
of each circuit in the traditional factored form. Note that,
here, the factored literal counts have been reduces by a very
extensive optimization script “script.rugged” from SIS [10].
And Column 3 presents the factored literal count using
our proposed invert-factored form. The last column
gives the ratio of Columns 3 and 2. For example, con-
sider circuit frg1, the literal count of the traditional fac-
tored form is 130. Applying the algorithm presented in
Section 3, we can express the circuit in the invert-fac-
tored form with the literal count 52 which is 40% of the
traditional factored form. Moreover, for all the circuits
listed in this table, we can find the literal counts of the
invert-factored form are less than the ones of the tradi-
tional factored form.

6 Conclusions

In this paper, we have presented a novel representation of
Boolean functions, called the invert-factored form representa-
tion. This representation mainly takes advantage of the inver-
sion of whole or part of a Boolean function which may lead to
fewer literals. Based on this novel presentation, the algorithm
for finding the minimal expression is described. Experimental
results also shows the literal counts based on the novel repre-
sentation are smaller than on the traditional factored form
presentation.

References

[1] K. Bartlett, W. Cohen, A. J. De Geus, and G. D. Hachtel, “Syn-
thesis of Multilevel Logic under Timing Constraints”, IEEE
Trans. on Computer-Aided Design of Integrated Circuits,
pp.582-595, Oct. 1987.

[2] D. Bostick, G. D. Hachtel, R. Jacoby, M. R. Lightner, P.
Moceyunas, C. R. Morrison, and D. Ravenscroft, “The Boulder
Optimal Logic Design System”, Proc. of ICCAD, pp. 62-65,
Nov. 1987.

[3] R. K. Brayton and C. McMullen, “The Decomposition and Fac-
torization of Boolean Expression”, Proc. of the International
Symposium on Circuits and Systems, pp. 49-54, May. 1982.

[4] R. K. Brayton, G. D. Hachtel, and A. L. Sangiovanni-Vincentelli,
“Mutilevel Logic Synthesis”, Proc. of the IEEE, pp.264-300,
Feb. 1990.

[5] R. K. Brayton, R. Rudell, A. L. Sangiovanni-Vincentelli, and A.
Wang, “MIS: A Multiple-Level Logic Optimization System”,
IEEE Trans. on Computer-Aided Design of Integrated Circuits,
pp. 1062-1081, Nov. 1987.

[6] S. Devadas, A. Ghosh and K. Keutzer, Logic Synthesis, McGraw-
Hill, Inc., 1994.

[7] G. D. Hachtel and Fabio Somenzi, Logic Synthesis and Verifica-
tion Algorithm., Kluwer Academic Publishers, 1996.

[8] G. D. Micheli, Synthesis and Optimization of digital circuits,
McGraw-Hill, Inc., 1994.

[9] S. Minato, “Fast Generation of Prime-Irredundant Coverts from
Binary Decision Diagrams, IEICE Trans. on Fundamentals,
E76-A(6), 967-973, June 1993.

[10] SIS: A System for Sequential Curcuit Synthesis, University of
California, Berkeley, CA, Rep. M92/41, 1992.

Table 1: Literal counts of traditional and invert-factored
forms.

Circuits
Factored

Form

Invert-
Factored

Form
Ratio

frg1 130 52 0.4

misex3 1223 1021 0.835

b12 95 80 0.842

9sym 281 239 0.851

Z9sym 266 239 0.898

pdc 1492 1362 0.913

duke2 739 680 0.920

spla 1394 1291 0.926

f51m 130 122 0.938

squar5 62 60 0.968

b9 131 127 0.969

s526n 251 244 0.972

s526 254 247 0.972

rot 733 713 0.973

inc 111 108 0.973

seq 3507 3413 0.973

rd73 158 154 0.975

cps 2718 2652 0.976

bw 178 174 0.978

sao 152 149 0.980

Table 1: Literal counts of traditional and invert-factored
forms.

Circuits
Factored

Form

Invert-
Factored

Form
Ratio

II-317

0-7803-5482-6/99/$10.00 ©2000 IEEE

ISCAS 2000 - IEEE International Symposium on Circuits and Systems, May 28-31, 2000, Geneva, Switzerland

. (EQ 4)

The factored literals in the above four Boolean expressions
are different. After performing partial inversion, we can
obtain all four factored forms and can then choose the best
one among those four expressions (EQ 1 to EQ 4) above. As
an example, consider the expression

FB =

which has the factored literal count 8. By EQ 2, we invert the
partial expression ,and we have

FB = =

which has the factored literal count of 7 while without inver-
sion the factored literal count is 8. To generate an invert-fac-
tored form in this case, one need to decide the partition of a
Boolean function first. A simple way to do so is to partition a
Boolean expression so that two sub-functions F1 and F2 have
different variable supports. In the above example, F1 has the
variable support of {a, b, c} and F2 has the variable support
of {d, e}. Their support sets are disjoint.

