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Rationale and Objectives. Breast cancer has become the leading cause of cancer deaths among women in developed
countries. To decrease the related mortality, disease must be treated as early as possible, but it is hard to detect and diag-
nose tumors at an early stage. A well-designed computer-aided diagnostic system can help physicians avoid misdiagnosis
and avoid unnecessary biopsy without missing cancers. In this study, the authors tested one such system to determine its
effectiveness.

Materials and Methods. Many computer-aided diagnostic systems for ultrasonography are based on the neural network
model and classify breast tumors according to texture features. The authors tested a refinement of this model, an advanced
support vector machine (SVM), in 250 cases of pathologically proved breast tumors (140 benign and 110 malignant), and
compared its performance with that of a multilayer propagation neural network.

Results. The accuracy of the SVM for classifying malignancies was 85.6% (214 of 250); the sensitivity, 95.45% (105 of
110); the specificity, 77.86% (109 of 140); the positive predictive value, 77.21% (105 of 136); and the negative predictive
value, 95.61% (109 of 114).

Conclusion. The SVM proved helpful in the imaging diagnosis of breast cancer. The classification ability of the SVM is
nearly equal to that of the neural network model, and the SVM has a much shorter training time (1 vs 189 seconds).
Given the increasing size and complexity of data sets, the SVM is therefore preferable for computer-aided diagnosis.
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Recent statistics show that breast cancer affects one of
every 10 women in Europe and one of every eight in the
United States (1). Early diagnosis and early treatment are
the best ways to reduce deaths due to breast cancer. Early
diagnosis requires an accurate and reliable diagnostic pro-
cedure that allows physicians to distinguish benign from

malignant breast tumors, and finding such a procedure is
an important goal. Current procedures for early detection
and diagnosis of breast cancer include self-examination,
mammography (2–4), and ultrasonography (US) (5). Pre-
viously, the recommended role of US was limited to dif-
ferentiating between cysts and solid masses, evaluating
masses in a dense breast, and guiding interventional pro-
cedures. Important technical advances have been made
recently in diagnostic US with the introduction of higher-
frequency linear transducers. The increased computing
power of US platforms has enabled the production of
fully digital systems with improved resolution and image
contrast, and this digitization in turn greatly helps in im-
age processing. Hence, the role of breast US has ex-
panded beyond the distinction between cystic and solid
lesions. US is a convenient and safe diagnostic method,
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but there is overlap between benignancy and malignancy
in US appearances, and interpretation is subjective. In
1995, Stavros et al (6) showed that the sensitivity of
breast US for malignancy was 98.4%; the specificity,
67.8%; and the overall accuracy, 72.9%. These results
were achieved by experienced radiologists.

The support vector machine (SVM) (7–9) has become
an effective tool for pattern recognition, machine learning,
and data mining, because of its high generalization per-
formance. Given a set of points that all belong to one of
two classes, an SVM can find the hyperplane that leaves
the largest possible fraction of points of the same class on
the same side, while maximizing the distance of either
class from the hyperplane. This optimal separating hyper-
plane can minimize the risk of misclassifying examples of
the test set.

Neural networks (10) also have been successful in
many applications, especially for clustering (11) and pat-
tern recognition (12). Recent research, however, has sug-
gested that the SVM is superior to the neural network
(13–15). To verify this, and to test our method, we used a
multilayer propagation (MLP) neural network model, as
well as an SVM, to classify tumors in our experiments.

We evaluated breast masses in a series of pathologi-
cally proved tumors by using autocovariance texture pa-
rameters and the SVM to classify the tumors in regions of
interest (ROIs) of US images selected by the physician.
In this article, we describe how we acquired the experi-
mental image data and extracted features used to classify
tumors. We also present our method for using the SVM
to distinguish benign from malignant breast tumors, com-
pare it with a diagnostic method based on an MLP neural
network model, and present and discuss our results.

IMAGE DATA ACQUISITION

Our US image database includes 250 US images of
pathologically proved benign breast tumors from 140 pa-
tients, and carcinomas from 110 patients; the diagnoses
were proved by means of fine-needle cytology, core-nee-
dle biopsy, or open biopsy. All US images were obtained
by a surgeon (D.R.C.), who also selected the ROIs. Data
were consecutively collected from August 1, 1999, to
May 31, 2000, and patients’ ages ranged from 18 to 64
years. Only one image from each patient was included in
the database.

