ISCAS 2000 - IEEE International Symposium on Circuits and Systems, May 28-31, 2000, Geneva, Switzerland

of each circuit in the traditional factored form. Note that,
here, the factored literal counts have been reduces by a very
extensive optimization script “script.rugged” from SIS [10].
And Column 3 presents the factored literal count using
our proposed invert-factored form. The last column
gives the ratio of Columns 3 and 2. For example, con-
sider circuit frgl, the literal count of the traditional fac-
tored form is 130. Applying the algorithm presented in
Section 3, we can express the circuit in the invert-fac-
tored form with the literal count 52 which is 40% of the
traditional factored form. Moreover, for al the circuits
listed in this table, we can find the literal counts of the
invert-factored form are less than the ones of the tradi-

tional factored form.

Table 1: Literal countsof traditional and invert-factored

forms.
Circuits Factored Flgﬁrrted Ratio
Form Form

frgl 130 52 04
misex3 1223 1021 0.835
b12 95 80 0.842
9sym 281 239 0.851
Z9sym 266 239 0.898
pdc 1492 1362 0.913
duke2 739 680 0.920
spla 1394 1291 0.926
f51m 130 122 0.938
squars 62 60 0.968
b9 131 127 0.969
s526n 251 244 0.972
s526 254 247 0.972
rot 733 713 0.973
inc 111 108 0.973
seq 3507 3413 0.973
rd73 158 154 0.975
cps 2718 2652 0.976

0-7803-5482-6/99/$10.00 ©2000 | EEE

Table 1: Literal countsof traditional and invert-factored

forms.
Factored Invert-
Circuits Factored Ratio
Form
Form
bw 178 174 0.978
Sa0 152 149 0.980

6 Conclusions

In this paper, we have presented a novel representation of
Boolean functions, called the invert-factored form representa
tion. This representation mainly takes advantage of the inver-
sion of whole or part of a Boolean function which may lead to
fewer literals. Based on this novel presentation, the algorithm
for finding the minimal expression is described. Experimental
results also shows the literal counts based on the novel repre-
sentation are smaller than on the traditional factored form
presentation.

References

[1] K. Bartlett, W. Cohen, A. J. De Geus, and G. D. Hachtel, “aén-
thesis of Multilevel Logic under Timing Constraints’, IEEE
Trans. on Computer-Aided Design of Integrated Circuits,
pp.582-595, Oct. 1987.

[2] D. Bostick, G. D. Hachtel, R. Jacoby, M. R. Lightner, P.
Moceyunas, C. R. Morrison, and D. Ravenscroft, “ The Boulder
ﬁl)pthglsliOglc Design System”, Proc. of ICCAD, pp. 62-65,

ov. .

[3] R. K. Brayton and C. McMullen, “The Decomposition and Fac-
torization of Boolean Expression”, Proc. of the International
Symposium on Circuits and Systems, pp. 49-54, May. 1982.

[4] R. K. Brayton, G. D. Hachtel, and A. L. Sangiovanni-Vincentelli,
Fl\eﬂbutils)eé/gl Logic Synthesis’, Proc. of the |EEE, pp.264-300,

[5] R. K. Brayton, R. Rudell, A. L. Sangiovanni-Vincentelli, and A.
Wang, “MIS: A Multiple-Level Logic Optimization System”,
IEEE Trans. on Computer-Aided Design of Integrated Circuits,
pp. 1062-1081, Nov. 1987.

[6] S. Devadas, A. Ghosh and K. Keutzer, Logic Synthesis, McGraw-
Hill, Inc., 1994.

[7] G. D. Hachtel and Fabio Somenzi, Logic Synthesis and \erifica-
tion Algorithm., Kluwer Academic Publishers, 1996.

[8] G. D. Micheli, Synthesis and Optimization of digital circuits,
McGraw-Hill, Inc., 1994.

[9] S. Minato, “Fast Generation of Prime-Irredundant Coverts from
BlnarX Decision Diagrams, |IEICE Trans. on Fundamentals,
E76-A(6), 967-973, June 1993.

[10] SIS: A System for uential Curcuit Synthesis, University of
Cdifornia, Berkeley, CA, Rep. M92/41,1992.

11-317

+
|l

TI
I
|

N

(EQ4)

=

The factored literals in the above four Boolean expressions
are different. After performing partial inversion, we can
obtain all four factored forms and can then choose the best
one among those four expressions (EQ 1 to EQ 4) above. As
an example, consider the expression

Fg=a(b+c) +c(b+a)+de

which has the factored literal count 8. By EQ 2, we invert the
partial expression a(b + c¢) + c(b + a) ,and we have

Fg=a(b+c)+c(b+a)+de= ac+abc+de

which has the factored literal count of 7 while without inver-
sion the factored literal count is 8. To generate an invert-fac-
tored form in this case, one need to decide the partition of a
Boolean function first. A ssimple way to do so is to partition a
Boolean expression so that two sub-functions F, and F, have
different variable supports. In the above example, F; has the
variable support of {a, b, ¢} and F, has the variable support
of {d, €. Their support sets are digoint.

