
Abstract

In this paper, we discuss the problem of optimizing a multi-
level logic combinational Boolean network. Our techniques
apply a sequence of local perturbations and modifications of
the network which are guided by the automatic test pattern
generation ATPG based reasoning. In particular, we propose
several new ways in which one or more redundant gates or
wires can be added to a network. We show how to identify
gates which are good candidates for local functionality
change. Furthermore, we discuss the problem of adding and
removing two wires, none of which alone is redundant, but
when jointly added/removed they do not affect functionality of
the network. We also address the problem of efficient redun-
dancy computation which allows to eliminate many unneces-
sary redundancy tests. We have performed experiments on
MCNC benchmarks and compared the results to those of
misII[4] and RAMBO[6]. Experimental results are very
encouraging.

1 Introduction

In this paper, we discuss the problem of multi-level logic
optimization for a combinational network. Previous multi-
level optimization approaches can be categorized into two
classes. The first class locally collapses and optimizes a cir-
cuit using techniques like factorization, decomposition, kernel
extraction, cube extraction, etc. (e.g.: misII[4]). The second
class introduces a perturbation, usually in a form adding
wires, to a network which results in potential removal of some
redundant gates or wires (e.g.: [2],[12], and RAMBO [8]).
Our proposed approach falls into the second class.

Among the second class, RAMBO [6], [8] proposed an effi-
cient automatic test pattern generation(ATPG) based approach
to optimize a network. The idea was that the perturbation-sim-
plification process of network optimization can be viewed as
redundancy addition and removal, which can be efficiently
computed using ATPG techniques [10] [13]. In RAMBO, a
heuristic of adding one redundant wire at a time and removing
redundant wires caused by such a perturbation was proposed.
In [5] we applied the ideas of ATPG guided wire additions
and removals to alleviate FPGA routing.

In this paper we carry further the idea of perturbing-simpli-
fying a circuit applying ATPG techniques. In particular, we
propose several new ways in which one or more redundant
gates or wires can be added to the circuit. We also show how
to identify gates which are good candidates for local function-
ality change. In addition, we discuss the problem of adding
and removing two wires, none of which alone is redundant,

but when jointly added/removed they do not affect the func-
tionality of a network. We also address the problem of effi-
cient redundancy computation which allows us to eliminate
many unnecessary wire redundancy tests.

2 Redundancy identification procedure

In a combinational circuit, a wire is redundant if and only if
the corresponding stuck-at fault is untestable. We review an
approach [13] of identifying redundant wires using the con-
cept mandatory assignments.

The absolute dominators (dominators) [10] of a wire W is a
set of gates G such that all paths from the wire W to any pri-
mary output have to pass through all the gates in G. An input
to a gate has a controlling value if it determines the output of
the gate regardless of the other inputs. The inverse of the con-
trolling value is called a non-controlling value . A gate is in the
transitive fanin (fanout) of a wire, if there is a path from the
gate to the wire (from the wire to the gate).

Consider the absolute dominators of a wire W. The side
inputs of the absolute dominators are their inputs not in the
transitive fanout of the wire W. A test pattern for a stuck-at
fault on wire W must set all the side inputs of the absolute
dominators of W to their non-controlling values.

Mandatory assignments are the unique values which must
be present at certain nodes for a test to exist. For a given
stuck-at fault f, the set of mandatory assignments, denoted as
SMA(f), can be computed using the 9 value implication
approach [10] [13]. If the mandatory assignments implied by a
stuck-at fault on a wire can not be consistently justified, the
stuck-at fault is untestable and therefore the wire is redun-
dant.

3 Redundancy addition and removal

In this section, we discuss how to make a wire redundant by
adding to the network another redundant wire or gate.

