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Abstract

The alternative wire technique attempts to replace a target
wire by another wire without changing the logic functionality. In
this paper, we propose two new transformations of replacing
wires. One transformation simultaneously replaces multiple
input wires of a gate by a new set of input wires and the other
performs gate decompostion during the alternative wire process.
To accomplish such complex transformations, we discuss some
theoretical foundations for replacing multiple wires. Under-
standing how wires/gates can be replaced by other wires/gates
allows us to speedup the process tremendously.

1   Introduction

In the traditional design flow, interconnect design takes a
(fixed) net list and attempts to optimize the interconnects from
the given net list which can be produced from a logic synthesis
tool. To handle the growing complexity of circuit design, design-
ers are forced to look ahead in a higher level of abstraction and
propose algorithms which combine logic synthesis and layout
synthesis. There have been several research papers
[2][4][5][7][9][11] integrating the logic and layout synthesis
algorithms. The work [9] proposes an earlier synthesis strategy
which uses “wireplanning” to distribute delays over the func-
tional elements and interconnects. In [11], they present an inte-
grated design flow which combines floorplanning, technology
mapping, and placement using a dynamic programming algo-
rithm.

There are also several logic synthesis techniques [1] [2] [3]
[6] [12] which may potentially be modified to consider the wiring
effect. Among those, [2] proposes a post-layout logic synthesis
technique which allows one to modify wire topology. This tech-
nique, called the alternative wire technique (Alwire) explores the
freedom in the logic domain to provide additional flexibility in
the layout area. The basic philosophy of Alwire is to remove
some wire by adding another wire to the circuit. For example in
Fig. 1 by adding wire g1->g5, wire c->g2 can be removed with-
out changing the logic functionality. 

The traditional techniques, though, can be quite effective in
performing single wire replacement. Due to the large searching
space required, to the best of our knowledge, there is very little
success in simultaneously replacing multiple wires/gates. In this

paper, we propose two new transformations. For the (direct)
input wires of a node, one transformation simultaneously
replaces the old set of input wires by a new set of input wires,
assuming that the old set of input wires is targeted for replace-
ment. For example, in Fig. 2, suppose the input wires (e->g, f->g)
of node g, are under consideration for removal. Our transforma-
tion can identify that a new set of wires (o->g, p->g, q->g) can
replace the old set (e->g, f->g) without changing the circuit func-
tionality. The other transformation proposed in this paper per-
forms gate decomposition during the alternative wire process. In
Fig. 5, only after decomposing the big OR gate g1 (Fig. 5a) into
two small OR gates, g6 and g7 (Fig. 5b), we can then replace wire
c->g2 by wire g6->g5. 

We also would like to mention that there are several logic
optimization algorithms adding multiple wires/gates and then
removing wires/gates to reduce the size of a circuit. However,
those algorithms do not have specific target wires for removal in
mind and, therefore, are quite different from the objective of this
paper.

In order to achieve such complex transformations, we discuss
some theoretical foundations for replacing multiple wires. Under-
standing how wires/gates can be replaced by other wires/gates
allows us to speedup the process tremendously. As a result, we
can perform these complex transformations which were unfeasi-
ble in practice in [2]. Our experimental results show that these
new transformations require reasonable run time but can provide
much more flexibility than those in [2].

2   The Alternative Wire Technique

In this section, we briefly review the Alwire technique. Basi-
cally, the Alwire technique first decides some existing irredun-
dant wire that is the target to be removed. Then, the technique
searches for some non-existing wire, sometimes called a candi-
date connection, that once added can make the target wire stuck-

 Fig. 1  An example for single alternative wire.
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at fault undetectable (redundant) and therefore it can be removed.
Finally, the technique checks whether a candidate connection is
redundant, i.e., whether adding the non-existing wire preserves the
circuit’s functionality. Only when the candidate connection is ver-
ified as redundant, the target wire can be replaced by the candidate
connection. For example, consider finding an alternative wire for
wire c->g2 in Fig. 1. Let us first check wire c->g2 s-a-1 test. To
propagate the fault effect and to activate the fault, the value
assignments {a=1, b=1, d=0, e=1, c=0, g1=0, o3=1} must be set.
These assignments are called the mandatory assignments (MAs)
for c->g2 s-a-1 test. If the (non-existing) wire g1->g5 is added to
the circuit, the MA of g1=0 will cause node g5 to have the MA of
0 which blocks the fault propagation and cause the fault undetect-
able. So, wire g1->g5 is identified as a candidate connection.
Finally, the technique checks whether g1->g5 s-a-1 is redundant.
Since it is redundant, wire g1->g5 is an alternative wire for c->g2. 

