has a forced MA in C if when 

we perform the same stuck-at fault test on wire w in C’( n), the fault becomes untestable. 

Conceptually, forced MAs cannot be changed if the fault is to remain testable. 

Non-forced MAs, on the other hand, are due to an incidental consequence of the test.  For 

example in Fig. 2(a), consider the stuck-at-1 test for wire g1->g4. We have MAs {g1=0, 

c=1, g2=0, g5=0, g7=0, f=1, g4=D, g8=D, g9=D}. The MA c=1 is a forced MA because 

disconnecting c from g4 and inserting a 0 at an input of g4 will make the stuck-at fault 

untestable. The MA g5=0 is non-forced because after disconnecting g5 from o1 and 

connecting 1 to o1, the fault g1->g4 s-a-1 is still testable.  

 

Fig. 3 Forced MAs. (a). w is the wire on which the stuck-at fault test is performed. (b) 

shows C’(n) when n has a MA=1 or D. (c) shows C’(n) when the node has a MA=0 or D .



 

 
Circuit Optimization by Rewiring February 1,1999 9 

For a wire stuck-at fault test, forced MAs can be computed directly from the definition. 

However such an approach is too time-consuming. In the following we discuss how to 

efficiently determine forced MAs. 

Lemma 1: The MAs obtained by setting the side inputs of the dominators to their 

non-controlling values, setting the outputs of the dominators to D or D , and setting the 

activating MA on the source node of the target wire stuck-at fault, are all forced. In 

addition, the MAs that are set from backward implication of other MAs are also forced. 

Proof. A controlling value in a side input of a dominator will cause the dominator to have a 

constant value. This will block the fault propagation and result in untestability of the target 

fault. Therefore, the uncontrolling value in a side input of a dominator is a forced MA. The 

proof is similar for the activating MA and the MAs derived from backward implication. 

QED. 

Lemma 1 suggests that whether an MA is forced or not can be determined while 

performing direct implication. Therefore, no additional test is required to decide whether 

an MA of a target fault is forced or not. For example, in Fig. 2(a) consider again g1->g4 

stuck-at-1 fault. We have MAs {c=1, g7=0, f=1} as forced MAs because they are side 

inputs of dominators, and {g2=0, g5=0} are not forced MAs because they are obtained 

from forward propagation of other MAs.  

Now, we discuss how to obtain forced MAs in a learning process which applies direct 

implication recursively. During recursive learning, a node has an MA if in all decisions, the 

node has the same value assigned. Similarly, during recursive learning, a node has a forced 

MA if in all decisions, the node has the same forced MA. 

Consider the example in Fig. 1a. When the MA of h is 1, either the MA of g is 1 or the 

MA of f is 1. When the MA of g is 1, we have MA c=1 and MA e=1. When the MA of f is 

1, we have MA b=0, and MA a=1. Propagating MAs {b=0, a=1} forward yields MA e=1. 

Since the MA of e is 1 in both decisions, the MA of e is 1. However, this MA is not forced 

because in one of the cases, MA e=1 is obtained as a result of forward propagation. 

If a forced MA is changed, the fault becomes untestable. For example in Fig. 2(b), node 

g9 (a dominator) has a forced MA D in g1->g4 s-a-1 test. In the circuit, suppose we know 

that wire g5->g9 is redundant. If the redundant wire g5->g9 is added to the circuit, the forced 
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MA of g9 is changed from D to 0 because g5 has the MA of 0 in g1->g4 stuck-at-1 test. As a 

result, g1->g4 is redundant after adding g5->g9. 

5  Wires Which Can Never Be Redundant After Adding One 
Redundant Wire 

In this section, we consider the problem of determining which wires can never become 

redundant after adding one redundant wire. Before the optimization process by adding and 

removing redundancy, the circuit may already contain some redundant wires. After adding 

one redundant wire to the circuit, some wires may become redundant. Here, we distinguish 

the wires that were already redundant before applying a redundant transformation, from the 

wires which become redundant as a result of this transformation. For example, in Fig. 1b, 

wires e->g and a->f are the newly redundant wires after adding e->m. All the theorems 

below refer to the redundant wires caused by the addition of a single redundant wire and 

redundant AND/OR gate as shown in Fig. 1b.  

To simplify the discussion, we make the following assumptions. We assume that the 

circuit before applying the redundant transformation does not contain redundant wires. The 

reason is that if there were redundant wires which were not the consequence of adding a 

redundant wire, we would have to distinguish between previously redundant wires and 

newly redundant wires. Our theorems in the following are intended to identify the wires 

that become redundant due to addition of one redundant wire, i.e. newly redundant wires. 