The US images were obtained by using an ATL HDI
3000 system (Philips Medical Systems, Bothell, Wash)
with an L10-5 small-parts transducer, a linear-array trans-
ducer with a frequency of 5–10 MHz and a scan width of
38 mm. Dynamic range and mapping were set at 55 deci-
bels and at 6 decibels, respectively. During image acquisi-
tion, patients were supine with arms extended overhead.
No acoustic standoff pad was used.

The monochrome US images were quantized into 8
bits (ie, 256 gray levels) and their features were stored on
magneto-optical disks. These images could be read and
analyzed on a personal computer and served as our exper-
imental data. W.K.M. supplied the database. The subim-
age of the ROI was manually selected by D.R.C. (who
was unfamiliar with the tissue diagnosis and cell-type
ROI selections), using the ProImage package (Prolab, Tai-
pei, Taiwan). The ROI subimage was then saved as a file
for later analysis. Figure 1 is an example of a real-time
digitized monochromatic US image of a benign tumor.
ROI subimages were used in our database of breast im-

Figure 1. A 640 � 480 digital image ob-
tained by using a US scanner. In a rectangle
1 � 1 cm, there are 100 � 100 � 10,000 pix-
els. The ROI rectangle is 1.33 � 0.93 cm and
133 � 93 pixels.
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ages to investigate the texture characteristics of benign
and malignant tumors.

FEATURE EXTRACTION

Many texture features have been proposed for texture
analysis, and they can be classified in three main groups:
models (16,17), mathematical morphology (18), and sta-
tistical methods (19). In this section, we briefly introduce
autocorrelation and autocovariance coefficients. Autocor-
relation coefficients are derived from statistical analysis.
The advantage of these texture features is that they reflect
the correlation among pixels within an image. Following
the example of Gonzalez and Woods (20), we define the
normalized autocorrelation coefficient �(�m, �n) between
pixel (i, j) and pixel (i � �m, j � �n) in an image with
size M � N as follows:

���m, �n� �
A��m, �n�

A�0,0�
, (1)

where

A��m, �n� �
1

�M � �m��N � �n�

� �
x�0

M�1��m �
y�0

N�1��n

f�x, y�f�x � �m, y � �n�. (2)

The autocorrelation method has a disadvantage, how-
ever. It is usually affected by brightness. If two images
have similar textures but different brightness, their auto-
correlation coefficients may be different. Thus, we replace
autocorrelation coefficients with autocovariance coeffi-
cients as our image features. The autocovariance method
is defined as follows:

A��m, �n� �
1

�M � �m��N � �n�

� �
x�0

M�1��m �
y�0

N�1��n

�f�x, y� � f� 	�f�x � �m, y � �n� � f� 	, (3)

where f is the mean value of f(x, y).
We used this method to characterize the texture fea-

tures of each US image, representing each image initially
by a 5 � 5 autocovariance matrix (ie, 25 autocovariance
coefficients; both �m and �n � 5). We decided to dis-
card the �(0,0) coefficient, however, because the value of
�(0,0) is always 1 for the normalized autocovariance ma-
trix. We combined the other 24 autocovariance coeffi-
cients to form a 24-dimensional image features vector.

In Table 1, we list the means and standard deviations
of the autocovariance coefficients for benign and malig-
nant tumors and the mean differences between the two
groups. These mean differences are substantial, which
indicates that the autocovariance coefficients are useful
for distinguishing benign from malignant tumors. More-
over, Figure 2 shows that as �m and �n increase, so does
the mean difference.

CLASSIFYING TUMORS BY USING THE SVM
AND THE MLP NEURAL NETWORK

In this section, we introduce SVMs. While we used an
SVM to distinguish benign from malignant tumors, we
also compared it with an MLP neural network model to

