
Proof. omitted.

4.2  The Interference Effect

In this section, we discuss the other effect, the interference
effect, which may also cause some node’s delay solution from
the MCMF algorithm to be larger than its label. Basically, the
interference effect comes from the sequential processing of
nodes’ labels. During the labeling phase, we evaluate a node’s
label only based on the labels of nodes in its input cone. How-
ever, a node’s label may be interfered by the k-cutsets of
nodes outside its input cone. Consider the two input cones of
nodes n1 and n2 in Fig. 6(a). Suppose n1 is processed first and
we find a k-cutset C1 for node n1. Then, we process node n2
and also find a k-cutset C2 for n2. Because of additional bscs
from C2 are inserted inside n1’s input cone, the delay of n1
may be increased accidentally. Therefore, during the labeling
phase, ignoring the effect of the k-cutsets of nodes outside
n1’s input cone may cause n1’s label to be too optimistic. Fig.
6(b) is another case which also causes such effect. Similar to
the bsc chain effect, it is possible that there exist other k-cut-
sets which do not have the interference effect such as Fig. 6(c)
and Fig. 6(d).

5   Experimental Results

In this experiment, we assume that the delays of all wires
and bscs are 1; i.e., d(e) = d(bsc) = 1. Our experimental
results are shown in Table 1 with the dependency constraint
of 20. Column one gives the name of each circuit. Column
two shows the critical path delay without inserting any bscs.
Column three shows the largest label among all POs. The
largest label of a circuit is a lower bound of the critical path
delay. After inserting bscs by the algorithm, column four
shows the circuit delay and column five shows the number of
bscs inserted. We also re-implement the algorithm [16] and
column six shows the results of delay and column seven
shows the results of bscs needed. For example, in Table 1, the
critical path delay of C5315 is originally 49 without inserting
bscs. Under the dependency constraint of 20, the largest label
is 50. Our heuristic requires 68 bscs to achieve the delay of 50
which must be an optimal solution. We also highlight our
results which are the same as the lower bounds, i.e. optimal
solutions.

6   Conclusions

In this paper, we first presented an estimation formula to
estimate each node’s label, i.e., the lower bound of its delay.
Since the bsc chain effect and the interference effect may
occur during the bsc insertion process, the delay of some
nodes may not achieve their labels by the formula. Then we
also explored the reasons which make the two effects occur.
To alleviate these effects, we further proposed some heuristics

on which a bsc insertion algorithm was developed based.
Finally, the experimental results of ISCAS85 benchmark cir-
cuits show that our heuristic algorithm can achieve or be very
close to the labels (optimal solution).

Table 1: Dependency constraint = 20
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define a node whose label satisfies EQ 2 and EQ 3 to be a tim-
ing feasible node for bl(n).

l(c) ≤ bl(n)-d(c->n)-d(bsc) if c is not a PI (EQ 2)

l(pi) ≤ bl(n)-d(pi->n) (EQ 3)

In order to achieve l(n) = bl(n), each node in the k-cutset must
be a timing feasible node for bl(n). Note that, for each node c
in the input cone of node n, the values of l(c), d(c->n), d(bsc)
and bl(n) can be pre-computed. Hence, we can easily deter-
mine whether node c is timing feasible for bl(n).

Return to Fig. 3 where nodes h, i, j, k, and l have been
labeled and label of m is under consideration. Since l(j) = 1
and l(l) = 3, according to Definition 1 and EQ 1, we have
bl(m) = 4 and 4 ≤ l(m) ≤ 5. In order to achieve l(m) = bl(m) =
4, we can find that node j is a timing feasible node because
l(j) ≤ bl(m)-d(j->m)-d(bsc), i.e., 1 ≤ 4-1-1. Similarly, node i is
also a timing feasible node for bl(m) = 4. On the other hand,
node l is not a timing feasible node for bl(m) = 4 because l(l)>
bl(m)-d(l->m)-d(bsc), i.e., 3 > 4-1-1. Also, all PIs which are
considered as bscs are timing feasible from EQ 3. In Fig. 3,
all timing feasible nodes for l(m)=4 are marked.

