
 VERTAF: An Object-Oriented Application Framework
for Embedded Real-Time Systems*

Pao-Ann Hsiung1, Trong-Yen Lee2, Win-Bin See3, Jih-Ming Fu4, and Sao-Jie Chen3

1National Chung Cheng University, Chiayi, Taiwan, ROC
2Chung Cheng Institute of Technology, National Defense University, Taiwan, ROC

3National Taiwan University, Taipei, Taiwan, ROC
4Cheng Shiu Institute of Technology, Kaohsiung, Taiwan, ROC

1E-mail: hpa@computer.org

* This work is supported by research project grant NSC-90-2215-E-194-009 from National Science Council, Taiwan, ROC

Abstract

Embedded real-time applications are often built
from scratch on a trial-and-error basis, which leads to
sub-optimal designs with latent errors that are not
detectable in early stages of use or deployment and often
incurs prolonged time-to-market. A new application
framework called Verifiable Embedded Real-Time
Application Framework (VERTAF) is proposed for
embedded real-time application development, with the aim
of reducing design errors and increasing design
productivity. VERTAF is an integration of three
technologies, namely object-oriented technology, software
component technology, and formal verification technology.
VERTAF consists of five software components: Implanter,
Modeler, Scheduler, Verifier, and Generator. Experiences
of using VERTAF show a significant increase in design
productivity through design reuse, and a significant
decrease in design time and effort through design
verification. An example shows a relatively low design
effort on the part of the designer using VERTAF.

1. Introduction

Current technology in designing embedded real-time
software (ERTS) is quite immature such that software
engineers tend to use a very rudimentary trial-and-error
design technique, developing everything from scratch,
applying only unit-testing, and producing sub-optimal
software. To remedy the situation, this work tries to
automate and systematize the design process so that ERTS
is designed correctly and efficiently. In this process, we
must analyze and solve various design issues such as the
ease of user input, high-level design reuse, and satisfaction
of resource and temporal constraints.

In solution to the above three issues, we propose the
integration of three technologies as follows. First, for

modular user-friendly input of system requirements,
object-oriented (OO) modeling is required. Second, for
automating the design process through the integration of
reusable off-the-shelf modules, software component (SC)
technology is required. Third, to design embedded
real-time software such that all specified resource and
temporal constraints are satisfied, formal verification (FV)
is required. The three technologies are all integrated into
an application framework called Verifiable Embedded
Real-Time Application Framework (VERTAF), which can
efficiently produce verifiable embedded real-time software,
such that design productivity is increased, design time and
error are reduced, and heuristically optimal designs are
produced.

We will now briefly introduce object-oriented
application frameworks (OOAF) and embedded real-time
systems. OOAF is a reusable, “semi-complete” application
that can be specialized to produce custom applications [2].
OOAF are application-domain specific reuse methods,
such as user interfaces or real-time avionics. Examples
include MacApp, ET++, Interviews, ACE, Microsoft's
MFC and DCOM, Javasoft's RMI and implementation of
OMG's CORBA. OOAF has the highest level of reuse in
the design of an application. The primary benefits of
OOAF stem from the modularity, reusability, extensibility,
and inversion of control they provide to developers.

An embedded real-time system is generally specified
as a collection of tasks, which might share resources and
interact with the system in which it is installed or with the
environment. The tasks are usually independent and
periodic. Execution time, period, deadline, type of priority
and resource requirements are specified for each task. To
statically guarantee satisfaction of all timing constraints,
the tasks must be scheduled using priority-based
scheduling algorithms such as rate-monotonic (RM) [3],
earliest-deadline first (EDF) [3], mixed-priority (MP) [3],
pin-wheel, etc. or using timed-based scheduling
algorithms.

Proceedings of the Fifth IEEE International Symposium on Object-Oriented Real-Time Distributed Computing (ISORC�02)
0-7695-1558-4/02 $17.00 © 2002 IEEE

Real-time systems must satisfy stringent temporal
constraints which formal verification can prove. VERTAF
makes a pioneer step in incorporating formal verification
into the design process. There are several formal methods
that can be applied for formal verification of real-time
systems such as model checking, process algebra, theorem
proving, and other logic-related techniques. Here, we will
use a formal method, called model checking, that is
gradually gaining popularity among the industries and
academia alike. Given a real-time system description S and
a temporal property specification φ, model checking
answers if S satisfies φ. A real-time system is modeled by a
set of Timed Automata (TA) [4], a timed extension of
conventional automata. A temporal property is specified
using Timed Computation Tree Logic (TCTL) [5].

