

Circuit Optimization by Rewiring February 1,1999 1

Circuit Optimization by Rewiring

Shih-Chieh Chang (Corresponding author)

Department of Computer Science and Information Engineering

 National Chung Cheng University.

 Chiyai, Taiwan 621, Republic of China.

scchang@cs.ccu.edu.tw

011-886-5-2720411-6334 (Tel)

011-886-5-2720859 (FAX)

Lukas P.P.P. van Ginneken

Magma Design Automation Inc.
Mountain View CA 94043 Email

lukas@magma-da.com
Phone: (415)938-6970, x304 (Tel)

Malgorzata Marek-Sadowska

Department of Electrical and Computer Engineering

University of California, Santa Barbara, CA 93106

(805) 893 2721 (Tel)

(805) 893 3262 (Fax)

e-mail: mms@drum.ece.ucsb.edu

Circuit Optimization by Rewiring February 1,1999 2

Circuit Optimization by Rewiring

Abstract

This paper presents a very efficient optimization method suitable for multi-level
combinational circuits. The optimization is based on incremental restructuring of a circuit
through a sequence of additions and removals of redundant wires. Our algorithm applies
the techniques of Automatic Test Pattern Generation (ATPG) which can efficiently detect
redundancies. During the ATPG process, certain nodes in the circuit must have particular
logic assignments for a test to exist. Based on the properties of these mandatory
assignments we have developed theorems to eliminate unnecessary wire redundancy
checking. This results in significant performance improvement. The fast run time and the
excellent scaling to large circuits make our Boolean optimization method practical for
industrial applications.

Keywords: Rewiring, Logic Optimization, Logic Synthesis, Redundancy, and ATPG.

1 Introduction

The goal of logic synthesis is to realize, in some optimal way, a set of logic expressions

using cells from a technology library. The process is typically divided into technology

independent and technology dependent optimization. In this paper we discuss the problem

of technology independent optimization for multi-level combinational Boolean networks.

We assume that an initial multi-level Boolean network is given and it has to be optimized

with respect to some cost function. The problem has been studied before and conventional

methods are summarized in [11]. Because many of these methods do not scale well for

large circuits, Automatic Test Pattern Generation (ATPG) based algorithms have become

an attractive alternative [2] [5] [6] [8] [10] [13] [15] [16] [20]. In comparison to the

majority of BDD based methods, an ATPG algorithm requires little memory to process

large circuits. Although the running time of an ATPG algorithm may be exponential, the

memory requirement is linear in the size of the circuit. The amount of computational effort

spent in searching for test patterns can be accurately controlled. In addition, ATPG based

optimizers can implicitly use circuit’s observability and controllability don’t cares without

the need to calculate them explicitly.

Circuit Optimization by Rewiring February 1,1999 3

ATPG based logic optimizers incrementally restructure a network without changing its

functionality. The elementary operation is a single wire addition or removal. A wire which

can be added or removed without changing the circuit’s functionality is referred to as a

redundant wire. One can consider redundant wires as a restructuring freedom during circuit

optimization. Because ATPG allows us to detect redundant wires efficiently, most of the

ATPG based algorithms optimize circuits by adding and removing redundant connections.

For example consider the circuit [13] in Fig. 1. An ATPG algorithm can detect that a

2-input AND gate m and wire e->m will be redundant if added to the circuit. After adding

e->m, two originally irredundant wires e->g and a->f will become redundant. Adding wire

e->m and removing wires e->g and a->f results in a smaller circuit. This is the principle of

the area optimization algorithms described in [6], [8] and [13]. Incremental restructuring

achieved through wire addition and removal has many other applications. This technique

can be used to remove particular wires to improve routability or performance [5]. In [9],

circuit’s structure is perturbed to improve partitioning.

Fig. 1 Redundant wires caused by adding another redundant wire

Circuit Optimization by Rewiring February 1,1999 4

In this paper we develop theory of single wire addition and removal. We investigate

some necessary conditions for a wire to be redundant. These conditions are then used to

improve and speed up the wire addition and removal process. The key question addressed

here is which wires can be removed after adding a particular redundant wire.

To resolve this problem, we study characteristics of mandatory assignments [1], which

must be satisfied for every test vector of a given fault. We introduce the forced and

observability mandatory assignments. These two attributes of mandatory assignments can

be computed efficiently with very little computational overhead. Based on the properties of

mandatory assignments, we derive theorems that improve the results of ATPG based

optimization. The speedup is achieved by eliminating many unnecessary redundancy

checks on wires, which cannot be made redundant as a result of a particular incremental

transformation.