Case 3: Consider the don’'s care (DC) condition. Don't
cares can be used to minimize the size of an inverted Boolean
function. Properly applying the don’s care (DC) condition,
the invert-factored literal count of F can be further decreased.
For example, consider Boolean function F- (a, b, ¢) =
Yy m(1,3,6,7) with DCc = Y m(4) . The traditional fac-
tored formis

Fc=a(b+c)+c(b+a)

which has the factored literal count 6. However, applying
DCconFc= Y m(0, 2, 5), we can have the invert-factored
form

Fc=ac+ab
with the invert-factored literal count 4 less than 6.

To apply the compatible observability don't cares
(CODC), our proposed algorithm is based on the order of
CODC such that we guarantee that a node is simplified after
all its fanin nodes have been done. Beginning with PIs, for
each node N with logic function F, we evaluated the minimal
factored forms of F and F. Next we decide to use F or F to
implement N. If both of F literal count and factored literal
count are less than F's, we choose F; otherwise, F is chosen.
During the selection, CODC can be applied. Once F is
selected, one inverter must be added into the fanout-stem of
node N and all functions of al N’'s output nodes must be mod-

ified to reflect such change. The algorithm for simplifying
node N with Boolean function F isgivenin Fig. 2.

optimization(N, F)
{

F = invert(F);
If(':fa(:tored_l iteral_count < Ffactored_l iteral_count &&

F iteral_count <F iteral_count){

replace(F, F);
modify the functions of all the fanout nodes
of N;

}
}

Fig. 2 Algorithm for minimizing factored literal count.

4 An Example of Benchmark Circuit

In this section, we use the benchmark circuit frgl to
illustrate the advantage of the invert-factored form. In frgl,
there is a node dO with boolean function Fyy. Using the tradi-
tional factored form representation, function Fyo can be
expressed as
 Fap= S(G(G +) + Y(OW+ P)(e+ a)U+ B+ TPE +
i)(e+ a)(m(o + h) + x(ow+ h)) + ae cy + r(hp(xz + m)(e +
a)(stv + K) + ja(yz + m)(e + a)(uv + K)) + (e + a)(j(hr(z +
m)(v+ K + 1)+ gliow+m) + h)+ I(i(st + g)+ v(hst + j(u
+ 1) + gu)+ (stuv + K)(opar (wxyz + m) + 1) + n(hz(x + j) +

i(x(w +) + gw) + y(g(w+]) + Z(w x+])) + m+1))) + bc
with the factored literal count of 121. Using the invert-fac-
tored form representation, we invert the whole of function Fyq
and we have

Fao= F qoand F oo = 5(@8ce + (Imii(gz+ hy) + j(gx +
hw)) + n (h(iku + I(ig + jo)) + g(i(kv + Ir) + j(k(t + s) + |
PO)(e+ &) + be

with the invert-factored literal count of 42 |ess than 121 from
the non-inverted one. In fact, for this circuit, even applying a
very extensive optimization script, “script.rugged” from SIS
[10], we get a even more factored literals of 126.

5 Experimental Results

We have implemented the algorithmin Fig. 2 and the
results are given in Table 1. Column 1 gives the names
of circuits. Column 2 presents the factored literal count

11-318

er inverter in the circuit. Asaresult, both in the factored form
or in our method, we do not consider the cost of inverters.

One of the reasons which inhibit previous optimization to
consider the inversion operations that the size of inversion of
a Boolean equation can be exponential to the size of the non-
inverted one. The exponential problem can cause memory ex-
ploration and huge CPU time. However, recently, thereis re-
search [9] which can quickly estimate the number of literals
after inversion. With such estimation, one can find in advance
that whether an inversion will cause memory exploration or
not. If the size of an inversion of a Boolean function iswithin
some bound, the inversion can then be carried out for better
optimization results.

The remainders of this paper are organized asfollows. The
background for logic optimization isdescribed in Section 2. In
Section 3, we present the invert-factored form. Based on this
novel form, the algorithm for finding a representation with the
minimal literal counts will also be presented. Section 5 gives
theliteral counts of theinvert-factored form expression for the
benchmark circuit, frgl. Theresults are based on the algorithm
presented in Section 3. Our conclusionsis given in Section 6.

i
) \E

Fig. 1 Thetreerepresentation of F = (a+ b)(c+d) + e

2 Background

A literal is a Boolean variable or its complement. Literal
count is the number of literals in a Boolean expression. In
CMOS, the size of implementing a Boolean function can be
estimated by the literal count of the Boolean function. Since
multi-level circuits often result in a faster and smaller imple-
mentation of a Boolean function than two-level circuits, syn-
thesis of multi-level circuits has become an attractive topic
[1121[3][41[5]-

Similar to SOP form, afactored form isaway of express-
ing Boolean functions and isamore natural way for multi-lev-
e circuitsthan two level representation SOP. A factored form
isaparenthesize representation of atree network for aBoolean
function, where each internal node isan AND or OR gate and

each leaf isaliteral [6][7]. And the literal count of afactored
form representation is called the factored literal count. For ex-
ample, apossible factored formof F=ac+ ad+ bc+ bd + e
isF = (a+ b)(c+ d) + ewhose corresponding tree represen-
tationisgivenin Fig. 1. The factored literal count of F is5.

