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Abstract

Because of its ability to detect all non-redundant combinational faults, exhaustive testing,

which applies all possible input combinations to a circuit, has become a very attractive test

method. However, the test application time for exhaustive testing can be very large. To reduce

the test time, pseudo exhaustive testing inserts some bypass storage cells (bscs) so that the

dependency of each node is within some predetermined value. Though bsc insertion can

reduce the test time, it may increase circuit delay. In this paper, our objective is to reduce the

delay penalty of bsc insertion for pseudo exhaustive testing. We first propose a tight delay

lower bound algorithm which estimates the minimum circuit delay for each node after bsc

insertion. By understanding how the lower bound algorithm lose optimality, we can propose a

bsc insertion heuristic which tries to insert bscs so that the final delay is as close to the lower

bound as possible. Our experiments show that the results of our heuristic are either optimal

because they are the same as the delay lower bounds or they are very close to the optimal solu-

tions. 
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1   Introduction

As the feature size of VLSI fabrication is shrunk to deep sub-micron, the traditional stuck-at

fault model can no longer precisely model some more complex faults such as cross talk faults

and charge-sharing faults in domino circuits. By applying to a combinational circuit all possi-

ble input combinations as test patterns, exhaustive testing, one method of Built-In Self-Test

(BIST) [1][2][3], becomes very attractive because the exhaustive testing method can guarantee

the detection of all non-redundant combinational faults.

Unfortunately, the test time of exhaustively testing a combinational circuit increases expo-

nentially to the number of primary inputs (PIs) in the circuit, which makes this test method

unpractical for circuits with large number of PIs. To tackle this problem, pseudo exhaustive

testing [4][5][11][12][13][14][16][17] attempts to reduce test time without scarifying test qual-

ity. Among the techniques of pseudo exhaustive testing, [5][11][12][16][17] insert to the cir-

cuit some bypass storage cells (bscs) which are transparent in the normal mode and act as

pseudo primary inputs and pseudo primary outputs (POs) in the test mode. It is said that a gate

depends on a bsc (or a PI) if there is a path from the bsc (or the PI) to the node and there is no
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 Fig. 1 : A circuit and its partition configurations.
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other bscs in the path. After bsc insertion, the set of PIs and bscs which a node depends on is

the dependency set of the node and the size is the dependency size. If the dependency size of a

node is not greater than some value k, we can exhaustively test the node with 2k test patterns.

For example, the circuit of Fig. 1(a) originally has 6 PIs and 1 PO. In the test mode, we need 26

test patterns to exhaustively test the circuit. After inserting two bscs b1 and b2 into the circuit

shown in Fig. 1(b), each (pseudo) PO depends on at most 3 PIs or bscs. Hence, in the test

mode, we only need at most 23 test patterns to exhaustively test the circuit using an appropriate

BIST configuration. 

The test time to exhaustively test a node depends on its dependency size of the node. In

order to exhaustively test a circuit using 2k patterns, some bscs may be inserted so that the

dependency of each node is less than or equal to some pre-determined value k, called the

dependency constraint. On the other hand, adding bscs can increase the circuit size. Most pre-

vious work [5][11][16][17] attempts to reduce the number of bscs under a given dependency

constraint. Basically, based on the area consideration, the bsc insertion methods for pseudo

exhaustive testing can be divided into two categories. One uses the constrained partitioning

strategy (CPS) which partitions a circuit into several disjoint sub-circuits [5][16][17]. The

other uses the un-constrained partitioning strategy (UPS) which makes no such constraint [11].

In this paper, our strategy of bsc insertion is based on the first one. In addition to the area over-

head of inserted bscs, the inserted bscs may be placed on critical paths and therefore can

worsen the circuit delay. Consider the same circuit of Fig. 1(a) and assume the path I1->g1-

>g3->g5 is critical. Consider a solution for exhaustively testing the circuit in Fig. 1(b). Despite

the inserted bscs do not affect circuit’s original function in the normal mode, the circuit delay

is increased due to the placement of two bscs on the critical path. Instead, if we insert bscs as in

Fig. 1(c), where only one bsc is placed on the critical path, the critical path delay is less than

the delay in Fig. 1(b). Note that the maximum dependency size of both BIST configuration is

3. 

The purpose of this paper is to minimize the delay penalty resulted from inserting bscs

under a given dependency constraint. Our algorithm consists of two phases. In the first phase,

we discuss an algorithm which finds a lower bound of the minimum delay for a node after

inserting bscs. This lower bound allows one to claim optimal if a delay result is the same as the

lower bound. With the lower bound information and the understanding of how the optimality

may not be achievable, we then develop a heuristic to guide bsc insertion so that the delay
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result (after inserting bscs) is as close to the low bound as possible. Both the lower bound algo-

rithm and the bsc insertion heuristic make use of the minimal-cut-maximal-flow algorithm.

Our experimental results show that for many benchmark circuits, our heuristic achieves the

same delay results as the lower bounds; i.e., optimal solutions. 

This paper is organized as follows:Section 2 describes an implemenation of pseudo exhaus-

tive testing and Section 3 describes the delay model with the associated delay computation.

Section 4 describes an algorithm computing a delay lower bound for each node under the

dependency constraint. The approximation algorithm to guide the bsc insertion process is

developed in Section 5. Finally, the experimental results and conclusions are given in Sections

6 and 7.