This paper is organized as follows. In Section 2 we discuss previous work. Section 3

reviews ATPG concepts related to this paper. In Section 4 we introduce and discuss two

important attributes of mandatory assignments, which are the forced mandatory

assignment and the observability mandatory assignment. In Section 5 we derive some

necessary conditions for a wire to become redundant. Section 6 describes the

implementation of our algorithm. The efficiency is achieved by making use of the

theorems described in Sections 4 and 5. Finally results and conclusions are presented.

2 Previous Work

In this section, we review several multi-level logic optimization algorithms [6] [8] [13]

which all apply the principle of iterative addition of a redundant wire and/or gate followed

by the removal of other redundant wires and/or gates. In all these works, ATPG techniques

are used to determine whether a particular connection is redundant or not. Though the basic

principle is about the same for most of the ATPG based logic optimization algorithms, they

differ in where a redundant structure is added and what types of transformations are

admissible. The speed of ATPG based multi-level logic optimizers depends on how

efficiently the wires which become redundant after addition of a particular redundant wire,

can be identified. The procedures to identify redundancies induced in the circuit by an

Circuit Optimization by Rewiring February 1,1999 5

added redundant wire, are different in particular ATPG based optimizers. Note that when a

redundant wire ni ->nj is added, a wire whose redundancy is caused by this change can be

topologically “far” away from ni ->nj. After adding one wire, [8] tries to remove wires in

the input cone of nj, while [6] considers the input and the output cones. The algorithm [13],

after adding one redundant wire to a circuit, applies redundancy test on the entire circuit.

As stated in [17], though these ATPG algorithms are very powerful, their run times are

unacceptable for large circuits because of many redundancy checks. In the following, we

briefly summarize the strategies used in earlier algorithms.

In [8], the optimization algorithm first chooses a node n in a circuit. For each wire w in

the input cone of node n, a search is performed to find new connections which when added

to the circuit would cause w to be redundant. The wire w and the corresponding new

connections will be stored in a table. Using this table, the algorithm selects and adds one

new connection followed by the redundancy removal phase. This optimization process will

iterate through all the nodes in the circuit.

The work [6] improves the results of [8] by allowing several new transformations such as

adding two-input AND/OR/XOR gates to the circuit. Also, the search space is not confined

to the input cone of any particular node. Techniques to filter out some of the unsuccessful

transformations to reduce the computational effort are proposed.

In [13], each iteration step consists of adding one redundant wire or a redundant

two-input AND/OR gate followed by the redundancy check in the entire circuit. Instead of

building a table as in [8], a heuristic is used to decide where to add a redundant

transformation. This heuristic, which is the key of the algorithm, is based on the

observation that a circuit after optimization has less mandatory assignments of a certain

type. This heuristic allows them to limit the choices of where to add a redundant

transformation. Still, the time per iteration spent on whole-circuit redundancy removal can

be very large.

3 Background and Definitions

In the following we review some standard logic synthesis terminology and ATPG related

concepts which will be used throughout the paper. Here we consider only circuits

Circuit Optimization by Rewiring February 1,1999 6

composed of AND, OR and INV gates. Complex gates can be handled by decomposing

them into such gates.

If there is a directed path from a node ni to a node nj, we say that ni is in transitive fanin of

nj and nj is in transitive fanout of ni. A dominator [12] g of a wire w is such a gate that all

paths from w to any primary output have to pass through g. The value of an input to a gate

is controlling if it determines the value of the gate’s output regardless of the values on the

other inputs. The controlling value is 1 for an OR gate, and 0 for an AND gate. The inverse

of the controlling value is called the noncontrolling value or sensitizing value.

Consider a dominator of a wire w=ni->nj. The side inputs of a dominator are its inputs not

in the transitive fanout of nj. To generate a test for a stuck-at fault at wire w, all the side

inputs of w’s dominators must be assigned their sensitizing values. In addition, to test a

wire for a stuck-at-1 {0} fault, a test vector must generate the activating value of 0 {1} at

the source node of the wire.

Let wr be a wire tested for a stuck-at 0 {1} fault; the faulty circuit is the circuit in which

wr is replaced by a constant 0 {1}. An input combination v is a test vector if an output of the

good (original) circuit and the faulty circuit are different when applying v. If no such a test

vector exists, then the wire under stuck-at fault test is redundant.

The mandatory assignments (MAs) are the value assignments to nodes required for a test

to exist and must be satisfied by any test vector. The process of computing these MAs and

checking their consistency is referred to as implication and proceeds as follows. For a wire

stuck-at fault, the MAs on the side inputs of the wire’s dominators are set to the sensitizing

values and the MA on the source node of the wire is set to the activating value. These MAs

can then be propagated by using some simple rules such as if the output of an AND {OR}

gate is 1 {0}, the inputs are 1 {0}. If all the inputs of an AND {OR} gate are 1 {0}, the

output is 1 {0} etc. [1]. This process is called direct implication. More MAs can be found

by more complicated approaches [14] [19]. During the process of direct implication, if the

output of an AND {OR} gate is 1 {0}, all the inputs must be 1 {0}. We refer to this process

as backward implication.