Now, let us check the feasibility of bl(n) for node n’s
label. Assume all the labels of nodes in n’s input cone
Cone(n), except n, are already computed. Also, by applying
EQ 2 and EQ 3, we can find all timing feasible nodes in
Cone(n). With these information, we are ready to use the
MFMC algorithm to resolve the yes/no problem, i.e., to
decide whether there is a k-cutset containing only timing fea-
sible nodes for bl(n). To apply the MFMC algorithm, we
transform Cone(n) into a weighted graph as follows. We first
add two nodes, the source node S and the destination node D.
We also add the edges connecting S to each PI and the edges
connecting node n to D. Then, the weight of each timing fea-
sible node for bl(n) is set to 1 and others to infinite. When
applying the MFMC algorithm on this transformed graph, the
MFMC algorithm tries to select a cutset whose total weight is
minimum. The weights which we assign on the transformed
graph cause the MFMC algorithm to select (cut) only timing
feasible nodes because the weights of timing feasible nodes
are much smaller than others. In addition, the MFMC algo-
rithm will try to find the minimum number of possible timing
feasible nodes to form a cutset. If the size of the selected cut-
set is greater than k, it means that there does not exist a k-cut-
set which contains only timing feasible nodes, i.e., l(n) = bl(n)
is not feasible. On the other hand, if the cutset size is not
greater than k, though in many cases, l(n) = bl(n) is feasible,

there still exists some case, it is NOT feasible. We detail this
discussion in Section 4.1.

4   Bsc Insertion

The bsc insertion process is iteratively performed from POs
to PIs. Initially, we put all POs into a processing list. In each
iteration, we select a node n with the maximal label from the
list. After finding a k-cutset for node n, we insert bscs on the
fanout stems of nodes in the k-cutset. Then, node n is
removed from the processing list and the nodes in the k-cutset
are added into the list. This process continues until there is no
node in the processing list.

In the following subsections, we discuss two effects, the
bsc chain effect and the interference effect, which may cause
some node’s delay to be larger than its label after bsc inser-
tion. Also, these two effects are explained in details and the
heuristics to alleviate these two effects are also discussed.

4.1  The Bsc Chain Effect

If the cut size returned from MFMC is greater than k, we
set l(n) = bl(n)+1. On the other hand, if the cut size from
MFMC is not greater than k, we set l(n) to bl(n). However, the
assignment of l(n) = bl(n) for the later case (cut size ≤ k) may
be too optimistic. The reason is as follows. Even though each
node in the k-cutset suggested by MFMC is timing feasible,
all together they may not be timing feasible for l(n) = bl(n).
For example, assume all labels have been obtained and con-
sider to insert bscs for node l in Fig. 5(a) where the depen-
dency constraint is 3. The MFMC algorithm may return the 3-
cutset {f, g, j} for l as shown in Fig. 5(b). Since the cutset size
is equal to the dependency constraint, 3, the labeling algo-
rithm sets l(l) to 5. Note that, in the configuration of this 3-
cutset, node j is in the fanout of node f  so there are two bscs
in the critical path a->f->j->i->l. In this special case, after
inserting bscs for this 3-cutset, the delay of node l is 6 (=
2*d(bsc)+4*d(e)) which is larger than its label, 5. In this
example, the 3-cutset has the configuration that f is in the
fanin of j. If the configuration of the k-cutset for some node n
contains more than one node in a path as in the example, then
the labeling algorithm may wrongly estimate the delay of
node n. We call such situation the bsc chain effect. However,
there may exist other k-cutsets which can cause n’s delay to
be the same as its label.

Lemma 2: Suppose the labels of all the nodes in n’s input
cone are the same as the optimal delays under the dependency
constraint, k. If the k-cutset of node n suggested by the
MFMC algorithm has no bsc chain effect, then n’s label l(n)
set by the labeling algorithm is optimal.

 Fig. 4 : Label determination.
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achieves the same delay results as the lower bounds; i.e., opti-
mal solutions.

This paper is organized as follows: Section 2 describes the
delay model with the associated delay computation. Section 3
describes an algorithm computing a delay lower bound for
each node under the dependency constraint. The approxima-
tion algorithm to guide the bsc insertion process is developed
in Section 4. Finally, the experimental results and conclusions
are given in Sections 5 and 6.