In order not to confuse them with the previously redundant wires, we assume there are no 

redundant wires in the circuit at the beginning of the process. On the other hand, if there 

were previously redundant wires present in an initial circuit, our procedures would not 

detect them because based on our theorems they would not be declared as possible newly 

redundant wires. Also, all the theorems are applied as a form of filters to speedup the 

process. When a wire is claimed to be possibly redundant, the wire still requires 

redundancy check before its removal. Therefore, the presence of redundant wires in an 

initial circuit will not affect the correctness of our final results. 
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Additionally we do not consider the problem of two simultaneously redundant wires [6]. 

Two wires are simultaneously redundant if we can add one and remove the other at the 

same time but we cannot add one without changing the circuit’s functionality and then 

remove the other. 

Let (C ∪ wr) denotes a circuit C with an added wire wr and let (C\wt) be a circuit obtained 

by removing wire wt from the circuit C.  Without loss of generality, consider an irredundant 

circuit C and a redundant wire wr = ns->nd to an AND gate is added in C as depicted in Fig. 

4(a). Since wr is redundant, computation of MAs for the wr s-a-1 test leads to inconsistency. 

In all the following lemmas, wr denotes a redundant wire which has been added to an 

irredundant circuit C and wt is an irredundant wire in C which becomes redundant in the 

new circuit C ∪ wr. Note that the MAs for a redundant wire are inconsistent and have no 

meaning. However, the observability MAs for a redundant wire may not be inconsistent. 

The following lemma shows that with our assumption, the observability MAs for the newly 

added redundant wire must be consistent. 

Lemma 2: Let wr=ns->nd be a redundant wire if added to C. The observability MAs for the 

redundant wire wr must be consistent in C.  

Proof. Let nd be an AND {OR} gate. Suppose the observability MAs are inconsistent. Any 

new connection which does not exist in C and is a fanin of nd is redundant. Therefore, a 

 

Fig. 4 Adding a redundant wire wr in an irredundant circuit. 
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constant 0 {1} that fanins to nd is also redundant. We can then conclude that nd can be 

replaced by a constant 0{1} which contradicts the assumption of the initial irredundancy of 

C. QED. 

The procedure of computing observability MAs can be done by first assigning the 

non-controlling MAs on the side inputs of dominators and then propagating those MAs to 

imply more observability MAs. Lemma 2 states that during propagation, the observability 

MAs for a redundant wire will never be inconsistent. Therefore there will be no conflict of 

assigning observability MA to a node. This lemma will be applied in the proof of the next 

lemma. 

Lemma 3: Let nd be an AND {OR} gate. The wire wr=ns->nd, if added, is redundant, if and 

only if ns has an observability MA 1 {0} for wr stuck-at fault test. (A similar theorem is 

shown in [13].) 

Proof. Let’s first compute the observability MAs for wire wr=ns->nd. Based on Lemma 2, 

these MAs are consistent. Then, assign 0 {1}, the activating value at ns. Because wire wr is 

redundant, this MA 0 {1} assigned at ns must be inconsistent with the previous assignment. 

Therefore, when computing observability MAs, node ns must have had an observability 

MA of 1 {0}. QED. 

Using Lemma 3, one can find all the redundant wires which connect to a particular node 

in a circuit.  For example, in Fig. 1, the observability MAs for (any node)->m stuck-at-1 

test are {e=1, h=1}. The MA of node e is 1 and node m is an AND gate. Therefore, 

according to Lemma 3, wire e->m if added, is a redundant wire because activation of wire 

e->m s-a-1 fault requires e to be set to 0. For another example, in Fig. 2, one can find that g5 

has an observability MA of 1 for wire (any node)->g9. Therefore, wire g5->g9 is redundant. 

Lemma 4: Suppose an irredundant wire wt in C becomes redundant after adding a 

redundant wire wr = ns->nd. Then wire wr is irredundant in (C ∪ wr\wt). 

Proof. If wr is still redundant after removing wt, wire wt is redundant in C without adding wr. 

This conflicts with our original assumption that C is an irredundant circuit. QED. 
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Let wr = ns->nd be a redundant wire added to C, and wt be a wire which becomes 

redundant after this change. According to Lemma 3, node ns must have an observability 

MA, for wr =ns->nd stuck-at fault test in C and let its value be ma. 