If the MAs of a stuck-at fault test cannot be consistent, the fault is untestable and

therefore, the wire is redundant. A wire to be removed is referred to as the target wire. The

corresponding stuck-at fault is called the target fault.

Circuit Optimization by Rewiring February 1,1999 7

4 Forced Mandatory Assignments and Observability
Mandatory Assignments

In this section, we discuss the observability and forced MAs. As mentioned in Section 3,

an MA of a stuck-at fault can be implied from the MAs that activate the fault or sensitize a

fault propagating path to one primary output. In the case of five-value logic [1], an MA can

be X, 0, 1, D or D .

We define an MA to be an observability MA if its purpose is to sensitize a

fault-propagating path to one primary output during a stuck-at fault test. The observability

MAs are those MAs that are necessary to make the fault observable at a primary output.

The observability MAs are the MAs that are set to sensitize a fault propagating path but

excluding the effect of the activating MA on the source of the fault. Therefore, the

observability MAs are a subset of all MAs. Note that since the activating value does not

play a role, the observability MAs do not depend on the source node of the target wire for

which the test is sought. The set of observability MAs derived for the s-a-1 fault of a wire is

the same as the set of observability MAs for the s-a-0 fault of the same wire; therefore the

observability MAs can be defined for a wire (not for a particular fault).

Fig. 2 Example of a single alternative wire.

Circuit Optimization by Rewiring February 1,1999 8

For example, in the Fig 2(a), to make the g1->g4 s-a-1 fault observable at outputs, the

MAs {c=1, g2=0, g7=0, f=1} must be set. These are the observability MAs. Note that MAs

{g1=0, g5=0} are not observability MAs because they need to be derived from the

activating MA g1=0.

Let n be a node in a circuit C. Suppose that after a stuck-at fault test on wire w, node n has

an MA. We build a new circuit C’(n) as follows. (See Fig. 3.) If the MA of n is 1 or D, we

disconnect n from its fanouts and connect a constant 0 to these fanouts. If the MA is 0 or D ,

we connect a constant 1 to those fanouts. We say that node n has a forced MA in C if when

we perform the same stuck-at fault test on wire w in C’(n), the fault becomes untestable.

Conceptually, forced MAs cannot be changed if the fault is to remain testable.

Non-forced MAs, on the other hand, are due to an incidental consequence of the test. For

example in Fig. 2(a), consider the stuck-at-1 test for wire g1->g4. We have MAs {g1=0,

c=1, g2=0, g5=0, g7=0, f=1, g4=D, g8=D, g9=D}. The MA c=1 is a forced MA because

disconnecting c from g4 and inserting a 0 at an input of g4 will make the stuck-at fault

untestable. The MA g5=0 is non-forced because after disconnecting g5 from o1 and

connecting 1 to o1, the fault g1->g4 s-a-1 is still testable.

Fig. 3 Forced MAs. (a). w is the wire on which the stuck-at fault test is performed. (b)

shows C’(n) when n has a MA=1 or D. (c) shows C’(n) when the node has a MA=0 or D .

Circuit Optimization by Rewiring February 1,1999 9

For a wire stuck-at fault test, forced MAs can be computed directly from the definition.

However such an approach is too time-consuming. In the following we discuss how to

efficiently determine forced MAs.

Lemma 1: The MAs obtained by setting the side inputs of the dominators to their

non-controlling values, setting the outputs of the dominators to D or D , and setting the

activating MA on the source node of the target wire stuck-at fault, are all forced. In

addition, the MAs that are set from backward implication of other MAs are also forced.

Proof. A controlling value in a side input of a dominator will cause the dominator to have a

constant value. This will block the fault propagation and result in untestability of the target

fault. Therefore, the uncontrolling value in a side input of a dominator is a forced MA. The

proof is similar for the activating MA and the MAs derived from backward implication.

QED.

Lemma 1 suggests that whether an MA is forced or not can be determined while

performing direct implication. Therefore, no additional test is required to decide whether

an MA of a target fault is forced or not. For example, in Fig. 2(a) consider again g1->g4

stuck-at-1 fault. We have MAs {c=1, g7=0, f=1} as forced MAs because they are side

inputs of dominators, and {g2=0, g5=0} are not forced MAs because they are obtained

from forward propagation of other MAs.

Now, we discuss how to obtain forced MAs in a learning process which applies direct

implication recursively. During recursive learning, a node has an MA if in all decisions, the

node has the same value assigned. Similarly, during recursive learning, a node has a forced

MA if in all decisions, the node has the same forced MA.