Table 1
Mean Autocovariance Coefficients for Benign and
Malignant Cases

Autocovariance
Coefficient

Benign
Cases*

Malignant
Cases*

Mean
Difference

A(1,0) 0.967 
 0.011 0.972 
 0.007 0.005
A(2,0) 0.902 
 0.029 0.917 
 0.019 0.015
A(3,0) 0.834 
 0.049 0.858 
 0.032 0.024
A(4,0) 0.778 
 0.064 0.809 
 0.042 0.031
A(0,1) 0.893 
 0.027 0.926 
 0.015 0.033
A(1,1) 0.870 
 0.032 0.907 
 0.018 0.036
A(2,1) 0.823 
 0.043 0.866 
 0.026 0.043
A(3,1) 0.771 
 0.056 0.821 
 0.035 0.050
A(4,1) 0.728 
 0.067 0.783 
 0.043 0.055
A(0,2) 0.734 
 0.060 0.812 
 0.035 0.078
A(1,2) 0.723 
 0.061 0.803 
 0.036 0.080
A(2,2) 0.700 
 0.066 0.783 
 0.039 0.082
A(3,2) 0.674 
 0.071 0.759 
 0.043 0.085
A(4,2) 0.649 
 0.077 0.737 
 0.047 0.088
A(0,3) 0.617 
 0.082 0.737 
 0.048 0.120
A(1,3) 0.611 
 0.082 0.732 
 0.048 0.120
A(2,3) 0.600 
 0.084 0.722 
 0.049 0.122
A(3,3) 0.586 
 0.086 0.709 
 0.051 0.123
A(4,3) 0.571 
 0.089 0.695 
 0.053 0.124
A(0,4) 0.534 
 0.095 0.690 
 0.058 0.156
A(1,4) 0.529 
 0.095 0.686 
 0.057 0.157
A(2,4) 0.521 
 0.095 0.678 
 0.058 0.157
A(3,4) 0.511 
 0.096 0.669 
 0.058 0.158
A(4,4) 0.499 
 0.098 0.658 
 0.059 0.158

*Numbers are means 
 standard deviations.
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prove the SVM’s superior classification ability. MLP neu-
ral networks are discussed below.

SVM Classification
SVMs have been recently proposed as effective for

many applications, because of their high generalization
performance. Here we will first introduce the simple case
of a linearly separable set and then describe the concept
of SVMs and expand it to the more general, nonseparable
case. Finally, we will introduce the general case of non-
linear separating surfaces.

Optimal separating hyperplane.—If we have a training
example set S � {(xi,yi)1�i�N}, and each example xi � Rn

belongs to a class labeled by yi � {�1,1}, our object is
to find a hyperplane that divides S, leaving all the points
with the same label on the same side of the hyperplane.
Meanwhile, we also maximize the distance between the
two classes and the hyperplane. This means we must find
a pair (w, b) such that

yi�w � xi � b� � 0, i � 1, . . . , N, (4)

where w � Rn and b � R. According to the pair (w, b),
we can achieve an equation of a separating hyperplane
(Fig 3),

w � x � b � 0. (5)

We can say that the set S is linearly separable if there
is at least one hyperplane satisfying Equation (4). Mean-
while, we can rescale w and b so that

yi�w � xi � b� � 1, i � 1, . . . , N. (6)

The minimal distance between the closest point and the
hyperplane is 1/�w�, and the margin is 2/�w�. The margin
is a measure of generalizability. The larger the margin,
the better the generalization.

Among the separating hyperplanes, there must be one
from which the distance to the closest point is maximal—
the optimal separating hyperplane (OSH)—and which will
maximize the margin. The goal of the SVM is to find the
OSH of the set S. For the OSH to be found, �w�2 must be
minimized under constraint Equation (6).

According to the property that �w�2 is convex (7–9),
we can minimize it under constraint Equation (6) by
means of the classic method of Lagrange multipliers.
Hence, if � � (�1, �2, . . . , �N) is the N nonnegative La-

grange multipliers associated with constraint Equation (6),
the problem of finding the OSH is equivalent to the maxi-
mization of the function

W��� � �
i�1

N

�i �
1

2 �
i, j�1

N

�i�jyiyjxi � xj, (7)

where �i � 0 and under constraint

�
i�1

N

yi�i � 0.

If we denote the vector � � (�1, �2, . . . , �N) as the
solution of Equation (7), then the OSH (w, b) has the
following expansion:

w � �
i�1

N

�� iyixi, (8)

while b can be determined from � and from the Kühn-
Tucker conditions (21), as follows:

Figure 2. Mean differences between autocovariance coefficients
for benign and malignant cases.