In the Alwire procedure, if there are k candidate connections, it
requires k times of redundancy checking to find all possible alter-
native wires. In the case of simultaneously replacing l wires which
all have k candidates, the complexity will be O(kl). In a large cir-
cuit, the value k can be very large. Therefore, directly applying the
Alwire technique for multiple wire replacement is very costly.

3   Gate support replacement

In this section, we discuss a transformation which replaces
multiple wires at the same time. The transformation is termed the
alternative node technique (Alnode) in which we attempt to
replace the input wires of a node by a new set of input wires. The
size of a new set can be larger or smaller than the original set. For
example, in Fig. 2, the inputs of node g, (e, f) can be replaced by
the new set of inputs (o, p, q). In this case, after replacement,
nodes e can be removed from the circuit. Sometimes, Alnode may
lead to area reduction or good routing results.

Before we discuss the procedure for Alnode, we would like to
distinguish different types of MAs. We define the observability
MAs of wire w, obvMAs(w) to be MAs assigned only for propagat-
ing a fault from wire w to a Primary Output (PO). For example, in
Fig. 2, to propagate a fault from wire g->i to a PO, the observabil-
ity MAs obvMAs(g->i)={h=0, s=0, l=0, j=1} must be set. Simi-
larly, we can define the observability MAs of node n, obvMAs(n),
so that a fault can be propagated from n to a PO. The process of

finding the MAs of a wire n->m s-a-1 test can be divided into two
steps. First, we set up the observability MAs for wire n->m, obv-
MAs(n->m); then we assign the activating value of 0 at node n and
derive more MAs from MA n=0. We define the MAs derived by
MA n=0 (including n=0) to be the activating derived MAs, act-
DrvMAs(n=0). Therefore, the MAs of n->m s-a-1 test is equal to
obvMAs(n->m)∪actDrvMAs(n=0). For example in Fig. 2, the
MAs for wire g->i s-a-1 test is equal to obvMAs(g->i)∪actDrv-
MAs(g=0) where obvMAs(g->i) = {h=0, s=0, l=0, j=1}. The set
actDrvMAs(g=0) can be determined from the following: Under
the observability conditions of {h=0, s=0, l=0, j=1}, we assign
MA g=0 which can lead to MAs {e=0, f=0}. We then show MA
e=0 can lead to MA q=0 in Fig. 3.

Due to space limitation, we do not show other derivations of MAs.
However, using the similar technique (recursive learning [8]), one
can derive {o=0, p=0, q=0, t=0} from {e=0, f=0}. As a result, we
have actDrvMAs(g=0) = {g=0, e=0, f=0, o=0, p=0, q=0, t=0}.
The MAs in actDrvMAs(g=0) are MAs implied from g=0 under
the conditions of observability MAs. Intuitively, one can consider
that a node in actDrvMAs(g=0) has some “relation” with node g. 

 Now, we present our Alnode algorithm. This algorithm
attempts to replace node n by a new node n’ whose support set is
different from those of node n. Node n’ is called an alternate node
for n. We also assume that none of the input wires of node n and
n’ are redundant. For ease of discussion, let us assume that node n
is a 2-input OR gate with input nodes {u, v} and its alternative
node n’ is a 3-input OR gate with input nodes {x, y, z}. Therefore,
our objective is to select three nodes from existing nodes in a cir-
cuit to replace the old set {u, v}. For the case of AND gates or
other size of inputs, this can be easily derived. In order to replace
node n by a new node n’, the following lemma must be satisfied. 

Lemma 1: Suppose the observability MAs obvMAs(n) are set
first. If node n’ can replace node n, then, 

MA n=0 must imply MA n’=0, and (EQ 1)

MA n=1 must imply MA n’=1 (EQ 2)

Lemma 1 states that, if a Primary Input (PI) vector evaluates a
0 (1) at node n, the vector must also evaluate a 0 (1) at an alterna-
tive node n’ under the condition that the vector can propagate a
fault from n to a PO. Therefore, to check whether node n’ with a
new set of inputs can replace the old node n, we only need to
check whether the above equations EQ 1 and EQ 2 are satisfied.
According to EQ 1, node n’ must have an MA of 0 so the equation
EQ 1 can be re-written to EQ 3 and so does EQ 2 to EQ 4. 

MA n’=0 ∈obvMAs(n) ∪ actDrvMAs(n=0) (EQ 3)
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 Fig. 2  Replace inputs of g  by new set of inputs (o, p, q).
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MA n’=1∈obvMAs(n) ∪ actDrvMAs(n=1) (EQ 4)

Let us define the union sets of MAs in EQ 3 and EQ 4 to be
UMAs_0 and UMAs_1:

UMAs_0=obvMAs(n) ∪ actDrvMAs(n=0) (EQ 5)

UMAs_1=obvMAs(n) ∪ actDrvMAs(n=1) (EQ 6)

Due to the assumption of node n’ being an OR gate, to satisfy
n’=0 in EQ 3, all three inputs (x, y, z) of n’ must also have MAs of
0 in UMAs_0. Therefore, to select (x, y, z), we only need to search
for nodes in UMAs_0. A simple algorithm to find an alternative
node with three inputs is as follows. Suppose (x, y, z) are such
nodes which all have MAs of 0 in UMAs_0. We can then form a
new OR gate n’ by connecting nodes x, y and z as its inputs. Since
nodes (x, y, z) are from UMAs_0, node n’ can satisfy the condition
of EQ 3 (or EQ 1). The subset (x, y, z) is called a candidate size-3
subset for n. For a candidate subset to form an alternative node,
still, the candidate node need to satisfy the condition of EQ 2. 