Consider the example in Fig. 1a. When the MA of h is 1, either the MA of g is 1 or the

MA of f is 1. When the MA of g is 1, we have MA c=1 and MA e=1. When the MA of f is

1, we have MA b=0, and MA a=1. Propagating MAs {b=0, a=1} forward yields MA e=1.

Since the MA of e is 1 in both decisions, the MA of e is 1. However, this MA is not forced

because in one of the cases, MA e=1 is obtained as a result of forward propagation.

If a forced MA is changed, the fault becomes untestable. For example in Fig. 2(b), node

g9 (a dominator) has a forced MA D in g1->g4 s-a-1 test. In the circuit, suppose we know

that wire g5->g9 is redundant. If the redundant wire g5->g9 is added to the circuit, the forced

Circuit Optimization by Rewiring February 1,1999 10

MA of g9 is changed from D to 0 because g5 has the MA of 0 in g1->g4 stuck-at-1 test. As a

result, g1->g4 is redundant after adding g5->g9.

5 Wires Which Can Never Be Redundant After Adding One
Redundant Wire

In this section, we consider the problem of determining which wires can never become

redundant after adding one redundant wire. Before the optimization process by adding and

removing redundancy, the circuit may already contain some redundant wires. After adding

one redundant wire to the circuit, some wires may become redundant. Here, we distinguish

the wires that were already redundant before applying a redundant transformation, from the

wires which become redundant as a result of this transformation. For example, in Fig. 1b,

wires e->g and a->f are the newly redundant wires after adding e->m. All the theorems

below refer to the redundant wires caused by the addition of a single redundant wire and

redundant AND/OR gate as shown in Fig. 1b.

To simplify the discussion, we make the following assumptions. We assume that the

circuit before applying the redundant transformation does not contain redundant wires. The

reason is that if there were redundant wires which were not the consequence of adding a

redundant wire, we would have to distinguish between previously redundant wires and

newly redundant wires. Our theorems in the following are intended to identify the wires

that become redundant due to addition of one redundant wire, i.e. newly redundant wires.

In order not to confuse them with the previously redundant wires, we assume there are no

redundant wires in the circuit at the beginning of the process. On the other hand, if there

were previously redundant wires present in an initial circuit, our procedures would not

detect them because based on our theorems they would not be declared as possible newly

redundant wires. Also, all the theorems are applied as a form of filters to speedup the

process. When a wire is claimed to be possibly redundant, the wire still requires

redundancy check before its removal. Therefore, the presence of redundant wires in an

initial circuit will not affect the correctness of our final results.

Circuit Optimization by Rewiring February 1,1999 11

Additionally we do not consider the problem of two simultaneously redundant wires [6].

Two wires are simultaneously redundant if we can add one and remove the other at the

same time but we cannot add one without changing the circuit’s functionality and then

remove the other.

Let (C ∪ wr) denotes a circuit C with an added wire wr and let (C\wt) be a circuit obtained

by removing wire wt from the circuit C. Without loss of generality, consider an irredundant

circuit C and a redundant wire wr = ns->nd to an AND gate is added in C as depicted in Fig.

4(a). Since wr is redundant, computation of MAs for the wr s-a-1 test leads to inconsistency.

In all the following lemmas, wr denotes a redundant wire which has been added to an

irredundant circuit C and wt is an irredundant wire in C which becomes redundant in the

new circuit C ∪ wr. Note that the MAs for a redundant wire are inconsistent and have no

meaning. However, the observability MAs for a redundant wire may not be inconsistent.

The following lemma shows that with our assumption, the observability MAs for the newly

added redundant wire must be consistent.

Lemma 2: Let wr=ns->nd be a redundant wire if added to C. The observability MAs for the

redundant wire wr must be consistent in C.

Proof. Let nd be an AND {OR} gate. Suppose the observability MAs are inconsistent. Any

new connection which does not exist in C and is a fanin of nd is redundant. Therefore, a

Fig. 4 Adding a redundant wire wr in an irredundant circuit.

Circuit Optimization by Rewiring February 1,1999 12

constant 0 {1} that fanins to nd is also redundant. We can then conclude that nd can be

replaced by a constant 0{1} which contradicts the assumption of the initial irredundancy of

C. QED.

The procedure of computing observability MAs can be done by first assigning the

non-controlling MAs on the side inputs of dominators and then propagating those MAs to

imply more observability MAs. Lemma 2 states that during propagation, the observability

MAs for a redundant wire will never be inconsistent. Therefore there will be no conflict of

assigning observability MA to a node. This lemma will be applied in the proof of the next

lemma.

Lemma 3: Let nd be an AND {OR} gate. The wire wr=ns->nd, if added, is redundant, if and

only if ns has an observability MA 1 {0} for wr stuck-at fault test. (A similar theorem is

shown in [13].)