Figure 3. Separating hyperplane (dashed
lines identify the margin).
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�� i�yi�w � xi � b�� � 1	 � 0, i � 1, 2, . . . , N. (9)

If the training examples (xi, yi) correspond with nonzero
coefficients �i, then we call them support vectors. Finally,
the decision function of classifying a new data point x
can be written as follows:

f�x� � sgn��
i�1

N

�� iyixi � x � b��. (10)

Linearly nonseparable case.—In the preceding section,
we supposed that the set S was linearly separable and we
introduced the concept of the SVM. Now, we expand set
S to the linearly nonseparable set S�. Since the set S� is
linearly nonseparable, we must introduce N nonnegative
variables 	 � (	1, 	2, . . . , 	N), such that

yi�w � xi � b� � 1 � 	i, i � 1, 2, . . . , N. (11)

We call these slack variables. Their purpose is to allow
misclassified points corresponding with 	i � 1. Hence,
the generalized OSH is the solution of the following min-
imizing problem,

1

2
w � w � C �

i�1

N

	i, (12)

where C is a regularization parameter. If the parameter C
is small, the OSH tends to maximize the distance 1/�w�,
while a larger C will cause the OSH to minimize the
number of misclassified points.

Nonlinear SVMs.—Most training sets that we want to
classify are linearly nonseparable. We may be able to
solve these problems by introducing slack variables. Even
if we do, however, the classification results will not be
optimal. Instead of using slack variables, we can transfer
data from the original low-dimensional feature space into
a high-dimensional one. Through this transformation, the
OSH can be constructed more easily, and we can achieve
a classifier with better generalization.

Let 
(x) denote a mapping function that maps x into a
high-dimensional feature space. We can then rewrite
Equation (7) as follows:

W��� � �
i�1

N

�i �
1

2 �
i,j�1

N

�i�jyiyj
�xi� � 
�xj�. (13)

Now, let K(xi, xj) � 
(xi) � 
(xj). Equation (13) can then
be rewritten as

W��� � �
i�1

N

�i �
1

2 �
i,j�1

N

�i�jyiyjK�xi, xj�, (14)

where K is called a kernel function and must satisfy the
Mercer theorem. Finally, we can achieve a new decision
function, as follows:

f�x� � sgn��
i�1

N

�iyiK�xi, x� � b�. (15)

Several common kernel functions are used to map data
into high-dimensional feature space:

Linear kernel:

K�x, z� � x � z. (16)

Polynomial kernel:

K�x, z� � �� � x � z � coef�d, (17)

where � and coef � constants and d � a degree.
Gaussian radial basis kernel:

K�x, z� � exp��� � �x � z�2�, (18)

where � is a constant.
Sigmoidal neural network kernel:

K�x, z� � tanh�� � x � z � coef�, (19)

where � and coef are constants.
In this study, we mainly used a nonlinear SVM with a

Gaussian radial basis kernel as our classifier. Autocovari-
ance textures are used as inputs to find an OSH for distin-
guishing benign tumors from malignant ones.

MLP Neural Network
Neural networks also have been used successfully in

many applications. They consist of many simple comput-
ing units, called neurons or processing units, and massive
interconnections between these units. Through these neu-
rons and interconnections, neural networks can store ex-
periential knowledge and make it available for use (22).
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In the Appendix, we briefly introduce the basic compo-
nents of a neural network and describe the architecture
and learning algorithm of an MLP neural network.

In this study, we used an MLP neural network with 25
input nodes, 10 hidden nodes, and a single output node to
classify tumors. The autocovariance textures (24 dimen-
sions) and a predefined terminal error threshold (
) of
input layer are used as the input data of the MLP neural
network. The experimental results obtained with the MLP
neural network were used as a reference and compared
with those obtained with the SVM.

SIMULATIONS AND RESULTS

Our experiments were conducted with a database of
250 pathologically proved cases (140 benign and 110 ma-
lignant breast tumors). These sonographic images were
randomly divided into five groups. We set the first group
as a testing group and used the remaining four groups to
train the SVM. After training, the SVM was then tested
on the first group. We then set the second group as a test-
ing group. This process was repeated until each of the
five groups was set as a testing group.