2   Delay Model and Delay Computation

In this section, we describe the delay model of bsc inser-
tion. We said edge e (v-> u) is an (immediate) fanin edge of u
and node v is an (immediate) fanin node of u. In addition,
node w or edge e is a transitive fanin of node u if there exists
a path from w or e to u. The set of nodes which are transitive
fanins of node v is referred to as the input cone of node v,
Cone(v). When a bsc is inserted on edge e, our delay model
assumes that one constant delay penalty, d(bsc), is added to
the delay of edge e. Consider again the circuit in Fig. 2(a).
Assuming that edge delay d(e) and bsc delay penalty d(bsc)
both are 1, and we can obtain the delay of each node shown
outside the circle. In Fig. 2(a), without inserting any bsc, the
delay of node k is 3 because the longest path from PIs to k is
a->g->j->k which contains 3 edge delays. In Fig. 2(c), after
inserting bscs b1, b2, and b3, the delay of node k becomes 4
because of adding bsc delay.

3   Delay Lower Bound Computation

The proposed algorithm consists of two phases: the label-
ing phase and the bsc insertion phase. We first give some def-
initions used in our discussion. For simplicity, we assume that
a bsc has been inserted on the fanout stem of each PI and let
the dependency set of node n, denoted dep(n), be the set of
bscs on which node n depends and |dep(n)| be the size of
dep(n). The bscs of dep(n) can be viewed as a “cut set” which
separates node n from the PIs. If |dep(n)| ≤ k, the set of nodes
on the fanout stems of which the bscs of dep(n) are inserted
are called a k-cutset of node n. For example, in Fig. 2(c), the
bsc set {b1, b2, b3} is node l’s dependency set and the node
set {j, h, i} is node l’s 3-cutset.

The label of node n, l(n), is the (estimated) minimum delay
of node n under dependency constraint k. Initially, all PIs’
labels are set to 0 and then we compute the label of each node
in the topological order from PIs to POs. Hence, before com-
puting the label of node n, all the labels of nodes in node n’s
input cone have been already done. Note that there are many
possible k-cutsets for node n. To determine the minimum
delay of node n, i.e., the label, we need to find an “optimal” k-
cutset for node n. In the following, we discuss an important
property: the possible range of a node’s label can be deter-
mined from the labels of its (immediate) fanin nodes.

Definition 1: The best_label, bl(n), of node n is defined as
bl(n) = MAX{l(ni)+d(ei) | where ei (ni-> n) is a fanin edge of
n}.

Lemma 1: The label l(n) of node n has the property:

bl(n) ≤ l(n) ≤ bl(n)+d(bsc). (EQ 1)

Proof. omitted.

We now use an example to illustrate Lemma 1. Consider
the circuit of Fig. 3, where the number outside a node is the
corresponding node’s label which we are about to compute.
Again, let the delay of an edge, d(e), and the bsc delay pen-
alty, d(bsc), be both 1. Here, we assume the dependency con-
straint is 4. Initially, the labels of all the PIs are set to 0. Our
labeling algorithm will start from PIs to POs. For node h, it is
easy to see that there is no need to insert bscs for node h so
the label of h is equal to 1. Similarly, for nodes i, j, k, and l,
we have the labels l(i) = 1, l(j) = 1, l(k) = 2, and l(l) = 3. For
node m which has 7 PIs in its transitive fanins, we do need to
insert bscs for m. Since m’s immediate fanin nodes are l and j,
from Definition 1, we have bl(m) = MAX{l(l)+d(e), l(j)+d(e)}
= MAX{3+1, 1+1} = 4. Then, by EQ 1, we can find out that
the range of m’s label is 4 = bl(m) ≤ l(m) ≤ bl(m)+d(bsc) = 5.
Hence, there are only two choices for m’s label, i.e., either
l(m) = 4 or l(m) = 5. In later discussion, we will show that
there does not exist a solution which makes the delay of m to
be 4 under the dependency constraint 4, so m’s label must be
5.

 From Lemma 1, we can obtain a possible range of node
n’s label, l(n), whose best value is bl(n) and worst value is
bl(n)+d(bsc). Without losing generality, let us assume that the
delay penalty d(bsc) and the delay d(e) of each edge e are
integers. If the delay penalty d(bsc) is 1, according to EQ 1,
we can have only two choices for node n’s label l(n): one is
bl(n) and the other is bl(n)+1. Therefore, the problem of find-
ing node n’s label has been changed to the yes/no problem of
determining whether bl(n) is achievable. Note that bl(n)+1 is
always achievable by inserting bscs on the fanin edges of
node n. Luckily, this yes/no problem has an approximate
solution using the maximal-flow minimal-cut (MFMC) algo-
rithm. Our algorithm can be easily extended when d(bsc) and
d(e) are not integers.