Proof. Let’s first compute the observability MAs for wire wr=ns->nd. Based on Lemma 2,

these MAs are consistent. Then, assign 0 {1}, the activating value at ns. Because wire wr is

redundant, this MA 0 {1} assigned at ns must be inconsistent with the previous assignment.

Therefore, when computing observability MAs, node ns must have had an observability

MA of 1 {0}. QED.

Using Lemma 3, one can find all the redundant wires which connect to a particular node

in a circuit. For example, in Fig. 1, the observability MAs for (any node)->m stuck-at-1

test are {e=1, h=1}. The MA of node e is 1 and node m is an AND gate. Therefore,

according to Lemma 3, wire e->m if added, is a redundant wire because activation of wire

e->m s-a-1 fault requires e to be set to 0. For another example, in Fig. 2, one can find that g5

has an observability MA of 1 for wire (any node)->g9. Therefore, wire g5->g9 is redundant.

Lemma 4: Suppose an irredundant wire wt in C becomes redundant after adding a

redundant wire wr = ns->nd. Then wire wr is irredundant in (C ∪ wr\wt).

Proof. If wr is still redundant after removing wt, wire wt is redundant in C without adding wr.

This conflicts with our original assumption that C is an irredundant circuit. QED.

Circuit Optimization by Rewiring February 1,1999 13

Let wr = ns->nd be a redundant wire added to C, and wt be a wire which becomes

redundant after this change. According to Lemma 3, node ns must have an observability

MA, for wr =ns->nd stuck-at fault test in C and let its value be ma.

Lemma 5: In the new circuit C ∪ wr\wt, the observability MA at ns for wr must have a

different value from the previous value ma. In other words, if the observability MA at ns for

wr in C ∪ wr is the same as the MA at ns when computed in C ∪ wr\wt, wire wt cannot be

redundant in C ∪ wr.

Proof. If node ns has the same observability MA, wr is still redundant after removing wt.

This contradicts Lemma 4. QED.

For example, in Fig. 1b, observability MAs for e->m are {e=1, h=1}. Suppose we

remove e->g. Observability MAs for e->m become {h=1}. The observability MA at e is

not 1 as before; i.e. it is different. Therefore, after removing e->g, wire e->m is no longer

redundant.

By computing the observability MAs of wire (any node)->nd, we can find which wires

connecting to nd are redundant and can be added to a circuit (from Lemma 3). If the

complete set of observability MAs is found, we can obtain the complete set of such new

redundant wires connecting to nd. However, finding all observability MAs can be very time

consuming. A heuristic implication algorithm, which may only traverse some wires/nodes,

may find only a subset of all observability MAs and as a result only a subset of new

redundant wires for possible addition will be detected. Although the redundancy of a wire

is defined independently of an implication algorithm, some redundancies can be easy to

detect, while detection of other redundancies may require more computational effort.

Suppose that while applying implication to detect that a wire wr will be redundant if added,

a set of wires has not been traversed. In the next theorem we will show that none of these

wires can be redundant when wr is added to the circuit.

Theorem 6: Suppose an implication algorithm is invoked and based on Lemma 3, we find

that a wire wr if added will be redundant. If a wire w is not visited during the process of

implication which detects redundancy of wr, then after adding wr, the wire w will not

become redundant.

Proof. Removing the wire w cannot change the observability MA at ns. QED.

Circuit Optimization by Rewiring February 1,1999 14

Example 1: In Fig. 1(b), suppose we would like to add a redundant wire to node m (m is

the highlighted AND gate) and assume wire e->m is not present in the figure. When

computing the observability MAs for (any node)->m, we first set h=1 to propagate the

fault D from m to output y. Since the MA of h is 1, either the MA of g is 1 or the MA of f is

1. If the MA of g is 1, we have MAs {c=1, e=1}. If the MA of f is 1, we have MAs {a=1,

b=0, e=1}. Therefore we conclude e=1. Because that the MA of e is 1 and node m is an

AND gate, according to Lemma 3, we find that wire e->m is redundant and can be added to

the circuit. Now, we would like to use Theorem 6 to detect wires which cannot become

redundant after adding e->m. In this example, we assume MA g=1 or f=1 from h=1. For

g=1, the wires {g->h, c->g, e->g} are traversed and for f=1, the wires {f->h, a->f, a->e,

b->f, b->e} are traversed. Since the wires {d->z, m->z} are not visited, they cannot

become redundant according to Theorem 6.

Theorem 7: Let the wire wr, if added, be a redundant wire. After obtaining the

observability MAs for wr, let us consider a wire wa =m->z. If node z is an AND (OR) gate

with an observability forced MA 0 (1), and node m has no MA, then, we can conclude that

wire wa cannot become redundant in (C ∪ wr).