Using VERTAF, a developer can devote more time
and effort to the actual application tasks, instead of
real-time system peculiarities. Even program verification
can be accomplished automatically by VERTAF since it
has integrated formal verification into its design process.
VERTAF is modularized into five software components
that can be used at different stages of application
development. The components are called Implanter,
Modeler, Scheduler, Verifier, and Generator.

The article organization is as follows. Section 2
gives some previous and related work on applying
object-oriented technology to real-time system design.
Section 3 describes the five components of VERTAF using
a Components view. Section 4 illustrates how a designer
may use VERTAF to actually develop an embedded
real-time application. Section 5 presents the experimental
results of two different examples developed using
VERTAF. Section 6 gives the final conclusions.

2. Previous Work

Although object-oriented technology has been
applied to the design of real-time systems in several
proposed work [6] - [12], there have been very few works
on the development of OOAF for real-time application
design. Two recently proposed OOAF are Object-Oriented
Real-Time System Framework (OORTSF) [13], [14], [15]
and SESAG [16], [17]. OORTSF and SESAG are simple
frameworks that have been applied to avionics software
development. Some design patterns were proposed related
to real-time application design. Code can be automatically
generated. But, there are still some scheduling and
real-time synchronization issues left not handled such as

asynchronous event handling and protocol hooking. The
flexibility of specifying real-time objects, the ease of using
the frameworks, the benefits of applying them, and other
issues related to OOAFs are not described in the two
works. VERTAF is, in fact, a newer more enhanced
version of SESAG, incorporating software component
technology, formal verification technology, industry
standards such as Unified Modeling Language (UML) and
Java, and multi-level reuse. According to the knowledge of
the authors, besides OORTSF and SESAG, there is
practically no other work on enterprise application
frameworks devoted to real-time application development.
As far as middleware integration frameworks for real-time
applications are concerned, there has been a TAO
Real-Time ORB proposed by Schmidt recently [18].

As far as software components are concerned,
Stewart has recently proposed port-based object models,
framework process models, state variable table for
inter-process communication, and code-generation for
both Real-Time Operating System (RTOS) and real-time
executive environments [19]. All of the above concepts
and implementations proposed by Stewart aid in
developing robust, reusable software components with
well-defined uniform interfaces.

3. VERTAF Components

Figure 1 illustrates the components of VERTAF. We
use the industry standard Unified Modeling Language
(UML) [20] for illustration. VERTAF consists of five basic
software components: Implanter, Modeler, Scheduler,
Verifier, and Generator. The given sequential order is the
sequence in which they are used. In general, a user may
use the five components of VERTAF as follows. Given a
software application to be designed, an engineer identifies
and specifies the objects that are specific to the application
using the Implanter component. Real-time and embedding
constraints are specified within the application objects.
The application objects are then transformed by the
Modeler component into standard uniform process models,
each of which represents a real-time task. Scheduler
checks the schedulability of the tasks and schedules them
using some scheduling algorithm. Verifier proves the
feasibility of the scheduled set of tasks by showing if they
satisfy all the given real-time and embedding constraints.
Finally, Generator is used to generate the application code
based on the decisions made in the other components.

Proceedings of the Fifth IEEE International Symposium on Object-Oriented Real-Time Distributed Computing (ISORC�02)
0-7695-1558-4/02 $17.00 © 2002 IEEE

3.1. Implanter

The Implanter component acts as the main interface
between application domain objects and VERTAF.
Application domain objects are those objects that
constitute the application that the designer desires to
design. Through the use of Implanter, a designer can spend
most of his/her efforts and time on the organization of
application-specific details, instead of re-implementing
objects representing real-time tasks.

A standard uniform object model is provided in
Implanter such that all embedded real-time tasks can be
specified using that model. In the following, we will
describe the newly proposed Autonomous Timed Object
(ATO) model for application domain object specification.

ATO incorporates advantageous features of two
object models, namely Port-Based Object (PBO) [19] and
Time-triggered Message-triggered Object (TMO) [21].
PBO is suitable for modeling embedded objects with
standard interfaces such as in, out, and resource ports.
Like PBO, ATO also adopts a standard interface for
objects. Unlike PBO, ATO need not be independent and
ATO methods (functions) need not be of a single type (the
cycle method for both periodic and aperiodic tasks). Only
the external interface of an ATO is adopted from PBO,
while the internal methods are adaptations of those defined
in TMO.