We used a nonlinear SVM with a Gaussian radial basis
kernel as our classifier, where C � 975 and � � 0.061.
To compare the performance of our proposed method, we
used an MLP neural network classifier. We set its learn-
ing rate � at 0.02, the threshold 
 at 0.000001, and the
maximal number of iterations at 20,000. The simulations
were performed by using an Intel Pentium-VI 2-GHz per-
sonal computer (ASUS, Taipei, Taiwan) with a single
central processing unit and a Microsoft Windows XP op-
erating system. Table 2 lists the classification results.

To estimate performance, we used five objective in-
dexes: accuracy, sensitivity, specificity, positive predictive

value, and negative predictive value. The accuracy of
SVM for classifying malignancies was 85.6% (214 of
250); the sensitivity, 95.45% (105 of 110); the specificity,
77.86% (109 of 140); the positive predictive value,
77.21% (105 of 136); and the negative predictive value,
95.61% (109 of 114). Table 3 compares the performance
of the SVM with that of the MLP neural network. Figure
4 illustrates the receiver operating characteristic (ROC)
curves for the SVM and the MLP neural network in the
classification of malignant and benign tumors. The Az

value for the ROC curve is 0.9396 
 0.0145 (standard
deviation) for the SVM and 0.9395 
 0.0141 for the
MLP neural network. The P value of the difference be-
tween the areas Az under the two ROC curves (z test) is
.9942. As Table 3 and Figure 4 demonstrate, the classifi-
cation ability of the SVM is equal to that of the MLP
neural network.

To prove that the autocovariance coefficient method of
analysis works for other texture features, as well as for
global regions, we divided the experimental data into dark
and bright images and then compared the classification
results (Table 4). The results for dark and bright images
were almost the same. Hence, the autocovariance coeffi-
cient method is not affected by brightness. Finally, we
also compared the training time for the SVM and the
MLP neural network and found that the SVM was much
less time consuming, with a training time of only 1 sec-
ond compared with 189 seconds for the MLP neural net-
work.

CONCLUSION

With the rapid development of US technologies in re-
cent years, many different US systems are currently used

Table 2
Classification of Breast Tumors with the SVM
and the MLP Neural Network

Sonographic
Classification

SVM MLP

Benign Malignant Benign Malignant

Benign 109 TN 5 FN 108 TN 6 FN
Malignant 31 FP 105 TP 32 FP 104 TP

Total 140 110 140 110

Note.—“Benign” and “Malignant” in the column headings indi-
cate histologic findings. TN � true-negative, FN � false-negative,
FP � false-positive, TP � true-positive.

Table 3
Summary of Performance for the SVM and the MLP
Neural Network

Index SVM MLP

Accuracy (%) 85.60 84.80
Sensitivity (%) 95.45 94.55
Specificity (%) 77.86 77.14
Positive predictive value (%) 77.21 76.47
Negative predictive value (%) 95.61 94.74

Note.—Accuracy � (TP � TN)/(TP � TN � FP � FN), sensitiv-
ity � TP/(TP � FN), specificity � TN/(TN � FP), positive predic-
tive value � TP/(TP � FP), and negative predictive value � TN/
(TN � FN). TP � true-positive, TN � true-negative, FP � false-
positive, and FN � false-negative.
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in diagnosis. Improved diagnostic imaging techniques, in
turn, have enabled less-invasive treatment of detected
breast lesions. We propose a diagnostic system that uses
an SVM in place of the commonly used neural network
to differentiate between benign and malignant tumors.

Texture features are helpful for classifying benign and
malignant tumors on sonograms. The potential of sono-
graphic texture analysis to improve breast tumor diagnosis
has already been demonstrated (23,24). There are three
main types of texture analysis: models, mathematical
morphology, and statistical methods. Autocovariance tex-
ture is a kind of statistical method. In the proposed diag-
nostic system, autocovariance texture features are used to
classify tumors with an SVM model. To demonstrate the

performance of the SVM, we compared its classification
ability with that of an MLP neural network model. From
our results, we conclude that the SVM performs as well
as the MLP neural network. As for training time, the
SVM needs only one iteration in training data while the
MLP neural network needs many; the SVM is up to 189
times faster. Given the increasing size and complexity of
data sets, SVM is more suited to computer-aided diagno-
sis than MLP neural networks.