Let d(c->n) be the longest path delay from c to n without
involving any bsc delay penalty. If node c is selected into an
optimal k-cutset of node n, we have l(c)+d(c->n)+d(bsc) ≤
l(n) in Fig. 4. Therefore, to achieve the best_label bl(n) of
node n, if node c (other than PIs) is selected into the k-cutset,
its label, l(c), must be less than or equal to the value of bl(n)-
d(c->n)-d(bsc). In addition, because a PI can be considered as
a bsc, we do not need to insert bsc at the fanout of a PI. We

 Fig. 3 : The timing feasible nodes for bl(m) = 4.
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Abstract

The object of this paper is to reduce the delay penalty of
bsc insertion for pseudo-exhaustive testing. We first propose a
tight delay lower bound algorithm which estimates the mini-
mum circuit delay for each node after bsc insertion. By
understanding how the lower bound algorithm lose optimal-
ity, we can propose a bsc insertion heuristic which tries to
insert bscs so that the final delay is as close to the lower
bound as possible. Our experiments show that the results of
our heuristic are either optimal because they are the same as
the delay lower bounds or they are very close to the optimal
solutions.

1   Introduction

Exhaustive testing, one method of Built-In Self-Test
(BIST) [1][2][3], becomes very attractive because that the
method can guarantee the detection of all non-redundant
combinational faults. Unfortunately, the test time of exhaus-
tively testing a combinational circuit increases exponentially
to the number of primary inputs (PIs) of the circuit, which
makes this test method unpractical for circuits with large PIs.
To pseudo-exhaustively test a circuit using 2k patterns, some
bypass storage cells (bscs) may be inserted so that the depen-
dency of each node is less than or equal to the pre-determined
value k called the dependency constraint. A bsc is transparent
in the normal mode and acts as both pesudo-input and
pseudo-output in the test mode. The bsc structure is presented
in Fig. 1. During the normal mode, the signal, test is set to 0
and all bscs become transparent; that is, they do not affect the
circuit’s function. In each cycle of the test mode (test = 1), a
test pattern is serially shifted to the flip-flops of bscs, and the
output responses is directed to the output response analyzer
(ORA) which is analyzed later.

However, adding bscs can increase the circuit size. Most
previous work [5][11][15] [16] attempts to reduce the number
of bscs under a given dependency constraint. Basically, based
on the area consideration, the bsc insertion methods for
pseudo-exhaustive testing can be divided into two categories.
One uses the constrained partitioning strategy which parti-
tions a circuit into several disjoint sub-circuits [5][15][16].
The other uses the un-constrained partitioning strategy which
makes no such constraint [11]. In this paper, our strategy of
bsc insertion is based on the first one.

In addition to the area overhead of inserted bscs, the
inserted bscs may be placed on critical paths and therefore
can worsen the circuit delay. Consider the circuit of Fig. 2(a)
and assume the path a->g->j->k->l is critical. Fig. 2(b)
shows a solution for pseudo-exhaustively testing the circuit.
Despite the inserted bscs do not affect circuit’s original func-
tion in the normal mode, the circuit delay is increased due to
the placement of two bscs (b1 and b2) on the critical path.
Instead, if we insert bscs as in Fig. 2(c), where only one bsc
(b1) is placed on the critical path, the critical path delay is less
than the delay in Fig. 2(b). Note that the maximum depen-
dency size of both circuits is 3.

The purpose of this paper is to minimize the delay penalty
resulted from inserting bscs under a given dependency con-
straint. Our algorithm consists of two phases. In the first
phase, we discuss an algorithm which finds a lower bound of
the minimum delay of a node after inserting bscs. With the
lower bound information and the understanding of how the
optimality may lose, we then develop a heuristic to guide bsc
insertion so that the delay result (after inserting bscs) is as
close to the lower bound as possible. Our experimental results
show that, for many benchmark circuits, our heuristic

 Fig. 1 : The bsc structure.
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 Fig. 2 : Bsc insertion under the dependency constraint 3.
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