Lemma 5: In the new circuit C ∪ wr\wt, the observability MA at ns for wr must have a 

different value from the previous value ma. In other words, if the observability MA at ns for 

wr in C ∪ wr is the same as the MA at ns when computed in C ∪ wr\wt, wire wt cannot be 

redundant in C ∪ wr. 

Proof. If node ns has the same observability MA, wr is still redundant after removing wt. 

This contradicts Lemma 4. QED. 

For example, in Fig. 1b, observability MAs for e->m are {e=1, h=1}. Suppose we 

remove e->g. Observability MAs for e->m become {h=1}. The observability MA at e is 

not 1 as before; i.e. it is different. Therefore, after removing e->g, wire e->m is no longer 

redundant.  

By computing the observability MAs of wire (any node)->nd, we can find which wires 

connecting to nd are redundant and can be added to a circuit (from Lemma 3). If the 

complete set of observability MAs is found, we can obtain the complete set of such new 

redundant wires connecting to nd. However, finding all observability MAs can be very time 

consuming. A heuristic implication algorithm, which may only traverse some wires/nodes, 

may find only a subset of all observability MAs and as a result only a subset of new 

redundant wires for possible addition will be detected. Although the redundancy of a wire 

is defined independently of an implication algorithm, some redundancies can be easy to 

detect, while detection of other redundancies may require more computational effort. 

Suppose that while applying implication to detect that a wire wr will be redundant if added, 

a set of wires has not been traversed. In the next theorem we will show that none of these 

wires can be redundant when wr is added to the circuit.  

Theorem 6: Suppose an implication algorithm is invoked and based on Lemma 3, we find 

that a wire wr if added will be redundant. If a wire w is not visited during the process of 

implication which detects redundancy of wr, then after adding wr, the wire w will not 

become redundant.  

Proof. Removing the wire w cannot change the observability MA at ns. QED. 
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Example 1: In Fig. 1(b), suppose we would like to add a redundant wire to node m (m is 

the highlighted AND gate) and assume wire e->m is not present in the figure. When 

computing the observability MAs for (any node)->m, we first set h=1 to propagate the 

fault D from m to output y. Since the MA of h is 1, either the MA of g is 1 or the MA of f is 

1. If the MA of g is 1, we have MAs {c=1, e=1}. If the MA of f is 1, we have MAs {a=1, 

b=0, e=1}. Therefore we conclude e=1. Because that the MA of e is 1 and node m is an 

AND gate, according to Lemma 3, we find that wire e->m is redundant and can be added to 

the circuit. Now, we would like to use Theorem 6 to detect wires which cannot become 

redundant after adding e->m.  In this example, we assume MA g=1 or f=1 from h=1. For 

g=1, the wires {g->h, c->g, e->g} are traversed and for f=1, the wires {f->h, a->f, a->e, 

b->f, b->e} are traversed. Since the wires {d->z, m->z} are not visited, they cannot 

become redundant according to Theorem 6. 

Theorem 7: Let the wire wr, if added, be a redundant wire. After obtaining the 

observability MAs for wr, let us consider a wire wa =m->z.  If node z is an AND (OR) gate 

with an observability forced MA 0 (1), and node m has no MA, then, we can conclude that 

wire wa cannot become redundant in (C ∪ wr). 

Proof. According to Lemma 5, if the observability MA at ns for wire wr=ns->nd in 

C ∪ wr\wa is the same as in C ∪ wr, wire wa=m->z is not redundant in (C ∪ wr). Without 

loss of generality, let us consider a two-input AND gate z which has an observability forced 

MA z=0 for wire wr=ns->nd and one of its input m has no MA. See Figure 4b.  There are 

two possible combinations of MAs at the inputs of z: (m, n) = (X, 0), or (X, X). We discuss 

them separately and prove that removing wire m->z will not change the observability MA 

at ns. 

Case 1: (m, n) = (X, 0). Removing wire m->z will not change any MA in the circuit so 

wire m->z is not redundant after adding wr. 

Case 2: (m, n) = (X, X). Removing wire m->z will cause the MA of node n to be 0. 

Though more MAs can be implied by MA n=0, it will not change other observability MAs 

in the circuit including the MA at ns.. Therefore, the wire m->z is not redundant in (C ∪ wr). 

QED. 