2   An Implementation of Pseudo Exhaustive Testing

We now describe an implementation of the pseudo exhaustive testing and the structure of a

bsc by an example. Consider the circuit in Fig. 2. To implement the pseudo exhaustive testing,

two components -- a test pattern generator (TPG) and an output response analyzer (ORA) are

embedded into the circuit. Normally, The TPG is a linear feedback shift register [1] whose pur-
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pose is to generate pseudo exhaustive test patterns and the ORA is a Multiple Input Signature

Register [1] whose purpose is to collect and compress the output response. A bsc is inserted at

the fanout of each PI. Three additional bscs, b1, b2, and b3 are inserted to satisfy the depen-

dency of 3. All bscs are constructed as a scan chain and is connected to the TPG. The basic

structure of a bsc contains a mux and a flip-flop in Fig. 2. During the normal mode, the signal,

test is set to 0 and all bscs become transparent; that is, they do not affect the circuit’s function.

In each cycle of the test mode (test = 1), a test pattern is serially shifted to the flip-flops of bscs,

and the output responses is directed to the ORA which is analyzed later.

3   Delay Model and Delay Computation

In this section, we describe the delay model of bsc insertion and the associated delay calcu-

lation. Based on this model, we present in the subsequent sections an algorithm which attempts

to find an optimal way of bsc insertion.

A combinational circuit can be represented as a directed acyclic graph G = (V, E), where V

consists of all the gates and E consists of directed edges such that a directed edge e (v->u) is in

E if v is an input of u. The edge e (v-> u) is a fanin edge of u and node v is a fanin node of u. In

addition, node w or edge e is a transitive fanin of node u if there exists a path from w or e to u.

The set of nodes which are transitive fanins of node v is referred to as the input cone of node v. 

To fulfill the dependency constraint, some bscs may be inserted. Before inserting bscs, we

assume that the circuit is technology mapped and wire delay information is available. Let the

delay of edge e be d(e) which contains the wire delay and the delay of its fanout gates. For sim-

plicity, we assume that the delay of a node is added to the delay of its fanin edges. This will not

affect the calculation of the circuit delay. In addition, each node n is assigned a value A(n),

called the arrival time or the delay, at which the signal it generates is stable [15]. Normally, the

arrival time of each PI is set to zero. We can recursively calculate the arrival time A(e) of edge

e and the arrival time A(n) of node n by the following two formulae:

A(ei) = A(ni)+d(ei) where ni is the source gate of edge ei (EQ 1)

A(nj) = Max{A(ek)+d(ek)| ek is a fanin edge of nj} (EQ 2)

When a bsc is inserted on edge e, our delay model assumes that one constant delay penalty,

de(bsc), is added to the delay of edge e. Hence, EQ 1 can be rewritten as
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A(e) = A(n)+ d(e) +de(bsc) where n is the source gate of edge e and de(bsc) is the delay penalty 
of a bsc on e (EQ 3)

Example 1: Consider the circuit in Fig. 3(a). Assuming that edge delay d(e) and bsc delay pen-

alty d(bsc) both are 1, by EQ 1, EQ 2, and EQ 3, we can obtain the delay of each node shown

outside the circle. In Fig. 3(a), without inserting any bscs, the delay of node g5, A(g5) is 3

because the longest path from PIs is I1->g1->g2->g5 which contains 3 edge delays. In Fig.

3(b), after inserting bscs b1, b2, and b3, the delay of g5, A(g5) becomes 4 because of addition

bsc delay.

The constant delay penalty, de(bsc), may be different on various edge e where a bsc is

inserted and can be obtained before applying the above computation. For simplifying the fol-

lowing discussion, we further assume that the delay penalty of inserting a bsc is the same on

different edges, i.e., de(bsc) = d(bsc) for all edges. Our algorithm can be easily extended to the

case when the delay penalty is different. The reason to assign one constant delay penalty to an

inserted bsc is that in the linear delay model [9], where 

delay = intrinsic delay + resistance * load, (EQ 4)

the incurred delay penalty can be pre-computed since the values of all the variables in EQ 4

can be obtained in advance. Despite the fact that our delay model might not be accurate for

dealing with other complex delay models, the presented algorithm still can give a good approx-

imation solution to reduce the delay penalty of inserted bscs. 

4   Delay Lower Bound Computation

As mentioned in Section 2, when a bsc is inserted on some edge e, the constant delay pen-

alty d(bsc) is added into the delay of every path passing through edge e. Our objective is to

minimize the circuit delay (critical path delay) of the normal-mode circuit after inserting bscs

b1

 Fig. 3 : Delay model and delay computation.
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under the pre-determined dependency constraint k. The proposed algorithm consists of two

phases. In the first phase, called the labeling phase, for each node, we compute a label which

can accurately estimate the minimum delay under the dependency constraint. A node’s label

computed by our algorithm is always less than or equal to the minimum delay of the node, i.e.,

a lower bound. And, in the second phase, the bsc insertion phase, we insert bscs so that each

node’s final delay can be as close to its label as possible. We describe the labeling phase in this

section, and the bsc insertion phase in the next section. 

We first give some definitions used in our discussion. For simplicity, we assume that a bsc

has been inserted on the fanout stem of each PI and let the dependency set of node n, denoted

dep(n), be the set of bscs on which node n depends and |dep(n)| be the size of dep(n). The bscs

of dep(n) can be viewed as a “cut set” which separates node n from the PIs. If |dep(n)| ≤ k, the

set of nodes on the fanout stems of which the bscs of dep(n) are inserted are called a k-cutset of

node n. For example, in Fig. 1(c), the bsc set {b3, b4, b5} is g5’s dependency set and the node

set {g1, g2, g4} is g5’s 3-cutset. 