Case 3: Consider the don’s care (DC) condition. Don’t
cares can be used to minimize the size of an inverted Boolean
function. Properly applying the don’s care (DC) condition,
the invert-factored literal count of F can be further decreased.
For example, consider Boolean function FC (a, b, c) =

 with DCC = . The traditional fac-
tored form is

FC =

which has the factored literal count 6. However, applying
DCC on FC = , we can have the invert-factored
form

FC =

with the invert-factored literal count 4 less than 6.

To apply the compatible observability don’t cares
(CODC), our proposed algorithm is based on the order of
CODC such that we guarantee that a node is simplified after
all its fanin nodes have been done. Beginning with PIs, for
each node N with logic function F, we evaluated the minimal
factored forms of F and F. Next we decide to use F or F to
implement N. If both of F literal count and factored literal
count are less than F’s, we choose F; otherwise, F is chosen.
During the selection, CODC can be applied. Once F is
selected, one inverter must be added into the fanout-stem of
node N and all functions of all N’s output nodes must be mod-

ified to reflect such change. The algorithm for simplifying
node N with Boolean function F is given in Fig. 2.

4 An Example of Benchmark Circuit

In this section, we use the benchmark circuit frg1 to
illustrate the advantage of the invert-factored form. In frg1,
there is a node d0 with boolean function Fd0. Using the tradi-
tional factored form representation, function Fd0 can be
expressed as

Fd0 = c(gq(m(o + j) + y(ow + j))(e + a)(u + k) + i p(st +
i)(e + a)(m(o + h) + x(ow+ h)) + ae c0 + r(hp(xz + m)(e +
a)(stv + k) + jq(yz + m)(e + a)(uv + k)) + (e + a)(j(hr(z +
m)(v + k) + i) + g(io(w + m) + h) + l(i(st + g) + v(hst + j(u
+ h)) + gu)+ (stuv + k)(opqr(wxyz + m) + l) + n(hz(x + j) +
i(x(w + h) + gw) + y(g(w+ j) + z(w x+j)) + m + l))) + bc

with the factored literal count of 121. Using the invert-fac-
tored form representation, we invert the whole of function Fd0
and we have

 Fd0 = d0 and d0 = c(aec0 + (lm(i(gz + h y) + j(g x +
h w)) + n (h(iku + l(iq + jo)) + g(i(kv + lr) + j(k(t + s) + l
p))))(e + a)) + bc

with the invert-factored literal count of 42 less than 121 from
the non-inverted one. In fact, for this circuit, even applying a
very extensive optimization script, “script.rugged” from SIS
[10], we get a even more factored literals of 126.

5 Experimental Results

We have implemented the algorithm in Fig. 2 and the
results are given in Table 1. Column 1 gives the names
of circuits. Column 2 presents the factored literal count

F F1 F2+=

a b c+() c b a+() de+ +

a b c+() c b a+()+

a b c+() c b a+()+ de+ ac abc+ de+

m 1 3 6 7, , ,()∑ m 4()∑

a b c+() c b a+()+

m 0 2 5, ,()∑

ac ab+

F = invert(F);
if(Ffactored_literal_count < Ffactored_literal_count &&

Fliteral_count < Fliteral_count){
replace(F, F);

 optimization(N, F)
 {

 }

 Fig. 2 Algorithm for minimizing factored literal count.

 }

modify the functions of all the fanout nodes
of N;

F F

II-318

er inverter in the circuit. As a result, both in the factored form
or in our method, we do not consider the cost of inverters.

One of the reasons which inhibit previous optimization to
consider the inversion operations that the size of inversion of
a Boolean equation can be exponential to the size of the non-
inverted one. The exponential problem can cause memory ex-
ploration and huge CPU time. However, recently, there is re-
search [9] which can quickly estimate the number of literals
after inversion. With such estimation, one can find in advance
that whether an inversion will cause memory exploration or
not. If the size of an inversion of a Boolean function is within
some bound, the inversion can then be carried out for better
optimization results.

The remainders of this paper are organized as follows. The
background for logic optimization is described in Section 2. In
Section 3, we present the invert-factored form. Based on this
novel form, the algorithm for finding a representation with the
minimal literal counts will also be presented. Section 5 gives
the literal counts of the invert-factored form expression for the
benchmark circuit, frg1. The results are based on the algorithm
presented in Section 3. Our conclusions is given in Section 6.

2 Background

A literal is a Boolean variable or its complement. Literal
count is the number of literals in a Boolean expression. In
CMOS, the size of implementing a Boolean function can be
estimated by the literal count of the Boolean function. Since
multi-level circuits often result in a faster and smaller imple-
mentation of a Boolean function than two-level circuits, syn-
thesis of multi-level circuits has become an attractive topic
[1][2][3][4][5].

 Similar to SOP form, a factored form is a way of express-
ing Boolean functions and is a more natural way for multi-lev-
el circuits than two level representation SOP. A factored form
is a parenthesize representation of a tree network for a Boolean
function, where each internal node is an AND or OR gate and

each leaf is a literal [6][7]. And the literal count of a factored
form representation is called the factored literal count. For ex-
ample, a possible factored form of F = ac + ad + bc + bd + e
is F = (a + b)(c + d) + e whose corresponding tree represen-
tation is given in Fig. 1. The factored literal count of F is 5.