For example, in Fig. 2, suppose we would like to replace the
input wires of node g. First, we compute UMAs_0 in EQ 5.
Because of obvMAs(g) = obvMAs(g->i) = {h=0, s=0, l=0, j=1}
and actDrvMAs(g=0) ={g=0, e=0, f=0, o=0, p=0, q=0, t=0}, we
have UMAs_0 = {h=0, s=0, l=0, j=1, g=0, e=0, f=0, o=0, p=0,
q=0, t=0}. There are 11 MAs in UMAs_0 so the total number of
size-3 candidate subsets is C11

3 =165. We can now form a new OR
gate g’ with inputs o, p and q shown as the dotted gate in Fig. 2.
Then, for a candidate subset to form an alternative node, we still
need to verify the condition of EQ 2, i.e., to check if g=1 can
imply g’=1. With some computation (described later), one can
find that EQ 2 can in fact be satisfied so node g’ with inputs o, p,
and q is an alternative node of g. 

 Since node g is an OR gate, by EQ 2, it is difficult to imply
other MAs from MA g=1. Instead, we can rewrite EQ 2 to the fol-
lowing equivalent equation: Under the conditions of observability
MAs, 

MA n’=0 must imply MA n=0 (EQ 7)

All three equations EQ 2, EQ 4 and EQ 7 are equivalent. How-
ever, when node n and n’ are OR gates, implications of MA of
n’=0 by EQ 7 can be easier than the implications of n=1 by EQ 2.
For the same example, let us check whether the candidate subset
(o, p, q) can satisfy the condition of EQ 7. By EQ 7, we check
whether g’=0 implies g=0. The derivation is shown in Fig. 4. 

In summary, to find all possible alternative nodes (with support
size of k) for node n, the algorithm first generates all possible can-

didate size-k subsets from UMAs_0. Then, for each candidate
subset, the algorithm checks whether the condition of EQ 7 is sat-
isfied assuming the inputs of node n’ are nodes in the candidate
subset. Since the MA set, UMAs_0 can be large in a large circuit.
the number possible candidate subset can be huge so this algo-
rithm can be very time-consuming. In the following, we discuss a
way to reduce this complexity. Again, assume that nodes n and n’
are OR gates.

Theorem 2: If node n’ is an alternative node of node n, an input of
node n’ must NOT belong to obvMAs(n). 

Let node z be an input of node n’. According to Theorem 2,
node z must not belong to obvMAs(n). Since node z must be
selected from UMAs_0=obvMAs(n) ∪ actDrvMAs(n=0), node z
belongs to nodes in actDrvMAs(n=0). For the same example, to
form a candidate subset, instead of selecting nodes from
UMAS_0={h=0, s=0, l=0, j=1, g=0, e=0, f=0, o=0, p=0, q=0,
t=0}, we only choose nodes from actDrvMAs(g=0) = {g=0, e=0,
f=0, o=0, p=0, q=0, t=0}. 

Again, we assume that the target node n is an OR gate with
inputs {u, v} and wires {u->n, v->n} are not redundant. Let us
consider u->n s-a-1 fault. After computing obvMAs(u->n), we
can obtain actDrvMAs(u=0). Similarly, we can obtain actDrv-
MAs(v=0). So, we have the following theorem. 

Theorem 3: Among the input nodes of n’, there is at least one
input node which has an MA in actDrvMAs(u=0) and similarly
there is at least one input node which has an MA in actDrv-
MAs(v=0). 

From Theorem 3, a candidate subset must contain at least one
node in actDrvMAs(u=0) and at least one in actDrvMAs(v=0).
After applying Theorem 2 and Theorem 3, we can reduce from
165 to 30 candidate subsets. Among 30 candidate subsets, only
{(e, o, p) (f, o, q), (o, p, q)} can pass the verification of EQ 7 so
each of these subsets can form an alternative node. 

4   Gate decomposition Alternative wire.

In the original Alwire technique, the source (destination) node
of an alternative wire can only be selected from an existing node
in a circuit. In this section, we extend the ability of Alwire tech-
nique to consider the gate decomposition. 