The label of node n, l(n), is the (estimated) minimum delay of node n under dependency

constraint k. The difference between the label of a node and the delay (arrival time) of a node is

that the label is an estimated value which will be shown to be a lower bound of the optimal

delay for the node. In order words, the label of a node is always less than or equal to the delay

of the node. The initial labels of PIs are set to 0 and the labels are computed in the topological

order from PIs to POs. Therefore, before calculating the label of node n, all the labels in node

n’s input cone have been obtained. In addition, when computing node n’s label, all the labels in

its input cone are assumed to have values. This assumption will not cause any error since a

label is a lower bound estimation. The basic steps of computing node n’s label are as follows.

First, we determine a possible range of node n’s label from the labels of its immediate fanins.

If d(bsc) =1, we show that there are only two possible values for node n’s label, the smaller

value of which is called best_label and the other is best_label + 1. Then, we try to find whether

it is possible to have a k-cutset which can result in the best_label. If there is such a k-cutset, we

set the label of node n to be best_label, otherwise, we set the label of node n to best_label + 1.

In the following, we discuss an important property: the possible range of a node’s label can be

determined from the labels of its (immediate) fanin nodes.

Definition 1: The best_label, bl(n), of node n is defined to be
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bl(n) = MAX {l(ni)+d(ei) | where ei (= ni-> n) is a fanin edge of n}. (EQ 5)

Lemma 1: If labels of node n’s immediate fanins are optimal delays, the label l(n) of node n

has the property:

bl(n) ≤ l(n) ≤ bl(n)+d(bsc). (EQ 6)

Proof. We prove bl(n) ≤ l(n) by contradiction. Because bl(n) is the maximum value of l(ni) +

d(ei) for each fanin edge ei, suppose edge e2(= n2->n) is such a fanin edge of node n that bl(n)

= l(n2) + d(e2) in Fig. 4. Let us prove by contradiction. Assume that there exists an optimal k-

cutset Cut of node n so that bl(n) > l(n). Since n2 is a fanin node of n, the k-cutset Cut must be

also a k-cutset of n2, as shown in Fig. 4. If we use Cut as a k-cutset of n2, then 

n2’s delay = n’s delay - d(e2) = l(n) - d(e2) < bl(n) - d(e2) = l(n2) 

Therefore, if Cut is a k-cutset for n2, we have n2’s delay < l(n2) which contradicts the fact that

the label of a node is the minimum value under the dependency constraint k.

It is easy to prove l(n) ≤ bl(n)+d(bsc). If bscs are inserted on all the fanin nodes of node n, the

delay of node n is equal to bl(n)+d(bsc). Q.E.D.

If the labels of all fanins are indeed optimal, bl(n) + 1 is always achievable. We now use an

example to illustrate Lemma 1. Consider the same circuit as in Example 1. We duplicate the

circuit in Fig. 5 where the number outside a node is the corresponding node’s label which we

are about to compute. Again, let the delay of an edge, d(e), and the bsc delay penalty, d(bsc),

n1

n2

n4

n

An optimal k-Cut for n

 Fig. 4 : Bounds for the label of a node.
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be both 1. We also assume the dependency constraint is 3. Initially, the labels of all the PIs are

set to 0. Our labeling algorithm will start from PIs to POs. For node g1, it is easy to see that

there is no need to insert bscs for node g1 so the label of g1 is equal to 1. Similarly, for g2, g3,

and g4, we have the labels, l(g2) = 2, l(g3) =1 and l(g4) = 1. The labels of these nodes, g2, g3,

and g4, are the same as their delay (arrival time) in Fig. 3(a) of Example 1. For node g5 which

has 4 PIs in its transitive fanins, we do need to insert bscs for g5. Since g5’s immediate fanin

nodes are g2 and g3, according to Lemma 1, we have bl(g5) = MAX{l(g2)+d(e), l(g3)+d(e)} =

MAX{2+1, 1+1} = 3. Then we can find out that the range of g5’s label is 3 = bl(g5) ≤ l(g5) ≤
bl(g5)+d(bsc) = 4. There are only two choices for g5’s label, i.e., either l(g5)=3 or l(g5)=4. In

later discussion, we will show that there does not exist a solution which makes the delay of g5

to be 3 under the dependency constraint 3, so g5’s label must be 4. Continue to consider g6

which has 6 PIs in its transitive fanins. We also need to insert bscs for it. Since g6’s immediate

fanin nodes are g4 and g5 with labels 1 and 4, respectively, we have bl(g6) = MAX{l(g4)+d(e),

l(g5)+d(e)} = MAX{1+1, 4+1} = 5. By Lemma 1, the range of g6 can be determined to be 5 =

bl(g6) ≤ l(g6) ≤ bl(g6)+d(bsc) = 6. We will show that there is one solution which makes g6’s

delay to be 5, so its label l(g6) is equal to 5 (= bl(g6)).  One of bsc insertion solution to achieve

l(g6)=5 is shown in Fig. 3(b) of Example 1.