3 The invert-factored Form

In this section, we discuss a representation of a Boolean
function called the invert-factored form which takes advan-
tage of an inversion operation. The invert-factored form of a
Boolean function has more freedom and can result in fewer
factored literals than the traditional factored form. Some ways
of generating an invert-factored form of a Boolean function
are discussed as follows.

Case 1: Invert the whole expression of a Boolean function.
Traditionally, two level minimization tries to reduce the literal
count of an SOP and a “factoring” operation tries to reduce the
factored literals of a given SOP. However, the inversion of a
Boolean function is not explored before. The inversion of a
function may have more literals but may have fewer factored
literals.

For example, the traditional factored form of FA =
has factored literal count of 6. If FA is

inverted, we have

FA = .

Since FA = A, we have

FA = A = =

which has the factored literal count of 5.

Case 2: Invert partial Boolean expression of a Boolean
function. Consider a Boolean function F which are sum of F1
and F2 as in EQ 1

, (EQ 1)

where F1 and F2 are in SOP forms. The Boolean function F
can be written as one of the following:

; (EQ 2)

; (EQ 3)

a b dc e

AND

OR

OROR

 Fig. 1 The tree representation of F = (a + b)(c + d) + e.

a b c+() c b a+()+

a b c+() c b a+()+

F

F a b c+() c b a+()+ ac abc+

F F1 F2+=

F F1 F2+=

F F1 F2+=

II-319

Abstract

A factored form of a Boolean function is a common repre-
sentation to express the complexity of a Boolean function in
multi-level logic. However, a factored form which inhibits the
appearance of the inversion operation is still a restricted way
in representing a multi-level circuit. In this paper, we present
a novel representation of a Boolean function, called the
invert-factored form representation. This representation
mainly takes advantage of the inversion of whole or part of a
Boolean function so that fewer literals and better multi-level
circuit implementation can be obtained. Based on this novel
presentation, our algorithm attempts to find a minimal expres-
sion. Experimental results also show the literal counts based
on the novel representation are smaller than those on the tra-
ditional factored form representation.

1 Introduction

There are many different representations for a Boolean
function such as the truth table form, the sum of products
(SOP) form and the factored form. Among these, the factored
literal count of a Boolean function is a common way to mea-
sure the complexity of a Boolean function in multi-level
logic. A factored form is a parenthesized representation of a
Boolean function which allows only AND and OR operations
[6][7][8]. Traditionally, a factored form is computed by recur-
sively extracting common sub-functions in a Boolean expres-
sion. For example, suppose F1 = ab + ac + bc + ac, then F1 =

 is a factored form for Boolean function
F1. In this example, the common sub-function a is factored
out of sub-expression ab + ac and c is factored out of bc + ac.
The literal count of F1 is 8 while the factored literal count of
F1 is 6. For another example, consider the Boolean function
F2 = ab + cd + ef + g whose SOP form and factored form are
the same. Although the literal count of F1 is larger than the
literal count of F2, the factored literal count of F1 is less than
F2. Ideally, the complexity of implementing F1 is assumed
to be cheaper than F2 in multi-level logic. Quite frequently, a

logic optimization algorithm may derive several new transfor-
mations and factored literal count can serve as a cost function
to determine whether a new transformation is accepted or dis-
carded [3]. If a new transformation by a logic optimization
algorithm results in more factored literals, the new transfor-
mation will be rejected; otherwise it will be accepted.

 The factored form of a Boolean function can be obtained
recursively by algebraic or Boolean operations [7]. As an ex-
ample, for Boolean function F3 = ab + ac + bc +d, the fac-
tored form c(a+b) + ab + d is algebraic, and the factored form
(a + b)(a + c) + d is Boolean. Most previous work attempts to
reduce the factored literal count using more complex Boolean
operations from a fixed Boolean expression. On the other
hand, a factored form itself is a restricted way of expressing a
Boolean function in multi-level logic. The inversion operation
is not allowed in a factored form. As an example, representa-
tion is not a traditional factored
form.

In this paper, we discuss a new form, called the invert-fac-
tored form, in which we take advantage of the inversion of
whole or part of a Boolean function. We have found that some
Boolean functions can be represented in a much compact way
by allowing the inversion operation. For example, the Boolean
function

FD = =

 =

has the factored literal count of 7. Note that without inversion,
the previous expression

FD =

has factored count of 9. When estimating the cost, we do not
take into account the cost of an inverter because after logic op-
timization, usually, it is followed by a global inverter optimi-
zation algorithm to reduce the number of inverters. It is
possible that an additional inverter can be removed with anoth-

a b c+() c b a+()+

d e ab+() ac e b+()+ f+

FD d e ab+() ac e b+()+ f+

d c a+() e a b+()+ f+

d e ab+() ac e b+() f+ +

A Compact Factored Form for
a Boolean Function

J. C. Rau, Y. M. Chen, and S. C. Chang

Department of Computer Science and Information Engineering

National Chung-Cheng University

Chiayi, Taiwan, R. O. C.

II-320