3.1 Wire substitution procedure

Suppose the objective is to remove a wire wr form a net-
work. We attempt to add a redundant wire(gate) wa such that
the originally irredundant wire wr becomes redundant. Since
wr is irredundant, the SMA(wr stuck-at fault) is consistent. If
the SMA(wr stuck-at fault) is inconsistent under the change
(adding wa), the stuck-at fault becomes untestable and we can
conclude wr is redundant. In the following, we show the wire
substitution procedure: adding a redundant wire(gate) to make
an irredundant wire redundant.

Perturb and Simplify: Multi-level Boolean Network Optimizer

Shih-Chieh Chang, and Malgorzata Marek-Sadowska

Electrical and Computer Engineering Department,

University of California Santa Barbara, CA 93106

First the SMA of the target wire wr stuck-at fault is calcu-
lated. Then, a set of candidate connections is identified. Each
candidate connection when added to the circuit causes incon-
sistency of the SMA(wr stuck-at fault) and thus makes the
stuck-at fault untestable. However, adding such a candidate
connection may change the circuit’s behavior. Therefore, a
redundancy check is needed to verify whether a candidate
connection is redundant or not. If a candidate connection is
redundant, it can be added to remove the target wire wr.

Consider the circuit in Fig. 1 [8]. Let g1->g4 be the target
wire to be removed. SMA(g1->g4 s-a-1) = {c=1, g1=0, g5=0,
g2=0, f=1}. Note that g5 is outside transitive fanout of g1->g4
and has a mandatory assignment 0. Since g9 is an absolute
dominator of g1->g4, if we connect g5 to g9 (the dotted wire in
Fig. 1), g5 must have a mandatory assignment of 1 for g1->g4
s-a-1 fault. This is inconsistent with the original g5=0, and
therefore, the presence of g5->g9 makes g1->g4 redundant.
We then choose g5->g9 as a candidate connection. Finally, we
check if g5->g9 is redundant by examining the SMA(g5->g9 s-
a-1). The SMA(g5->g9 s-a-1) is inconsistent. Therefore, we
can add the wire g5->g9 and remove the wire g1->g4.

The above example shows that a good candidate connection
can be a wire between a gate with a mandatory assignment (g5
=0) and a dominator (g9). We generalize this observation as
follows.

3.2 Only two among all transformations are necessary

We define a wire wf as a fault propagating wire if there is a
path from the target wire wr under stuck-at fault test to the
wire wf. The patterns of all possible logic transformations that
we consider in this section are: (1) the source gate gs is in
SMA(wr stuck-at fault) but not in the transitive fanout of wr,
(2) the destination gate gd is a dominator of the target wire wr
(for simplicity, only consider when gd is a 2-input AND/OR
gate), and (3) the 2-input gate gd is replaced by a certain 3-
input gate, whose inputs are g1, g2, and gs (the dotted box in
Fig. 5). Since our goal is to remove the target wire wr, we term
a logic transformation adequate if, after the transformation,
SMA(wr stuck-at fault) becomes inconsistent. For example,
consider the Type 1 transformation in Fig. 7. Let g1 be the
fault propagating wire and gs be a wire with mandatory
assignment 0 outside the transitive fanout of wr. Because gd is
a dominator of wr, the added gate gn is also a dominator of wr.
Since gs is a side input to the dominator gn, gs must be
assigned a non-controlling value 1, which causes a conflict
with the original mandatory assignment of 0. Therefore, this
Type 1 transformation is an adequate logic transformation.

We can view all possible logic transformations as replacing
gd by a 3-input gate fed by gs, g1 and g2 (in Fig. 5). We enu-
merated all possible 256 3-input functions, only sixteen of
them are adequate logic transformations, which have the
desired property of making SMA(wr stuck-at fault) become
inconsistent. In Fig. 6,7. we list two of these sixteen 3-input
functions, which we term Type 0 and Type 1 transformations.

In the subsequent discussion, we show that the other fourteen
adequate transformations are unnecessary when Type 0 and
Type 1 transformations are performed. For simplicity, in Fig.
8, we list another possible adequate transformation, which we
term Type 2 transformation, and prove that it is not necessary
to consider it independently. We omit the similar discussion
when gd is an OR gate, or when gs has a mandatory assign-
ment 1, and the cases of the remaining thirteen adequate logic
transformations.