APPENDIX

The neuron is the basic computing unit of a neural
network. A model of a neural network is shown in Figure
A1. It consists of four basic elements: (a) a set of
weights: each input signal xi is multiplied by weight wi,
and p is the number of input signals; (b) the adder, an
operation used for summing the weighted signals; (c) an
activation function, for limiting the amplitude of the out-
put signal, chosen to satisfy some specification of the
problem that the neural network is attempting to solve;
and (d) the threshold, a parameter that lowers the input
signal of the activation function.

We can formulate the neural network in the following
mathematical terms:

a � �
i�1

p

wixi,

y � f�a � ��, (A1)

where x1, x2, . . . , xp � input signals, w1, w2, . . . , wp �
weights, a � the output of the adder, � � the threshold,
f (�) � the activation function, and y � the output signal
of the neural network.

MLP neural networks are an important class of neural
networks. In general, there is at least one hidden layer in
an MLP neural network, and the function of its neurons is
to arbitrate between the neural network’s input and out-
put. The architecture of an MLP neural network is shown
in Figure A2.

The backpropagation algorithm, the most popular
learning algorithm, is usually used in an MLP neural net-
work. It can typically be divided into two phases: forward
and backward. In the forward phase, input signals are
propagated forward through the network, and output sig-
nals are produced in the output layer. Meanwhile, error

Figure 4. Diagram of ROC curves for the SVM and the MLP
neural network in the classification of malignant and benign tu-
mors. Az value is 0.9396 � 0.0145 for the SVM and 0.9395 �
0.0141 for the MLP neural network.

Table 4
Performance of the SVM and the MLP Neural Network
for Dark and Bright Images

Index

Dark Images Bright Images

SVM MLP SVM MLP

Accuracy (%) 85.60 82.40 85.60 87.20
Sensitivity (%) 96.36 92.73 94.55 96.36
Specificity (%) 77.14 74.29 78.57 80.00
Positive predictive value (%) 76.81 73.91 77.61 79.10
Negative predictive value (%) 96.43 92.86 94.83 96.55
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signals are generated by comparing the produced output
with the desired response. In the backward phase, error
signals are propagated backward through the network, and
some parameters, such as weights, can be adjusted in ref-
erence to the error signals. The backpropagation algo-
rithm includes four steps:

1. Initialization: Set initial weights and learning rate �

for all layers of the MLP neural network. A terminating
error threshold value 
 is also selected to stop the learn-
ing process.

2. Forward computation: Calculate the output values of
the MLP neural network layer by layer. We define the
internal output signal hj

(l)(n) for neuron j in layer l at iter-
ation n as follows:

hj
�l��n� � �

i�0

k

wji
�l��n�pi

�l�1��n�, (A2)

where pi
(l�1)(n) is the output signal of neuron i in layer

l � 1, wji
(l)(n) is the weight between neuron j in layer l

and neuron i in layer l � 1, and k is the dimension of
input vectors. The output signal of neuron j is defined as

pj
�l��n� � � xj�n� if neuron j is in the input layer,

oj�n� if neuron j is in the output layer,
f �hj

�l��n�� otherwise,

(A3)

where xj(n) � the jth element of the input vector x(n).
Then we can achieve the error signal ej(n), which is de-
fined as

ej�n� � zj�n� � oj�n�, (A4)

where zj(n) � the jth element of the desired output vector
z(n) and oj(n) � the jth element of the produced output
o(n).

3. Backward computation: Calculate the local gradients

 of the MLP neural network layer by layer. The local
gradients can point to the required change in respective
weight. They are defined as follows:


j
�l��n� � �

ej�n�oj�n��1 � oj�n�	
for neuron j in output layer

hj�n��1 � hj�n�	 �
i�1

m


i
�l��n�wij

�l�1��n�

for neuron j in hidden layer,

(A5)

where m is the total number of neurons in layer l. Then
the connection weights between layer l and layer l � 1
are modified according to

Figure A1. Model of a neural network.

Figure A2. Structural graph of an MLP neural network.
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�wji
�l� � �
j

�l��n�hi
�l�1��n�. (A6)

4. Iteration of learning procedure: An average distor-
tion function is defined as follows:

D � �SEavg�w�n�	 � SEavg�w�n � 1�	�, (A7)

where SEavg [w(n)] is average squared errors for the train-
ing samples with the weight vector w(n) in iteration n.
The learning procedure will iteratively execute until the
stopping criterion (ie, D � 
) is satisfied.
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