Consider Example 1 again in Fig. 1. After computing the observability MAs for wire 

(any node)->m, node h has a forced observability MA of 1. In addition, node g and node f 
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do not have any MA. According Theorem 7, if we add any redundant wire to node m, wires 

g->h and f->h will not become redundant. Therefore, if a redundant wire is added to node 

m, the only possible redundant wires are {a->f, b->f, c->g, e->g, b->e, a->e} 

Theorem 8: The wire w=nx->nz is not redundant in (C ∪ wr) if nz is an AND {OR} gate 

which does not have an MA of value 1 {0} and nx has an MA of 1 {0}. 

Proof. Removing w will not change the observability MAs so wire w is not redundant in 

(C ∪ wr). QED. 

Again in Example 1, let us look at the circuit in Fig. 1. To add a redundant wire to node m, 

we have the observability MA h=1 from which, we can deduce either f=1 or g=1. When 

considering f=1, we have MAs {a=1, b=0}. According to Theorem 8, we know that wire 

b->e cannot be redundant for whatever redundant wire added to node m. If a redundant 

wire is added to node m, the possible redundant wires are {a->f, b->f, c->g, e->g, a->e}.  

Theorem 9: Suppose node nz is an AND {OR} gate and nx->nz is one of nz’s input wire. If 

nx has an observability MA of 0 {1} for wr, then all the other input wires of nz are not 

redundant in (C ∪ wr).  

Proof. The proof is similar to Theorem 8. QED. 

Theorem 10: If removing a wire w does not change the observability MAs for wr which 

were found applying recursive learning then wire w cannot be redundant after adding wr.  

Proof. If the observability MA does not change, according Lemma 2, the wire will not 

become redundant. QED. 

In Example 1, MA e=1 is an observability MA for e->m. Since removal of b->f or c->g 

does not change the MA, therefore based on Theorem 10, the wires {b->f , c->g}cannot be 

redundant.  

TABLE  
Theorem Condition Descriptions 

6 
 A wire is not redundant if it is not visited during 

an implication process. 
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7 

 

The bold wires n1->nd and n2->nd are not 
redundant if nd has a forced observability MA of 
1. 

8 

 

The bold wire n1->nd is not redundant if n1 has 
observability MA of 0 and nd has no MA. 

9 

 

 

The bold wire n3->nd is not redundant if n1 has 
observability MA of 1. 

10 
Do not change the 
observability MAs 

A wire w is not redundant if removing w will not 
change the observability MAs.  

Let us consider again to add the redundant wire e->m in the circuit in Fig. 1.b. We 

summarize our procedure of pruning irredundant wires in the following. 

1. Based on Theorem 6, the wires {d->z, m->z} cannot be redundant.  

2. From Theorem 7, the wires {g->h, f->h} cannot be redundant.  

3. From Theorem 8, the wire {b->e} cannot be redundant.  

4. Based on Theorem 10, the wires {b->f, c->g} cannot be redundant. As a result, if the 

redundant wire e->m is added, the possible redundant wires are {a->f, e->g, a->e}.  

All the above theorems specify some conditions to identify wires, which cannot become 

redundant after adding a redundant wire wr. Our optimization routine can use these 

theorems as a filter to avoid unnecessary redundancy checks. All theorems are summarized 

in TABLE 1 for the case of OR gates. A similar table can be built for the case of AND 

gates. 

6  Implementation 

The pseudo code of our implementation is shown in Fig. 5. This algorithm extends the 

ideas of [6]. First the algorithm visits each node in the circuit. In each iteration, we 

arbitrarily choose a node nd where a new redundant wire wr (ns->nd) will be connected. The 

optimization routines will try to find a “good” wr such that its addition can cause many 
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wires to be redundant. In order to find a “good” wr, we first determine a set of wires, which 

can possibly be removed if wr  is connected to nd. Initially this set contains all the wires 

whose transitive fanout has an intersection with the fanout cone of nd. On these wires, we 

apply Theorems 6-9 to prune the wires which cannot become redundant. After pruning, on 

the remaining wires in the set, we attempt to find their alternative wires [6] and build a 

table listing the alternative wire relationship as mentioned in Section 2. Finally, we choose 

and add one redundant wire to the circuit and remove as many as possible of its alternatives 

listed in the table. 

7  Experimental Results  

TABLE 2 compares the optimization results of SIS1.1 [4] [18], HANNIBAL[13] and 

ours (termed REWIRE) for some benchmark circuits. Since our circuits are in the form of 

AND and OR gates, we post-process those circuits with “el; sweep; el; simplify” (which 

are commands in SIS) and compare the factored literal count with SIS and HANNIBAL. 