The transformations in Fig. 6-8 guarantee only that an addi-
tion of the new wire (dotted wire there) will cause inconsis-
tency in the SMA(wr stuck-at fault) and therefore make the
target wire wr redundant. Still, it is essential to verify if the
added wire itself is redundant. The following theorem guaran-
tees that if the added wire/gate in the Type 1 transformation
are irredundant, then the added wire/gate in the Type 2 trans-
formation, when applied to the same gs and gd, are also irre-
dundant. Therefore, the Type 2 transformation is unnecessary
when the Type 1 transformation is performed.

Theorem 1. Consider the transformation of Type 1 and
Type 2 in Fig. 6,7 applied to the same gs and gd. If a new wire
added to the network as suggested by the Type 1 transforma-
tion is irredundant, then so is the wire added by the Type 2
transformation.

3.3 Further exclusion of unnecessary redundancy checks

To make a target wire wr redundant, the discussion in the
last section tells us that we only need to consider the Type 0
and Type 1 transformations. In the following, we show that,
depending on the mandatory assignment of the dominator gate
gd, the added wire/gate in either Type 0 or Type 1 transforma-
tions is always irredundant. Therefore we can prune the space
of redundancy checks on these a priori known irredundant
transformations.

Let wr be a wire under stuck-at 0(1) test. A faulty circuit is
the circuit in which wr is replaced by a constant 0(1). As we
noted earlier, a wire is irredundant if the corresponding stuck-
at fault is testable. Therefore, if we can find an input vector
which can differentiate between the faulty and the good net-
works, the corresponding stuck-at fault is testable and the wire
is irredundant. If no such a test vector exists, then the wire
under stuck-at fault test is redundant. We define bg(gi) to be a
binary value at the output of gate gi in the good network, and
bf(gi) be the value at gi in the faulty network, both under the
same excitation vector applied to the primary inputs . For
example, considering g1->g4 s-a-1 in Fig. 1, when a vector
(a,b,c,d,e,f) = (0,0,1,0,0,1) is applied, we have bg(g4)=0,
bf(g4)=1, bg(g8)=0, bf (g8)=1, bg(g9)=0, and bf (g9)=1.

Theorem 2. Let wr be an irredundant wire in the network.
Consider the transformations of Type 0 and Type 1 applied to
the network to make wr stuck-at fault untestable. Let gd be a
dominator of wr. For wr stuck-at fault, if there exists a test
vector vt which causes that bg(gd)=1 and bf (gd)=0, then, the

candidate connection suggested by the Type 0 transformation
is irredundant. When test vector vt causes bg(gd)=0 and
bf (gd)=1, then the candidate connection suggested by the
Type 1 transformation is irredundant.

Corollary 1: Suppose that all test vectors for wr stuck-at
fault cause bg(gd)=0 and bf (gd)=1, then only the Type 0 trans-
formation should be tried. If bg(gd)=1 and bf (gd)=0, then,
only the Type 1 transformation should be tried. If some test
vectors cause bg(gd)=0 and bf (gd)=1 and others cause
bg(gd)=1 and bf (gd)=0, then both Type 0 and Type 1 should
not be attempted.

For example, after performing a s-a-0 test on the wire g2-
>g6 in Fig. 1, we have SMA={g1=0, c=0, ...,}. Since g9 is a
dominator and bg(g9)=1 and bf (g9)=0. Therefore, from the
corollary 1, we conclude that the Type 0 transformation of g1-
>g9, c->g9 are irredundant and need not be tested. Same situ-
ation can be derived for the Type 0 transformation of g1->g7,
c->g7.

The intuition behind theorem 2 is as follows. The test vec-
tors Vt for wr stuck-at fault are the input vectors that can dis-
tinguish between the good circuit and the faulty circuit. If a
wire wa could indeed replace the wire wr, then adding wa
should at least be able to compensate the discrepancies pro-
duced by V t between the good and the faulty networks. The
above theorem says that if a transformation can not correct
discrepancies for one test vector, then it must be irredundant.