The gate decomposition technique contains two different types,
source and destination decomposition. Without going into details,

 g’=0 -->o=p=q=0 

-->c=1------------>b=1,e=0-->f=0-->g=0

-->a=0 ----------->d=1, f=0-->e=0-> g=0        
or

 Fig. 4  MA g’=0 implies MA g=0.

o=0=>
(and q=0)

(and p=0)

 Fig. 5  An example source node decomposition of Alwire.
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we will use an example to describe the source decomposition tech-
nique. The destination decomposition can be easily extended.
Consider the circuit in Fig. 5a which is a modified circuit of Fig.
1a by adding one additional input, g to g1. Without decomposi-
tion, we cannot find any alternative wire for c->g2. However, if
we decompose the big OR gate of g1 into two small OR gates, g6
and g7 in Fig. 5b, we can then pull out the function of (c+d). In
this way, we can find an alternative wire g6->g5 for c->g2 which
is similar to the method in Fig. 1. Consider to replace a wire x->y
where node y is an AND gate. In our algorithm, an AND/OR node
n is considered for decomposition when it satisfies the following
conditions: 1. node n does not have an MA but several of its inputs
have MAs and 2. one of its inputs has an MA in actDrvMAs(x=0).
These conditions allow us to efficiently achieve the Alwire tech-
nique with the source node decomposition.

5    Experimental results.

We have implemented the two transformations mentioned in
Section 3 and Section 4 and performed experiments on a set of
MCNC and ISCAS benchmarks. The circuits are first optimized
by SIS (algebraic) script and then decomposed into AND/OR
gates with maximum of five inputs. (Without this restriction, some
circuits such as f51m have too many alternative nodes.) The first
experiment attempts to find all possible alternative nodes for each
node in a circuit in Table 1. Column one shows the name of the
circuit and Column two shows the number of gates in the circuit.
In the third and fourth column, we show the results in which an
alternative node has at most the same number of inputs as those of
the replaced node. Column three shows the summation of such
alternative nodes in a circuit and Column four shows the cpu run
time. In the fifth and sixth column, we show the results in which
an alternative node has at most the same number of inputs as (the
number of inputs of the replaced node)+1. Column five shows the
total alternative nodes and Column six shows the cpu run time.
The last row in Table 1 shows the average alternative nodes of a
node. In Table 2, we show the results of alternative wires allowing
gate decomposition. Column two shows the total number of wires
in a circuit. The third and fourth columns show the number of

alternative wires and the corresponding run time. The fifth and
sixth columns show the number of alternative wires with decom-
position and the corresponding cpu time. These results show that
with new transformations, we can obtain more flexibility than the
Alwire technique.  Calculations were performed on a Ultra 1.

6   Conclusion

In this paper, we have proposed two new complex transforma-
tions. Our experimental results show that with reasonable run
time, these two transformations can increase flexibility more than
those in the alternative wire technique for wiring consideration.
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TABLE 1. The results of Alnode.

circuit # gates
alnodes 
k inputs

run time 
(sec)

alnodes 
k+1 input cpu (sec)

 apex6 562 3572 112.54 58553 1468.21
 apex7 182 3820 126.18 48756 5770.68

 b9 102 389 33.58 1004 130.27
 C2670 694 4200 19.22 30018 243.44
C432 175 5356 15.69 43694 425.58
 C499 370 64 31.41 1869 287.81

 C6288 2353 1544 11.8 8170 136.7
 C880 302 181 32.75 1029 100.66
 cht 184 251 11.43 1105 29.7

 cmb 29 545 4.9 1011 10.1
 comp 120 49 1.34 163 2.79

 lal 105 14532 199.94 72520 2574.38
 mux 76 36 0.31 90 0.64

my_adder 177 224 0.34 365 0.89
 rot 453 3573 23.29 17133 143.3
 sct 81 6981 303.28 48482 2838.2

total 33 1 7.91 54.95 

TABLE 2. The results of Alwire with decompostion.

circuit # wires # alwires
cpu 
(sec)

# decomp 
alwires 

cpu 
(sec)

apex6 1228 1387 404.38 1511 488.79
apex7 414 1285 62.88 1380 65.93

b9 221 735 23.7 791 23.8
C2670 1570 3897 1557.26 4943 1616.67
C432 387 1071 129.98 1074 131.7
C499 784 64 193.33 64 192.79
C6288 4705 1419 149.75 1419 153.94
C880 648 823 93.19 832 94.65
cht 384 360 25.58 477 27.32
cmb 77 465 15.71 472 15.98

comp 250 886 88.71 886 88.5
lal 258 3633 61.38 3959 64.27

mux 162 995 16.16 999 16.73
my_adder 337 561 8.69 561 9.14

rot 1052 1805 188.94 2072 202.37
sct 207 2084 65.94 2245 69.9

total 33 1 1.76 1.93