Proof. According to Lemma 5, if the observability MA at ns for wire wr=ns->nd in

C ∪ wr\wa is the same as in C ∪ wr, wire wa=m->z is not redundant in (C ∪ wr). Without

loss of generality, let us consider a two-input AND gate z which has an observability forced

MA z=0 for wire wr=ns->nd and one of its input m has no MA. See Figure 4b. There are

two possible combinations of MAs at the inputs of z: (m, n) = (X, 0), or (X, X). We discuss

them separately and prove that removing wire m->z will not change the observability MA

at ns.

Case 1: (m, n) = (X, 0). Removing wire m->z will not change any MA in the circuit so

wire m->z is not redundant after adding wr.

Case 2: (m, n) = (X, X). Removing wire m->z will cause the MA of node n to be 0.

Though more MAs can be implied by MA n=0, it will not change other observability MAs

in the circuit including the MA at ns.. Therefore, the wire m->z is not redundant in (C ∪ wr).

QED.

Consider Example 1 again in Fig. 1. After computing the observability MAs for wire

(any node)->m, node h has a forced observability MA of 1. In addition, node g and node f

Circuit Optimization by Rewiring February 1,1999 15

do not have any MA. According Theorem 7, if we add any redundant wire to node m, wires

g->h and f->h will not become redundant. Therefore, if a redundant wire is added to node

m, the only possible redundant wires are {a->f, b->f, c->g, e->g, b->e, a->e}

Theorem 8: The wire w=nx->nz is not redundant in (C ∪ wr) if nz is an AND {OR} gate

which does not have an MA of value 1 {0} and nx has an MA of 1 {0}.

Proof. Removing w will not change the observability MAs so wire w is not redundant in

(C ∪ wr). QED.

Again in Example 1, let us look at the circuit in Fig. 1. To add a redundant wire to node m,

we have the observability MA h=1 from which, we can deduce either f=1 or g=1. When

considering f=1, we have MAs {a=1, b=0}. According to Theorem 8, we know that wire

b->e cannot be redundant for whatever redundant wire added to node m. If a redundant

wire is added to node m, the possible redundant wires are {a->f, b->f, c->g, e->g, a->e}.

Theorem 9: Suppose node nz is an AND {OR} gate and nx->nz is one of nz’s input wire. If

nx has an observability MA of 0 {1} for wr, then all the other input wires of nz are not

redundant in (C ∪ wr).

Proof. The proof is similar to Theorem 8. QED.

Theorem 10: If removing a wire w does not change the observability MAs for wr which

were found applying recursive learning then wire w cannot be redundant after adding wr.

Proof. If the observability MA does not change, according Lemma 2, the wire will not

become redundant. QED.

In Example 1, MA e=1 is an observability MA for e->m. Since removal of b->f or c->g

does not change the MA, therefore based on Theorem 10, the wires {b->f , c->g}cannot be

redundant.

TABLE
Theorem Condition Descriptions

6
 A wire is not redundant if it is not visited during

an implication process.

Circuit Optimization by Rewiring February 1,1999 16

7

The bold wires n1->nd and n2->nd are not
redundant if nd has a forced observability MA of
1.

8

The bold wire n1->nd is not redundant if n1 has
observability MA of 0 and nd has no MA.

9

The bold wire n3->nd is not redundant if n1 has
observability MA of 1.

10
Do not change the
observability MAs

A wire w is not redundant if removing w will not
change the observability MAs.

Let us consider again to add the redundant wire e->m in the circuit in Fig. 1.b. We

summarize our procedure of pruning irredundant wires in the following.

1. Based on Theorem 6, the wires {d->z, m->z} cannot be redundant.

2. From Theorem 7, the wires {g->h, f->h} cannot be redundant.

3. From Theorem 8, the wire {b->e} cannot be redundant.

4. Based on Theorem 10, the wires {b->f, c->g} cannot be redundant. As a result, if the

redundant wire e->m is added, the possible redundant wires are {a->f, e->g, a->e}.

All the above theorems specify some conditions to identify wires, which cannot become

redundant after adding a redundant wire wr. Our optimization routine can use these

theorems as a filter to avoid unnecessary redundancy checks. All theorems are summarized

in TABLE 1 for the case of OR gates. A similar table can be built for the case of AND

gates.

6 Implementation

The pseudo code of our implementation is shown in Fig. 5. This algorithm extends the

ideas of [6]. First the algorithm visits each node in the circuit. In each iteration, we

arbitrarily choose a node nd where a new redundant wire wr (ns->nd) will be connected. The

optimization routines will try to find a “good” wr such that its addition can cause many

Circuit Optimization by Rewiring February 1,1999 17

wires to be redundant. In order to find a “good” wr, we first determine a set of wires, which

can possibly be removed if wr is connected to nd. Initially this set contains all the wires

whose transitive fanout has an intersection with the fanout cone of nd. On these wires, we

apply Theorems 6-9 to prune the wires which cannot become redundant. After pruning, on

the remaining wires in the set, we attempt to find their alternative wires [6] and build a

table listing the alternative wire relationship as mentioned in Section 2. Finally, we choose

and add one redundant wire to the circuit and remove as many as possible of its alternatives

listed in the table.