4 Multiple-wire addition and gate function substitution

In this section, we extend the idea of adding one wire(gate)
to adding multiple wires (gates). In addition, for the purpose
of removing a wire, we also allow gates to change their func-
tionality.

4.1 Multiple-wire addition

In a Boolean network, there exist wires which when deleted
may trigger a sequence of other reductions. For example,
when g6->g7 dotted in Fig. 2 is removed, the 3-input gate g6
can be also removed. This in turn leaves the gate g7 with a sin-
gle input, therefore a direct connection g3 ->g8 is possible and
g7 can be deleted. If deleting a wire can result in the removal
of more than 2 wires or gates from the network, we refer to
such a wire as a large_redunction wire. When optimizing a
circuit, we give higher priority to removing large_redunction
wires. In case that adding one redundant wire(gate) can not
remove a large_redunction wire, we may add more than one
wires (gates) to delete the wire in question. For example, in
Fig. 2, we add a 2-input gate gm and a wire gm->g9 to remove
the large_redunction wire g6->g7. However, arbitrarily adding
many wires as in [5] to remove a large_redunction wire is
computationally expensive. We have developed an efficient
approach that limits the search space and that still has much
more power in comparison to the one-wire addition.

Our basic philosophy of adding multiple wires is to cause
an originally irredundant candidate connection to become

redundant. Suppose we wish to remove a large_reduction
wire, and all the one-wire candidate connections are irredun-
dant. Then, we consider a possibility of adding multiple wires.
The procedure is as follows. We compute and store the
SMA(wr stuck-at fault). Then, we pick a candidate connection
(gs1, gd, type) and compute the SMA(candidate wire stuck-at
fault). After that, we look for another gate, call it gs2, such that
it is in both the SMA(wr stuck-at fault) and the SMA(gs1->gd
candidate wire stuck-at fault) but has different mandatory
assignments. In the example of Fig. 2, the gate d appears with
the assignment 0 in the SMA(g6->g7 s-a-1) and with assign-
ment 1 in the SMA(g5->g9 s-a-1) so the gate d is our gs2.
Finally, after finding the gate gs2, we add a gate gm, and a wire
gm->gd where gd is the dominator of the candidate connection,
using the following rule. The gate gm is an OR(AND) gate, if
the gate gd is an AND(OR) gate. The inputs to gm are gs1 and
gs2. If gs1 =1(0) in SMA(wr stuck-at fault) and gm is an
OR(AND) gate, we invert the input of gs1 to gm. The same
rule is applied to gs2. In our example, gm is an OR gate and gs1
= g5 and gs2 =d. Both d=0 and g5=0 in the SMA(g6->g7 s-a-1)
so we do not invert the input phase for d and g5 to gm.

Theorem 3. If in the above procedure, a gate gs2 can be
found then the network modification is valid, i.e. wr can be
deleted and the functionality of the network does not change.

4.2 Changing the gate’s functionality

In this section, we discuss how to change a gate’s function
to remove a particular wire. For example, we can change the
gate g5 (highlighted in Fig. 3) from an AND to an XNOR
without changing the circuit functionality. After changing g5
to an XNOR gate, the wire g6->g7 becomes redundant. Two
issues need to be addressed, namely, how to check if a given
gate can change its functionality, and which gate should be
changed to make a target wire redundant.

Consider an AND gate gx(gi1, gi2) with two inputs gi1 and
gi2. If the output of gx is a don’t care when (gi1, gi2)=(0, 0),
the function of gx(gi1, gi2) can change from AND to XNOR.
We first show a procedure to verify whether (v1, v2,...,vn) is a
don’t care minterm for a gate gx(gi1, gi2,..., gin). The proce-
dure is based on checking consistency of a certain SMA.