From Lemma 1, we can obtain a possible range of node n’s label, l(n) whose best value is

bl(n) and worst value is bl(n)+d(bsc). Without losing generality, let us assume that the delay

penalty d(bsc) and the delay d(e) of each edge e are integers. If the delay penalty d(bsc) is 1,

according to EQ 6, we can have only two choices for node n’s label l(n): one is bl(n) and the

other is bl(n)+1. Therefore, to obtain n’s label, we only need to decide whether bl(n) is achiev-

able. If the answer is “yes”, then n’s label is equal to bl(n). Otherwise, n’s label is equal to

bl(n)+1. When the delay penalty d(bsc) is not equal to  1, we can use the binary search method

to gradually find l(n). For example, suppose that d(bsc) is 4. We first check the feasibility of

 Fig. 5 : Computation of nodes’ labels with the dependency constraint 3.
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bl(n)+2 which is the median between bl(n) and bl(n)+4. If it is feasible, l(n) must be between

bl(n) and bl(n)+2. Otherwise, l(n) must be between bl(n)+2 and bl(n)+4.   When bl(n)+2 is

feasible, we can continue to check the feasibility of bl(n)+1 which is the median between bl(n)

and bl(n)+2. The binary search can continue until l(n) is obtained. 

Let us assume d(bsc) = 1 in the following discussion; now, the problem of finding node n’s

label has been changed to the yes/no problem of determining whether bl(n) is achievable. Note

that bl(n)+1 is always achievable by inserting bscs on the fanin edges of node n. Luckily, this

yes/no problem has an approximate solution using the max-flow min-cut (MFMC) algorithm.

Before describing the use of MFMC algorithm, we discuss how to exclude nodes which should

not be selected into a k-cutset to achieve l(n)=bl(n). 

To compute the label of node n, suppose node c is selected into an optimal k-cutset. A bsc is

inserted at the fanout of each node in the k-cutset. In Fig. 6, the longest path delay from a PI pi

through node c to node n is l(c)+d(c->n)+d(bsc), where d(c->n) is the longest path delay from

c to n without involving any bsc delay penalty. If node c is selected into an optimal k-cutset of

node n, we have l(c)+d(c->n)+d(bsc) ≤ l(n). Therefore, to achieve the best_label bl(n) of node

n, if node c (other than PIs) is selected into the k-cutset, its label, l(c), must be less than or

equal to the value of bl(n)-d(c->n)-d(bsc). In addition, because a PI can be considered as a bsc,

we do not need to insert bsc at the fanout of a PI. We define a node whose label satisfies EQ 7

and EQ 8 to be a timing feasible node for bl(n). 

l(c) ≤ bl(n)-d(c->n)-d(bsc) if c is not a PI (EQ 7)

l(pi) ≤ bl(n)-d(pi->n) (EQ 8)

In order to achieve l(n) = bl(n), each node in the k-cutset must be a timing feasible node for

bl(n). Note that, for each node c in the input cone of node n, the values of l(c), d(c->n), d(bsc)

and bl(n) can be pre-computed. Hence, we can easily determine whether node c is timing feasi-

ble for bl(n).
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For example, in Fig. 7, let gates g1 to g5 have been labeled and label of g6 is under consider-

ation. Since l(g4)=1 and l(g5)=3, according to EQ 5 and EQ 6, we have bl(g6)  = 4 and

4≤l(g6)≤5. In order to achieve l(g6)=bl(g6)=4, we can find that node g4 is a timing feasible

node because l(g4)≤ bl(g6)-d(g4->g6)-d(bsc), i.e., 1≤4-1-1. Similarly, node g3 is also a timing

feasible node for bl(g6) = 4. On the other hand, node g5 is not a timing feasible node for

bl(g6)=4 because l(g5)> bl(g6)-d(g5->g6)-d(bsc), i.e. , 3>4-1-1. Also, for PIs, we consider them

as bscs. One can check that all PIs are timing feasible from EQ 8. In Fig. 7, all timing feasible

nodes for l(g6)=4 are marked. 

An k-cutset Cut for node n
 Fig. 6 : The delay of a path from pi->c->n.

Cut
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 Fig. 7 : The timing feasible nodes for bl(g6)=4. 
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Now, let us consider to check the feasibility of bl(n) for node n’s label. Assume all the

labels of node n’s input cone Cone(n) except n, are already computed. Also, by applying EQ 7

and EQ 8, we can find all timing feasible nodes in n’s fanin cone. With these information, we

are ready to use the MFMC algorithm to resolve the yes/no problem, i.e. to decide whether

there is a k-cutset containing only timing feasible nodes for bl(n). 

Although the traditional MFMC algorithm performs the “cut” operation on edges of a

graph, it can be easily transformed to perform the “cut” operation on nodes. To apply the

MFMC algorithm, we transform Cone(n) into a weighted graph as follows. We first add two

nodes, the source node S and the destination node D. We also add the edges connecting S to

each PI and the edges connecting node n to D. Then, the weight of each timing feasible node

for bl(n) is set to 1 and others to infinite. When applying the MFMC algorithm on this trans-

formed graph, the MFMC algorithm tries to select a cutset whose total weight is minimum.

The weights which we assign on the transformed graph cause the MFMC algorithm to select

(cut) only timing feasible nodes because the weights of timing feasible nodes are much smaller

than others. In addition, the MFMC algorithm will try to find the minimum number of possible

timing feasible nodes to form a cutset. If the size of the selected cutset is greater than k, it

means that there does not exist a k-cutset which contains only timing feasible nodes, i.e.,

l(n)=bl(n) is not feasible. 

We now use an example to summarize the process of the labeling algorithm. Consider to

label g6 in Fig. 7. First, we would like to know whether it is possible to have l(g6) = bl(g6) = 4.