7 Experimental Results

TABLE 2 compares the optimization results of SIS1.1 [4] [18], HANNIBAL[13] and

ours (termed REWIRE) for some benchmark circuits. Since our circuits are in the form of

AND and OR gates, we post-process those circuits with “el; sweep; el; simplify” (which

are commands in SIS) and compare the factored literal count with SIS and HANNIBAL.

Column 2 and 6 show the run time and factor literal count for script.boolean and Column 3

and 7 show the run time and results for script.rugged. The run time and results for

HANNIBAL are shown in column 4 and 8. Our run time and results are shown in column 5

and 9. From the circuits shown in the TABLE 2, REWIRE is 126 times faster than

foreach node nd in the circuit {
 Find the observability MAs of wire (any node->nd);

 Construct an array of wires, array_wires, which contain wires in the fanin and fanout cone
 and some wires which are within k levels in the transitive fanin of a dominator of nd.

 for each wire wt in the array_wires {
 Use Theorems 6-10 to skip wire wt which cannot become redundant;
 Calculate the MAs of wt
 Use Theorem 12 of [7] to check if a wire can be added to nd to make wt redundant
 Fill source_array with nodes which have an MA using Theorem 11 of [7];
 /* the source array contains nodes, which will become the source node of an added wire */
 Use Theorem 14 of [7] to prune source_array
 }
 optimize the circuit as in [6]
 }

Fig. 5 The algorithm.

Circuit Optimization by Rewiring February 1,1999 18

HANNIBAL. The literal counts are about the same for REWIRE and HANNIBAL. Our

results are also 17% better than script.boolean and 14% better than script.rugged from

SIS1.1. The first section of the TABLE 2 lists and compares the circuits reported in [13].

The remainder of the table lists some additional circuits. We also like to mention that the

BDD based optimization may have large run time even for small circuits. For example,

script.rugged requires 62476 seconds to run circuit too_large, which has 300 literals while

REWIRE only takes 31.9 seconds. All experiments were done using the SUN workstation,

Solbourne Series 6/006 50M Hz.

8 Conclusions

In this paper we have considered the problem of determining which wires become

redundant after inserting one redundant wire to an originally irredundant circuit. We have

developed theory to answer this question. Based on the properties of redundant wires we

have proposed and implemented an efficient Boolean optimizer called Rewire. As

demonstrated in our experiments, Rewire is much faster then the optimization algorithm

[13], with competitive results. Further speedup is possible because our implementation did

not use Theorem 6. Optimization results on some very large circuits, such as s38417,

suggest that our approach scales well. The above theorems are applicable to other ATPG

based optimizations also. It seems likely that the algorithms of [2] [5] [8] [13] [16] [20] can

take advantage of our theorems to improve their run times.

9 Acknowledgment

The first author acknowledges support from the National Science Council in Taiwan

through the Grant NSC 86-2213-E-194-025-T. The third author acknowledges support

from the National Science Foundation through the Grant MIP 9419119.

10 References

[1] M. Abramovici, M.A. Breuer, A.D. Friedman, Digital Systems Testing and Testable
Design, Computer Science Press, 1990.

[2] C. L. Berman and L. H. Trevillyan. “Global Flow Optimization in Automatic Logic
Design,” IEEE Trans. CAD 10, pp. 557-564, May 1991.

Circuit Optimization by Rewiring February 1,1999 19

[3] M. R. C. M. Berkelaar, L. P. P. P. van Ginneken: “Efficient Orthonormality Testing for
Synthesis with Pass-Transistor Selectors”, Digest Int. Conf. on Computer Aided Design,
pp. 256-263, Nov. 1995.

[4] R.K. Brayton, R. Rudell, A. Sangiovanni-Vincentelli, and A.R. Wang, “MIS:
Multi-level Interactive Logic Optimization system,” IEEE Trans. on CAD Vol. 6, pp.
1062-1081, Nov. 1989.

[5] S.C. Chang, K.T. Cheng, N.S. Woo, M. Marek-Sadowska, " Post Layout Logic
Restructuring Using Alternative Wires ", IEEE Trans. on Computer Aided Design, Vol.
16, pp.587-596, June 1997.

[6] S.C. Chang, M. Marek-Sadowska, and K.T. Cheng, "Perturb and Simplify: Multi-level
Boolean Network Optimizer", IEEE Trans. on Computer Aided Design, Vol. 15, pp.
1494-1504, Nov. 1996.