The procedure to verify whether a minterm (v1, v2,...,vn) is a
don’t care to gx(gi1, gi2,..., gin) first sets gi1=v1, gi2=v2,....,
gin=vn and includes this assignment in a SMA. Then, we treat
the output of gx as stuck-at the value produced by that min-
term and compute the appropriate SMA. In the following the-
orem, we show that if the SMA(f) is inconsistent, the minterm
is a don’t care.

Theorem 4. Consider the SMA induced by setting the
gate’s inputs to a minterm in question and treating the gate’s
output as stuck-at the value produced by the minterm. If this
SMA cannot be consistently justified, then the minterm (gi1,
gi2,..., gin) is a don’t care of the gx(gi1, gi2,..., gin) embedded in
the network.

Theorem 4 suggests how to verify quickly if a gate can
switch its functionality without affecting the network’s behav-
ior.

The SMA computed to justify particular conditions in the
network depend on gates’ functionality. We may change some
gates’ functionality to achieve SMA’s inconsistency, and
therefore achieve redundancy. In Fig. 3, the SMA(g6 ->g7 s-a-
1)={g1=0, g2=0, g5=0, ...}. Changing g5 from an AND to an
XNOR causes that g5=1. But on the other hand g5 =0 as a side
input of a dominator. Therefore, we conclude that if g5 is
changed to an XNOR gate, then SMA(g6 ->g7 s-a-1) is incon-
sistent and g6 ->g7 is redundant.

5 Simultaneous addition and removal of two wires (gates)

We say that two wires (wa,wb) are simultaneously redun-
dant if each wire is irredundant but simultaneously adding/
removing wa and adding/removing wb does not change the cir-
cuit’s functionality.

Intuitively, the existence of two simultaneously redundant
wires is not obvious. It can be explained as follows. Let Vt(wr
stuck-at fault) denote all the input vectors that can test the wr
stuck-at fault. That is any vector in Vt(wr stuck-at fault) can
distinguish the original (good) circuit from the faulty one.
Consider another wire wa. If both sets, Vt(wr stuck-at fault)
and Vt(wa stuck-at fault) are the same, and the faults propagate
through the same XOR(XNOR) gate, they cancel out at the
output of XOR(XNOR) gate.

The scenario in which the two simultaneously redundant
wires transform is used, is best explained using example in
Fig. 4. Applying the transformation of two simultaneously
redundant wires, we can replace the wire g6 ->g7 by another
wire g5 ->g7. As a result the 2-input gate g6 can be removed.
The following shows a stuck-at fault test that can verify if two
wires are simultaneously redundant.

Theorem 5. Let gr be a fanin of XOR(XNOR) gate gx and
let ga be another gate. If (ga, gr) =(0,1) and (ga, gr) =(1,0) are
don’t cares in the network, we can replace gr ->gx by ga->gx.

Note that when a dominator gd is an XOR(XNOR) gate, the
network transformations in Fig. 6-8 are no longer valid and
can not be used to remove a particular wire. It is because some
test vectors cause gd to have bg/bf = 1/0, and others cause gd to
have bg/bf =0/1. According to the Corollary 1, none of the
transformations should be applied. Therefore, the redundancy
addition and removal technique can not be applied when a
dominator is an XOR(XNOR) gate.

6 The algorithm

We have implemented the transformations described in the
previous sections. The overall algorithm is shown in Fig 9.
The subroutine Add_one_gate_to_remove_other_wires(),
which besides adding a wire also adds gates, is an extended
algorithm of RAMBO [6]. For each gate gd in the circuit, we

try to apply the transformations in Fig. 6,7 to remove wires
that are dominated by gd. The second subroutine,
Remove_large_reduction_wires() , identifies the
large_reduction wires and attempts to remove them using
more expensive techniques like adding multiple gates and
changing gate’s functionality. Finally, the last subroutine,
Perturb_circuit_more(), perturbs the circuit to jump out of a
locally minimal solution before the next iteration. In
Perturb_circuit_more(), for each wire wi in the circuit, we
attempt to replace it with another wire or gate.