Then, for nodes in the input cone of g6, we find that only nodes {g3, g4, PIs} are timing feasi-

ble. After that, we transform the graph in Fig. 7 to the weighted graph in Fig. 8 where the

weights of {g3, g4, all PIs} are assigned to 1 and others to infinite. The MFMC algorithm will

then be applied on Fig. 8. Suppose a minimum weight cut shown as the dash line in Fig. 8 is

 Fig. 8 : The weighted DAG for Cone(g6) of Fig. 7 and a mincut Cut with maxflow 5.
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returned. Since the minimum weight is 5, it is not possible to have a 4-cutset to achieve the

goal of l(g6)=bl(g6)=4. Since l(g6)=4 is not achievable, we must have l(g6)=5 according to

Lemma 1 that 4 ≤ l(g6) ≤ 5. Therefore, the label l(g6) is set to 5.

During the labeling of node n, we use the MFMC algorithm to decide whether l(n)=bl(n) is

feasible or not. If the cut size returned from MFMC is greater than k, we conclude that there

does not exist a k-cutset consisting of only timing feasible nodes so l(n)=bl(n) must not be fea-

sible. Therefore, the label of node n is set to bl(n)+1. On the other hand, if the cut size from

MFMC is less than or equal to k, in the labeling algorithm, we set the label of node n to bl(n).

However, the assignment of l(n)=bl(n) for the later case (cut size ≤ k) may be too optimistic.

The reason is as follows. Even though each node in the k-cutset suggested by MFMC is timing

feasible, all together they may not be timing feasible for l(n)=bl(n). For example, consider

finding the label of node g9 in Fig. 9, where all highlighted nodes are timing feasible for l(g9) =

bl(g9) = 6. Here, we let the dependency constraint be 4. For the example, the MFMC algorithm

may return the 4-cutset {g7, g4, g3, g6} for g9 as shown in Fig. 9. Since the cutset size is equal

to the dependency constraint, 4, the labeling algorithm sets l(g9) to 6. Note that, in the configu-

ration of this 4-cutset, g6 is in the fanout of g3 so there are two bscs in the critical path I1->g1-

>g3->g6->g8->g9. In this special case, after inserting bscs for this 4-cutset, the delay of g9 is 7

(=d(I1->g1)+d(g1->g3)+d(g3->g6)+d(g6->g8)+d(g8->g9)+2*d(bsc) = 1+1+1+1+1+2) which is

larger than its label, 6. In this example, the 4-cutset has the configuration that g3 is in the fanin

of g6. If the configuration of the k-cutset contains more than one node in a path as in the exam-

ple, then the labeling algorithm may wrongly estimate the delay of node n. We call such situa-

tion the bsc chain effect. The details of the bsc chain effect and a method to alleviate the effect

is discussed in Section 5.

Lemma 2: Suppose the labels of all the nodes in n’s input cone are the same as the optimal

delays under the dependency constraint, k. If the k-cutset of node n suggested by the MFMC

algorithm has no bsc chain effect, then n’s label l(n) set by the labeling algorithm is optimal.

Proof. For any node n, we have bl(n) ≤ l(n) ≤ bl(n)+1 (Lemma 1). We finish the proof by two

cases. Case 1: If the MFMC algorithm cannot suggest a k-cutset for bl(n), then we insert bscs

on the fanout stems of n’s immediate fanin nodes. Hence, l(n) is equal to bl(n)+1 which is the

optimal delay under the dependency constraint k. Case 2: Cut is a k-cutset suggested by the

MFMC algorithm for bl(n), but it has no bsc chain effect. For any node c in Cut, there is at

most one bsc on any path from c to n, hence, we have bl(n) = MAX{l(c) + d(c->n)+1} ≤
MAX{A(c) + d(c->n)+1} = A(n). In this case, we set l(n) to bl(n) which is the optimal delay

under the dependency constraint k. Q.E.D.
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5   Bsc Insertion 

Our final object is to insert bscs so that the whole circuit delay (the critical path delay) is as

small as possible. Hence, after all labels of nodes have been determined, our basic strategy is to

maintain the labels of nodes in the critical paths as inserting bscs. The bsc insertion process is

iteratively performed from POs to PIs. Initially, we put all POs into a processing list. In each

iteration, we select a node n with the maximal label from the list. After finding a k-cutset for

node n, we insert bscs at the fanout stems of nodes in k-cutset. Then, node n is removed from

the processing list and nodes in the k-cutset are added into the list. This process continues until

there is no node in the processing list. 

For example, consider the circuit of Fig. 10. Assume the dependency constraint is 3 and each

node’s label has been obtained and is shown outside the circle. First, we process the fanin cone

of g7 and the MFMC algorithm suggests the 3- cutset Cutg7 = {g3, g4, g6}. After inserting bscs

on the fanouts of nodes in Cutg7, we treat these nodes g3, g4, and g6 as POs and put them into

the processing list. Next, we process g6’s fanin cone, and obtain the 3-cutset Cutg6 = {g2, g5}.