Column 2 and 6 show the run time and factor literal count for script.boolean and Column 3 

and 7 show the run time and results for script.rugged. The run time and results for 

HANNIBAL are shown in column 4 and 8. Our run time and results are shown in column 5 

and 9. From the circuits shown in the TABLE 2, REWIRE is 126 times faster than 

 
foreach node nd in the circuit { 
   Find the observability MAs of wire (any node->nd); 
        
   Construct an array of wires, array_wires, which contain wires in the fanin and fanout cone 
    and some wires which are within k levels in the transitive fanin of a dominator of nd.  
      
   for each wire wt in the array_wires { 
     Use Theorems 6-10 to skip wire wt which cannot become redundant; 
     Calculate the MAs of wt  
     Use Theorem 12 of [7] to check if a wire can be added to nd to make wt redundant 
     Fill source_array with nodes which have an MA using Theorem 11 of [7]; 
     /* the source array contains nodes, which will become the source node of an added wire */ 
     Use Theorem 14 of [7] to prune source_array 
    } 
    optimize the circuit as in [6] 
  } 

Fig. 5 The algorithm. 
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HANNIBAL. The literal counts are about the same for REWIRE and HANNIBAL. Our 

results are also 17% better than script.boolean and 14% better than script.rugged from 

SIS1.1. The first section of the TABLE 2 lists and compares the circuits reported in [13]. 

The remainder of the table lists some additional circuits. We also like to mention that the 

BDD based optimization may have large run time even for small circuits. For example, 

script.rugged requires 62476 seconds to run circuit too_large, which has 300 literals while 

REWIRE only takes 31.9 seconds. All experiments were done using the SUN workstation, 

Solbourne Series 6/006 50M Hz. 

8  Conclusions 

In this paper we have considered the problem of determining which wires become 

redundant after inserting one redundant wire to an originally irredundant circuit. We have 

developed theory to answer this question. Based on the properties of redundant wires we 

have proposed and implemented an efficient Boolean optimizer called Rewire. As 

demonstrated in our experiments, Rewire is much faster then the optimization algorithm 

[13], with competitive results. Further speedup is possible because our implementation did 

not use Theorem 6. Optimization results on some very large circuits, such as s38417, 

suggest that our approach scales well. The above theorems are applicable to other ATPG 

based optimizations also. It seems likely that the algorithms of [2] [5] [8] [13] [16] [20] can 

take advantage of our theorems to improve their run times. 
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TABLE 2  
Circuits SIS-1.1 

Boolean 
(sec) 

SIS-1.1 
rugged 
(sec) 

Hannibal  
cpu (sec) 

Rewire  
cpu 
(sec) 

SIS-1.1 
Boolean
(lits) 

SIS-1.1 
rugged 
(lits) 

Hannibal  
(lits) 

Rewire 
(lits) 

C3540 133.5 171.2 6815 85.6 1299 *1288 1154 1127 
C432 6.2 700.7 95 2.0 240 205 161 171 
C2670 38.8 183.4 1782 31.7 759 *746 718 697 
C880 11.6 36.3 269 3.2 427 415 417 415 
C5315 102.1 158.1 15611 65.9 1815 1734 1760 1687 
C1355 16.4 123.1 555 17.5 554 552 544 552 
C6288 425.1 378.3 13704 89.0 3550 *3337 3240 3251 
C1908 22.2 119.3 935 16.0 552 540 517 512 
C499 11.0 107.6 543 8.4 554 552 544 550 

subtotal  767 1978 40309 319.3 9750 9395 8113 8107 
relative 2.4 6.2 126.24 1 1.17 1.14 1.001 1 
s13207 FA FA  541.7 FA FA  2719 
s38417 FA FA  1746.6 FA FA  10434 
s5378 159.0 205.4  77.8 1471 *1438  1351 
s9234 200.2 264.0  126.1 1943 *1943  1724 
alu2 77.5 160.4  50.3 446 361  324 
alu4 282.0 596.3  152.1 880 698  623 
term1 16.0 25.0  5.0 237 168  145 
too_large 1081.9 62476.1  31.9 437 302  301 
ttt2 6.6 9.1  5.2 223 215  179 
z4ml 1.0 1.3  0.5 48 45  36 
f51m 2.9 4.4  4.8 135 91  105 
frg2 63.6 115.0  85.1 933 893  761 
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FA: Fatal *: Cannot complete due to BDD nodes out of space. 

 