7 Experimental results

In this section, we present experimental results for combi-
national benchmark circuits. We implemented the algorithm
in Fig. 9 and we choose k_iteration to be 2. In our experi-
ments, the optimization objective is to reduce the number of
two-input gates. We compare our results with misII [4] and
RAMBO[6]. Note that when our operation involves adding a
wire to an AND (OR) gate, we actually added an extra
AND(OR) gate to the circuit.

TABLE 1 shows the results for some of the MCNC combi-
national benchmark circuits. misII results were obtained as
follows. We use script.boolean provided by misII (for consis-
tency, we don’t use script.rugged because some examples can
not be run due to space/time limitation). Then, we map (using
the map command in misII) the circuit into a circuit with gen-
eral 2-input gates shown in second column of TABLE 1.. The
initial circuits of ours and RAMBO are obtained by running
script.algebra and then mapping into 2-input gates. We run
both RAMBO and our algorithm to optimize the circuit. Since
the output of RAMBO may contain gates with more than 2
inputs, we also decompose the result of RAMBO into 2-input
gates. In the fourth, fifth, and sixth columns, we show the
results of running misII, RAMBO, and our algorithm, respec-
tively. All these three columns are described in terms of the
number of 2-input gates and the number of literals. As shown
in the table, the results we obtained are, on the average for the
listing examples, 19% better than misII and 16% better than
RAMBO in terms of number of 2-input gates. Except the
superior results of our algorithm, our memory requirement is
very inexpensive. For example, C7552 needs only 6 Mbytes.
All our results have been verified using the circuit verification
command in misII. The experiment was performed on DEC
5000. Note that the RAMBO’s results are 4% better than
results shown if RAMBO’s input circuits are script.boolean
optimized first.
8 Conclusions

In this paper, we have proposed several new ways to add
one or more redundant gates or wires to remove other gates or
wires from the network. We show how to identify gates which
are good candidates for local functionality change to achieve
network’s reduction. Our experimental results have demon-
strated usefulness of our approach.

TABLE 1. Experimental results.

9 References

[1] K.A. Bartlett et al, “Multilevel Logic Minimizing Using Implicit Don’t
cares,” IEEE Trans. on CAD-7(6), pp. 723-740(June 1988).

[2] C. L. Berman and L. H. Trevillyan. “Global Flow Optimization in Auto-
matic Logic Design,” IEEE Trans. CAD 10, pp. 557-564(May 1991).

[3] D. Bostick et al, “The Boulder Optimal Logic Design System,” Proc.
ICCAD , pp. 62-65, 1987.

[4] R.K. Brayton, R. Rudell, A. Sangiovanni-Vincentelli, and A.R. Wang,
“MIS: Multi-level Interactive Logic Optimization System,” IEEE Trans.
on CAD, CAD-6(6), pp. 1062-1081(Nov. 1989).

[5] Shih-Chieh Chang and Malgorzata Marek-Sadowska, “Layout Driven
Logic Synthesis for FPGA,” Proc. Design Automation Conference. pp

[6] K.T. Cheng and L.A. Entrena, “Multi-Level Logic Optimization by
Redundancy Addition and Removal,” in Proc. European Conference On
Design Automation, pp. 373-377, Feb. 1993.

[7] M.Damiani, J.C.Y.Yang and G.De Micheli, “Optimization of Combina-
tional Logic Circuits Based on Compatible Gates”, Proc. DAC’93,
pp.631-636, June 1993.

[8] L.A. Entrena and K. T. Cheng, “Sequential Logic Optimization By
Redundancy Addition and Removal”, Proc. International Conference on
Computer Aided Design, Nov. 1993.

[9] E. Detjens, G. Gannot, R. Rudell, A. L. Sangiovanni-Vincentelli and A.
Wang, “Technology Mapping in MIS,” Proc. ICCAD, pp. 116-119,
1987.