Similarly, we insert bscs for Cutg6 and put them into the processing list. Now, the processing

list consists of g5, g3, g4, and g2 whose dependencies are all less than or equal to 3. Therefore,

we do not insert bscs for these nodes and the process ends. 
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 Fig. 9 : A 4-cutset Cut with the bsc chain effect.
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While processing node n, we attempt to obtain a k-cutset for n so that the delay of node n is

the same as its label. This k-cutset can be obtained by applying the MFMC algorithm as in the

labeling phase. However, as mentioned in Section 4, after inserting bscs at the fanouts of nodes

in the k-cutset, the delay of node n may be larger than its label l(n). In this section, we propose

some heuristics to alleviate this inconsistency problem. When the k-cutset suggested by the

MFMC algorithm cannot achieve the label, our heuristics try to find other k-cutsets which

hopefully can achieve the label. Note that, since our final objective is to minimize the whole

circuit (critical path) delay, we allow the delay of nodes in the non-critical paths to be larger

than their labels. Note that, since our final objective is to minimize the whole circuit (critical

path) delay, we allow the delay of nodes in the non-critical paths to be larger than their labels.

In the following subsections, we discuss two effects which may cause some node’s delay to

be larger than its label after bsc insertion. These two effects are (1) the bsc chain effect and (2)

the interference effect. In the subsequent subsections, these two effects are explained in detail

and the heuristics to alleviate these two effects are also discussed. 

5.1  The Bsc Chain Effect 

Consider a k-cutset for node n, if the configuration of the k-cutset contains more than one bsc

in a path, then the labeling algorithm may wrongly estimate the delay of node n. We call such

situation the bsc chain effect, the reason of which is that the equation of EQ 7 always adds one

bsc delay penalty between node n and another node in the k-cutset while there may be more

than one bscs in between. However, there may exist other k-cutsets which can cause n’s delay

 Fig. 10 : Insertion of BSCs.
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to be the same as its label. In this section, we propose heuristics to search other k-cutset solu-

tions. Without going into the detail, we use an example to demonstrate our basic ideas.

Consider again Fig. 9, to fulfill the label of node g9, the MFMC algorithm may suggest the 4-

cutset Cut = {g3, g4, g6, g7} based on the labeling algorithm. Instead of using the 4-cutset Cut

from MFMC, we may select another 4-cutset Cut’ = {g2, g3, g4, g7} as shown in Fig. 11. In the

new configuration, there is no bsc chain effect and one can find the delay of g9 is 6 which is the

same as the label. This new 4-cutset can be obtained by replacing g6 with its fanin nodes g2

and g3. Such a way of replacing a node with its (immediate) fanin nodes in the k-cutset is

called the pushing-toward-input technique. 

However, the technique may not be applied to all nodes in the k-cutset. For a node m in the k-

cutset, to apply the pushing-toward-input technique, two constraints must be satisfied. First, all

fanin nodes of m are timing feasible nodes. Recall that a node c is a timing feasible node for

l(n)=bl(n) if its label l(c) is less than or equal to “bl(n)-d(c->n)-d(bsc)”. Secondly, the size of

the resulting new cutset is not larger than k; i.e., it is still a k-cutset. Otherwise, applying arbi-

trarily the pushing-toward-input technique may incur larger delay or may not satisfy the depen-

dency constraint. Return to the case of Fig. 9 where both g2 and g3 are timing feasible, we can

apply the pushing-toward-input technique to replace g6 with g2 and g3 and obtain another 4-

cutset Cut’ = {g2, g3, g4, g7} shown in Fig. 11. Because all nodes in Cut’ are timing feasible

and there exists no bsc chain effect, the delay of g9 resulted form Cut’ can achieve its label. 

4-cutset Cut’ of g9

 Fig. 11 : A 4-cutset Cut’ without the bsc chain effect.
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5.2  The Interference Effect

In this section, we discuss the other effect, the interference effect, which may also cause

some node’s solution from the MCMF algorithm to be larger than its labels. Basically, the

interference effect comes from the sequential processing of nodes’ labels. During the labeling

phase, we evaluate a node’s label only based on the labels of nodes in its input cone. However,

a node’s label may be interfered by the k-cutsets of nodes outside its input cone. Consider two

fanin cones of nodes n1 and n2 in Fig. 12(a). Suppose n1 is processed first and we find a k-cut-

set C1 for node n1. Then, we process node n2 and also find a k-cutset C2 for n2. Because of

additional bscs from C2 are inserted between n1 and C1, the delay of n1 may be increased acci-

dentally. Therefore, during the labeling phase, ignoring the effect of nodes outside n1’s fanin

cone may cause n1’s label to be too optimistic. 

Similar to the bsc chain effect, it is possible that there exist other k-cutsets which do not have

the interference effect. For example, consider again the interference effect of Fig. 12(a).

Assume that the k-cutset C1 for node n1 is chosen first. While finding a k-cutset C2 for node n2,

there may be four possible configurations shown in Fig. 12. Arbitrarily selecting a k-cutset C2

for n2 as in (a) and (b) may cause the delay of n1 to be larger than its label. However, if the

configuration of a k-cutset C2 for node n2 is the same as in (c) and (d), there will be no interfer-

ence effect for node n1. Therefore, our algorithm will intelligently select k-cutsets so that there

will be no interference effect, if possible.

Recall that our algorithm generates a weighted graph in which a timing feasible node is

assigned weight 1 and others are assigned infinite; then, the MFMC algorithm selects a cutset

from the weighted graph with minimum total weight. For leading MFMC to re-suggest another

k-cutset solution for n2, the heuristic re-weights some nodes in the fanin cone of node n1

according to the following two re-weighting rules:

1. Re-assign a weight much less than the initial weight to each node in the k-cutset C1.

n1

n2

C1

 Fig. 12 : Interference effect between different cutsets.
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2. Re-assign infinite weights for “critical” nodes which will cause the delay of n1 to increase. 