[7] S.C. Chang, L. P.P.P. van Ginneken, and M. Marek-Sadowska, “Fast Boolean
Optimization by Rewiring,” Proc. Int. Conf. on Computer Aided Design, pp.262-269,
Nov. 1996.

[8] K. T. Cheng and L. A. Entrena, “Multi-Level Logic Optimization by Redundancy
Addition and Removal,” in Proc. European Conference On Design Automation, pp.
373-377, Feb. 1993.

[9] D. I. Cheng, C. C. Lin and M. Marek-Sadowska, “Circuit Partitioning with Logic
Perturbation,” in Proc. Int. Conference on Computer Aided Design, pp., 650-655, Nov.
1995.

[10] L. A. Entrena and K. T. Cheng, “Sequential Logic Optimization By Redundancy
Addition and Removal”, Proc. Int. Conf. on Computer Aided Design, Nov. 1993.

[11] G.Hachtel and F.Somenzi, “Logic Synthesis and Verification Algorithms”, Kluwer
Academic Publishers, 1996.

[12] T. Kirkland and M. R. Mercer, “A Topological Search Algorithm For ATPG,” Proc.
Design Automation Conf., pp. 502-508, June 1987.

[13] W. Kunz and D.K. Pradhan, “Multi-Level Logic Optimization by Implication
Analysis”, Digest Int. Conf. on Computer Aided Design, pp. 6-13, Nov.1994.

[14] W. Kunz and D. K. Pradhan, “Recursive Learning: An Attractive Alternative to the
Decision Tree for Test Generation for Digital Circuits”, in Proc. Int. Test Conf.,
pp.816-825, Oct. 1992.

Circuit Optimization by Rewiring February 1,1999 20

[15] B. Rohfleisch, F. Brglez, “Introduction of Permissible Bridges with Application to
Logic Optimization after Technology Mapping,” Proc. Edac, pp. 87-93, 1994.

[16] B. Rohfleisch, B. Wurth, K. Antreich “Logic Clause Analysis for Delay
Optimization”, Proc. DAC, pp. 668-672, 1995

[17] R. Rudell, “Tutorial: Design of a Logic Synthesis System”, Proc. DAC, pp. 191-196,
1996

[18] H. Savoj, H.Y. Wang, and R.K. Brayton, “Improved Scripts in MIS-II for Logic
Minimization of Combinational Circuits,” Proc. IWLS, 1990.

[19] M. Schulz and E. Auth, “Advanced Automatic Test Pattern Generation and
Redundancy Identification Techniques,” Proc. Fault Tolerant Computing Symp., pp.
30-34, June 1988.

[20] M. Yuguchi, Y. Nakamura, K. Wakabayashi, T. Fujita “Multi-Level Minimization
based on Multi-Signal Implications”, proc. DAC, 1995, pp. 658-662.

TABLE 2
Circuits SIS-1.1

Boolean
(sec)

SIS-1.1
rugged
(sec)

Hannibal
cpu (sec)

Rewire
cpu
(sec)

SIS-1.1
Boolean
(lits)

SIS-1.1
rugged
(lits)

Hannibal
(lits)

Rewire
(lits)

C3540 133.5 171.2 6815 85.6 1299 *1288 1154 1127
C432 6.2 700.7 95 2.0 240 205 161 171
C2670 38.8 183.4 1782 31.7 759 *746 718 697
C880 11.6 36.3 269 3.2 427 415 417 415
C5315 102.1 158.1 15611 65.9 1815 1734 1760 1687
C1355 16.4 123.1 555 17.5 554 552 544 552
C6288 425.1 378.3 13704 89.0 3550 *3337 3240 3251
C1908 22.2 119.3 935 16.0 552 540 517 512
C499 11.0 107.6 543 8.4 554 552 544 550

subtotal 767 1978 40309 319.3 9750 9395 8113 8107
relative 2.4 6.2 126.24 1 1.17 1.14 1.001 1
s13207 FA FA 541.7 FA FA 2719
s38417 FA FA 1746.6 FA FA 10434
s5378 159.0 205.4 77.8 1471 *1438 1351
s9234 200.2 264.0 126.1 1943 *1943 1724
alu2 77.5 160.4 50.3 446 361 324
alu4 282.0 596.3 152.1 880 698 623
term1 16.0 25.0 5.0 237 168 145
too_large 1081.9 62476.1 31.9 437 302 301
ttt2 6.6 9.1 5.2 223 215 179
z4ml 1.0 1.3 0.5 48 45 36
f51m 2.9 4.4 4.8 135 91 105
frg2 63.6 115.0 85.1 933 893 761

Circuit Optimization by Rewiring February 1,1999 21

FA: Fatal *: Cannot complete due to BDD nodes out of space.