3 Theinvert-factored Form

In this section, we discuss a representation of a Boolean
function called the invert-factored form which takes advan-
tage of an inversion operation. The invert-factored form of a
Boolean function has more freedom and can result in fewer
factored literals than the traditional factored form. Some ways
of generating an invert-factored form of a Boolean function
are discussed as follows.

Case 1. Invert the whole expression of aBoolean function.
Traditionally, two level minimization triesto reducetheliteral
count of an SOP and a“factoring” operation triesto reduce the
factored literals of agiven SOP. However, theinversion of a
Boolean function is not explored before. The inversion of a
function may have more literals but may have fewer factored
literals.

For_example, the traditional factored form of Fp =
a(b +c) + c(b + a) has factored literal count of 6. If Fp is
inverted, we have

Fa=a(b+c)+c(b+a).

Since Fp = F A We have

Fa=Fa=a(b+c)+c(b+a) = ac+abc
which has the factored literal count of 5.
Case 2: Invert partia Boolean expression of a Boolean

function. Consider a Boolean function F which are sum of F;
andF,asinEQ1

F=F +F,, (EQ1)

where F1 and F2 are in SOP forms. The Boolean function F
can be written as one of the following:

(EQ2)

1+Fo (EQ3)

11-319

A Compact Factored Form for
a Boolean Function

J. C.Rau, Y. M. Chen, and S. C. Chang

Department of Computer Science and Information Engineering
National Chung-Cheng University
Chiayi, Taiwan, R. O. C.

Abstract

A factored form of a Boolean function isacommon repre-
sentation to express the complexity of a Boolean function in
multi-level logic. However, afactored form which inhibits the
appearance of the inversion operation is still a restricted way
in representing a multi-level circuit. In this paper, we present
a novel representation of a Boolean function, called the
invert-factored form representation. This representation
mainly takes advantage of the inversion of whole or part of a
Boolean function so that fewer literals and better multi-level
circuit implementation can be obtained. Based on this novel
presentation, our algorithm attemptsto find a minimal expres-
sion. Experimental results also show the literal counts based
on the novel representation are smaller than those on the tra-
ditional factored form representation.

1 Introduction

There are many different representations for a Boolean
function such as the truth table form, the sum of products
(SOP) form and the factored form. Among these, the factored
literal count of a Boolean function is a common way to mea-
sure the complexity of a Boolean function in multi-level
logic. A factored form is a parenthesized representation of a
Boolean function which alows only AND and OR operations
[6][7][8]. Traditionally, afactored form is computed by recur-
sively extracting common sub-functions in a Boolean expres-
sion. For example, suppose F; =ab + ac + bc + ac, then Fy =
a(b + ¢) + c(b + a) isafactored form for Boolean function
F,. In this example, the common sub-function a is factored
out of sub-expression ab + ac and ¢ isfactored out of bc + ac.
The literal count of Fq is 8 while the factored literal count of
F, is 6. For another example, consider the Boolean function
F,=ab+ cd+ ef + g whose SOP form and factored form are
the same. Although the literal count of F is larger than the
literal count of F,, the factored literal count of F, islessthan
Fo. ldeally, the complexity of implementing F is assumed
to be cheaper than F, in multi-level logic. Quite frequently, a

logic optimization algorithm may derive several new transfor-
mations and factored literal count can serve as a cost function
to determine whether a new transformation is accepted or dis-
carded [3]. If a new transformation by a logic optimization
agorithm results in more factored literals, the new transfor-
mation will be rejected; otherwise it will be accepted.

The factored form of a Boolean function can be obtained
recursively by algebraic or Boolean operations [7]. As an ex-
ample, for Boolean function F3 = ab + ac + bc +d, the fac-
tored form c(a+b) + ab + disalgebraic, and the factored form
(a+ b)(@a+ c) + disBoolean. Most previous work attempts to
reduce the factored literal count using more complex Boolean
operations from a fixed Boolean expression. On the other
hand, afactored form itself is arestricted way of expressing a
Boolean function in multi-level logic. Theinversion operation
isnot allowed in a factored form. As an example, representa-
tion d(e+ab) +ac(e+b)+f is not a traditional factored
form.

In this paper, we discuss anew form, called theinvert-fac-
tored form, in which we take advantage of the inversion of
whole or part of aBoolean function. We have found that some
Boolean functions can be represented in a much compact way
by allowing theinversion operation. For example, the Boolean
function

Fp= |ED =d(e+ab)+ac(e+b)+f

=d(c+a)+e(at+h)+f

has the factored literal count of 7. Note that without inversion,
the previous expression

Fp=d(e+ab)+ac(e+b)+ f

has factored count of 9. When estimating the cost, we do not
takeinto account the cost of an inverter because after logic op-
timization, usually, it is followed by a global inverter optimi-
zation algorithm to reduce the number of inverters. It is
possiblethat an additional inverter can be removed with anoth-

11-320