Again, suppose C1 is already identified. The weight re-assignment of Rule 1 is to favor the

nodes in C1 when choosing a k-cutset C2 for n2 as in Fig. 12(c). The weight re-assignment of

Rule 2 forbids selection of critical nodes in the input cone of n1 so that the delay of n1 will not

be enlarged by C2 as in Fig. 12(d). 

The re-weight technique may not always be successful. However, since our final goal is to

minimize the whole circuit (critical path) delay, we only need to minimize the delay of nodes

in the critical paths. As a result, we may permit some nodes whose delays are greater than its

label. For example, if node n1 is more critical than node n2, we will first process node n1 and

then force node n2 not to interference with node n1. In other words, we may increase the delay

of n2 by allowing n1’s label not to be interfered.

5.3  Bsc Reduction under Delay Constraint

In this section, we propose a novel algorithm to reduce the number of bscs under some delay

constraint. The basic idea is to add/remove some “timing redundant” bscs whose addition/

removal do not violate the previous timing and dependency constraint. The bsc addition step

can be considered as a perturbation to help the optimization algorithm jump out of the local

minimum. Then a modified bsc reduction algorithm [17] is applied to remove as many bscs as

possible. Since the addition/removal of bscs does not increase delay, our delay result does not

get worst than the previous result before bsc addition/removal, while the number of bscs can be

reduced.

We say that a bsc is timing redundant, if the addition/removal of the bsc does not increase

the circuit delay and violate the dependency constraint. For example consider Fig. 13(a) where

there are 5 bscs {b1, b2, b3, b4, b5} to achieve the dependency constraint of 3. Given d(e) =

d(bsc) = 1, the circuit has the optimal delay of 5 and a critical path is shown in the graph. In

this circuit, we say that bscs b6 and b7 in Fig. 13(b) are timing redundant because the addition

does not violate the circuit timing and dependency constraint. However, the addition of timing

redundant bscs may allow the subsequent bsc reduction algorithm to remove more bscs in the

circuit. Consider the same example. After adding bscs b6 and b7, bscs {b1, b2, b4, b5} become

redundant and can be removed from the circuit in Fig. 13(c). Note that both circuits in Fig.

13(a) and Fig. 13(c) have the same delay but different number of bscs. By appropriately add-

ing/removing timing redundant bscs, the number of bscs are reduced while the circuit timing is

maintained.

During the bsc addition step, it should be noted that the addition of one timing redundant bsc

may cause others to be non-timing-redundant. Our heuristic tries to order the selection in a way

that bscs are inserted to those nodes which have larger fanouts or fanins. This is because that
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the addition of those bscs has better chance to cause many bscs to become redundant and can

be removed. Consider the same example in Fig. 13(c). The addition of bsc b7 can cause bscs b4

and b5 to be removed. 

5.4  An Example to Summarize Our Bsc Insertion Algorithm

Fig. 14 shows our bsc insertion algorithm which integrates the heuristics to alleviate both

the bsc chain effect and the interference effect. We use an example to summarize our algo-

rithm.

 Fig. 13 : Bsc addition and reduction.
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Let the dependency constraint be 3. Consider the circuit in Fig. 15(a) in which the label of a

node is outside the corresponding node. Initially, the list Listpo consists of POs g6 and g8. Since

the label of g6 is larger than the one of g8, we first try to insert bscs for g6. After Applying the

MFMC algorithm, we obtain the 3-cutset Cutg6 = {g1, g3, g4} highlighted in Fig. 15(b).

Because of the bsc chain effect in this 3-cutset, the delay of g6 becomes 7 which exceeds its

label, 6. We then use the pushing-toward-input technique of Section 5.1 to obtain another 3-

cutset Cutg6’ = {g1, g2, g3} highlighted in Fig. 15(c). This new 3-cutset can cause the delay of

g6 to be the same as its label. Then, we remove g6 and put nodes in Cutg6’ into Listpo. After

that, we process g8 which has the maximal label currently. After applying the MFMC algo-

rithm, we have one 3-cutset Cutg8 = {g4, g7} shown in Fig. 15(d). This 3-cutset interfere with

the previous 3-cutset and cause the delay of g6 to increase. By the re-weighting technique of

Section 5.2, we can obtain another 3-cutset Cutg8’ = {g2, g3, g7} which can satisfy our objec-

tive as shown in Fig. 15(e). Similarly, we put nodes in Cutg8’ to Listpo. Now, since the depen-

dency of each node of Listpo is less than or equal to the dependency constraint, 3, the process

bsc_insertion(network, k)

{ 

compute label l(n) for each node n from PIs to POs;

put all the POs into Listpo;

while (Listpo is not empty) { 

remove the node n with the maximal label from Listpo ;

weight the nodes of Cone(n) according to l(n);

do{

find a cutset Cut for n; 

if(the size of Cut is less than or equal to k){

if (l(n) is maintaned) {

put all the nodes in Cut into Listpo and the bsc set;

}else{

modify some nodes’ weights by the heuristics of Section 5.1and Section 5.2;

}

}else{

l(n) = l(n) + 1;

weight the nodes of Cone(n) according to l(n);

}

}until a feasible k-cutset for l(n) is found;

}

bsc_reduction();

}

 Fig. 14 : The BSC insertion algorithm.
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ends. And our algorithm reports that bscs should be inserted at the fanout stems of {g1, g3, g7,

g2} shown in Fig. 14(f).