[10] T.Kirkand and M.R. Mercer, “A Topological Search Algorithm For
ATPG,” Proc. 24th Design Automation Conf., pp. 502-508, June 1987.

[11] C.E.Leiserson, F.M.Rose, and J.B.Saxe, “Optimizing synchronous cir-
cuit by retiming”, in Proc. Third Caltech Conf. on VLSI, 1983.

[12] S. Muroga et al, “The Transduction Method-Design of Logic Networks
Based on Permissible Functions,” IEEEE Transaction. on Computer
C38(10). pp. 1404-1423 (Oct. 1989).

[13] M.Schulz and E.Auth, “Advanced Automatic Test Pattern Generation
and Redundancy Identification Techniques,” Proc. Fault Tolerant Com-
puting Symposium, pp. 30-34 June 1988.

Circuit
misII
gates/literals

RAMBO
gate/literals

Pert/Sim
gates/literals

CPU of Pert/
Sim (sec)

5xp1 117(231) 111(221) 66(131) 34.5

9sym-hdl 96(192) 100(200) 39(78) 19.7

C3540 1073(2145) 988(1976) 938(1876) 5692.8

C5315 1452(2871) 1458(2883) 1321(2631) 2236.7

C6288 2619(5237) 2334(4666) 1883(3766) 2124.8

C7552 1757(3513) 1761(3521) 1426(2851) 3668.6

alu2 383(765) 366(731) 281(562) 1127.4

alu4 687(1373) 700(1399) 555(1110) 4171.5

apex6 632(1260) 647(1291) 543(1086) 568.9

b9_n2 102(200) 96(188) 79(156) 17.4

cm85a 40(80) 40(80) 27(54) 5.1

comp 137(273) 119(273) 84(168) 51.9

des 3048(6095) 3073(6145) 2859(5718) 31507.6

duke2 366(727) 314(626) 246(491) 648.5

f51m 120(239) 116(231) 78(155) 4.7

misex3 434(868) 468(936) 317(634) 978.8

my_adder 160(320) 160(320) 116(232) 29.1

pcler8 80(151) 80(151) 64(128) 29.7

rd53-hdl 36(72) 35(70) 20(40) 2.0

rot 575(1135) 569(1131) 452(902) 256

sao2-hdl 195(390) 199(398) 104(208) 119.6

term1 203(403) 203(404) 113(225) 56.2

ttt2 184(365) 174(247) 118(236) 57.8

x3 629(1253) 617(1231) 552(1104) 472.0

z4ml 37(74) 30(60) 21(42) 1.7

total 15162

(30232)

14758

(29379)

12302

(24584)

53883.0

g9

c
b
d

e
c

d
a
b
f

g1

g2

g3

g4

g5

g6 g7
g8

o2

o1

(3)

f

d
gm

g9

c

b
d

e
c

d
a
b
f

g1

g2

g3

g4

g5

g6 g7 g8 o2

(2)

f

g5

g9

c

b
d

c
b

d
a
e
f

g1

g2

g3

g6
g8 o2

(4)

g5

g4

o1

g7

Type 0
gs

Type 1

gd

Type 2
gs=0

gd

g1g2

g1

g2

new gate

Let gs has mandatory assignment 0 , gd is a dominator (AND gate) and

gn

original circuit

gdg1g2

gs=0

g1 is a fault propagating wire.

gd

g1

g2

new gate
gn

gs=0

(5) (6)

(7) (8)

g9

c

b
d

e
c
d
a
b
f

g1

g2

g3

g4

g5

g6 g7 g8 o2

o1

(1)

1

0

00

0 0/1
0/1

1

bg/bf=0/1

perturb_simplify(k_iteration, network)
int k_iteration;
network_t *network;
{

Add_one_gate_to_remove_other_wires();
Remove_large_reduction_wires();

For (i =0; i< k_iteration; i++) {

Perturb_circuit_more(); }

}
(9)

Add_one_gate_to_remove_other_wires();