6   Experimental Results

We have implemented the algorithm in Fig. 14, and applied to the ISCAS85 combinational

benchmark. In the experiment, we make two assumptions for the delays of bscs. One assumes
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 Fig. 15 : An example to illustrate the bsc insertion algorithm.
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that the delay a bsc is 1, d(bsc) = 1 (unit delay). The other assumes the delay of a bsc is 2,

d(bsc) = 2 (two delay), since a mux is a two-level combinational circuit. In addition, we also

obtain technology mapping results using a commercial logic optimization tool with COM-

PASS 0.6-micron library. Our experimental results are shown in Table 1 to Table 4. Assuming

d(bsc) = 2, Table 1 shows the results under the dependency constraint of 20 while Table 2

under the constraint of 15. Assuming d(bsc) = 1, Table 3 shows the results under the constraint

of 20 while Table 4 under the constraint of 15.

Column one gives the name of each circuit. Column two shows the critical path delay with-

out inserting any bsc. Column three shows the largest label among all POs. The largest label of

a circuit is a lower bound of the critical path delay. After inserting bscs by the algorithm in Fig.

14, Column four shows the circuit delay and Column five shows the number of bscs inserted.

Column six gives the CPU run time on Ultra Sparc II. After performing technology mapping

with COMPASS 0.6-micro library, in the seventh and eighth columns, we show the delay and

area results. (The area results do not include the TPG and ORA.) We also re-implement the

algorithm [17] and Columns nine and ten show the results of delay and bscs needed while Col-

umns eleventh and twelfth shows the results after technology mapping with the same library.

For example, in Table 1, the critical path delay of C5315 is originally 53 without inserting

bscs. Under the dependency constraint of 20 and the two delay assumption, the largest label is

55. Our heuristic requires 39 bscs to achieve the delay of 55 which must be an optimal solu-

tion. After technology mapping, the results of our delay and area are 7.59 (ns) and 3997 while

the results of [17] are 8.34(ns) and 3840. We also highlight our results which are the same as

the lower bounds, i.e. optimal solutions. For others, our results are optimal or very close to

optimal solutions. On the average in Table 1, we obtain 9% of delay improvement compared to

the results of [17] with 4% of area penalty.

7   Conclusions

In this paper, a timing-driven bsc insertion method for pseudo exhaustively testing VLSI cir-

cuits has been presented. We first presented an algorithm to estimate each node’s label, i.e., the

lower bound of its delay. Since the bsc chain effect and the interference effect may occur dur-

ing the bsc insertion process, the delay of some nodes may not achieve their labels by the for-

mula. Then, we also explored the reasons which make the two effects occur. To alleviate these

effects, we further proposed some heuristics on which an bsc insertion algorithm was devel-

oped based. Finally, the experimental results of ISCAS85 benchmark circuits show that our

heuristic algorithm can achieve or be very close to the label (optimal solution).



 - 23 -

Table 1: Dependency = 20 with d(bsc) = 2. 

Table 2: Dependency = 15 with d(bsc) = 2.

circuit
initial
delay

label

Ours [17]

delay
(unit)

#bsc
CPU 

time(sec)

technology 
mapping delay

(unit)
#bsc

technology 
mapping

delay
(ns)

area
delay
(ns)

area

C7552 45 45 45 110 2752.7 6.76 5485 47 85 7.01 5345

C6288 124 130 132 66 2523.3 23.14 6381 142 55 25.19 6130

C5315 53 55 55 39 2127.0 7.59 3997 57 37 8.34 3840

C3540 56 60 60 61 955.9 9.07 2800 67 66 9.88 2786

C2670 41 45 45 21 266.2 4.14 2924 51 18 4.68 3040

C1908 45 47 47 19 227.8 7.25 1209 49 14 7.63 1103

C1355 27 29 29 8 84.6 5.63 1350 29 8 5.63 1350

C880 30 32 32 13 19.4 5.12 1287 42 13 6.68 1144

C499 15 17 17 8 18.1 4.91 1034 17 8 4.91 1034

C432 29 35 35 35 10.7 6.41 1207 42 19 7.52 850

ratio 0.915 1.044 1 1

circuit
initial
delay

label

Ours [17]

delay
(unit)

#bsc
CPU 

time(sec)

technology 
mapping delay

(unit)
#bsc

technology 
mapping

delay
(ns)

area
delay
(ns)

area

C7552 45 45 45 124 2789.3 5.88 5485 47 118 6.95 5345

C6288 124 134 140 150 2521.7 24.12 6374 153 140 27.33 6130

C5315 53 55 55 63 2367.6 8.02 3997 57 58 8.58 3840

C3540 56 62 66 112 1105.5 9.59 2855 70 95 10.22 2786

C2670 41 45 47 65 304.2 5.19 3138 55 27 5.25 3040

C1908 45 47 48 27 176.9 7.17 1209 53 20 8.42 1103

C1355 27 29 29 8 84.4 5.63 1350 29 8 5.63 1350

C880 30 34 34 18 19.4 5.08 1239 38 15 5.68 1144

C499 15 17 17 8 18.1 4.91 1034 17 8 4.91 1034

C432 29 37 37 43 9.5 7.07 1061 44 30 7.64 850

ratio 0.846 1.046 1 1
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Table 3: Dependency = 20 with d(bsc) = 1.

Table 4: Dependency = 15 with d(bsc) = 1.
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