The basic structure of our newly proposed ATO is
illustrated in Figure 2. There are four types of ports
leading to and from an ATO, namely configuration, in, out,
and resource ports. An ATO is initialized through the
configuration ports. Instantiation is required because an
ATO may be a generic class or a generic component. For

example, a protocol stack component specified as an ATO
may contain some parameters (counters, timers, access
rates, …) which need to be assigned constant values
before the protocol stack is deployed for use. After
instantiation, an ATO may be configured either as a
periodic or an aperiodic task. For aperiodic task
configuration, it may be activated through resource ports
that are connected to sensors or through events
implemented in shared memory. For periodic task
configuration, ATO is activated by a timer implemented in
VERTAF. Upon activation, ATO reads data from in ports,
executes corresponding methods, computes results, and
writes data on out ports. ATO interface is suitable for
modeling embedded objects due to its generic format.

ATO Name

Event-Triggered Methods

Time-Triggered Methods

In Ports Out Ports

Resource Ports

Configuration Ports

�

Figure 2. Autonomous Timed Object

Within ATO, there are two types of methods, namely
Event-Triggered Methods (ETM) and Time-Triggered
Methods (TTM). ETM are conventional object methods
that execute only when called by another object, that is, it
is triggered by a method call. ETM is used for modeling
aperiodic task execution, since aperiodic tasks are also

 VERTAF

Implanter Modeler Scheduler Verifier Generator

Port-Based
Object

Autonomous
Timed Object

Application
Object

Specifier

Specification
Checker

Application
Object

Modeler

Process
Checker

Scheduling
Policy

Selector

Schedule
Generator

Rate
Monotonic

Earliest
Deadline

First

Mixed
Priority

Model
Generator

Model
Checker

Main
Program

Schedule
Code

ATP
Code

Call
Graph

ATO
Code

Autonomous
Timed Process

Timed
Automata

Figure 1. Component view of VERTAF

Proceedings of the Fifth IEEE International Symposium on Object-Oriented Real-Time Distributed Computing (ISORC�02)
0-7695-1558-4/02 $17.00 © 2002 IEEE

triggered by some in-coming event. TTM are object
methods that were created due to the requirement of timely
and predictable behavior from real-time systems. TTM are
also called spontaneous methods in TMO. Execution of
TTM does not require any in-coming event; TTM merely
starts execution upon reaching a pre-specified time point.
As far as inter-ATO interactions are concerned, ETM is
one way of interacting, and another way is through global
and local state variable tables as defined in the PBO model.
State variable tables have lesser overhead when
implemented in shared memory than message passing
mechanisms. Thus, they are more appropriate for
embedded systems.

3.2. Modeler

Every syntactic model must have a semantic model,
which controls precisely how the model must behave in a
dynamic environment. Corresponding to the ATO model,
we next define its dynamic behavior using an Autonomous
Timed Process (ATP) model. Each instance of an ATO has
one corresponding ATP, which means there may be more
than one ATP associated with a generic ATO in a system
under design. The number of ATP associated with a
generic ATO usually depends on the number of use cases
the ATO has.

Figure 3 illustrates a basic ATP. Upon an ATO
declaration, a new ATP is created, which is then
configured into an instantiated object process. A newly
created process, being unaware of the current system state,
is updated through its in ports. This updated state is a
stable state in which a process resides until it receives an
interrupt. There are two types of interrupts that an ATP can
receive: event and timer. An event interrupt indicates an
aperiodic or sporadic task, and a corresponding
event-triggered method is executed. A timer interrupt
indicates a periodic task, and a corresponding
time-triggered method is executed. After each method
execution, all related temporal constraints are checked for
violation or satisfaction. If a constraint is violated, then the
ATP enters an Error state. ATP is reset by an error
handling routine and then enters Updated state. A kill
signal may be received before or after method execution,
which terminates the process.

A standard uniform process model in the form of
ATP increases the predictability of an embedded real-time
application and also its ease of analysis and its verification
scalability. In contrast to the framework process defined
for PBO, ATP is not independent. When an ATP receives
an event, it knows which ATP is the generating source of
the event. All such events passed among ATP are recorded
in an Event Table, such that a record consists of the source
ATP, the destination ATP, the event type, and the
associated variable values. The event table can also be
represented as a Call-Graph, which is a directed graph G =

(V, E), where nodes in V represent ATP and arcs in E
represent the call relationships (event propagation)
between two ATP. This graph is useful for schedulability
test, resource allocation, scheduling, and conflict
resolution.

Created

ATO
Declaration

Instantiated

Configuration

Status Update

Updated

Periodic Task
Activated

Timer Interrupt

Aperiodic
Task

Activated

Event Interrupt

Event-Triggered
Method

Execution

Time-Triggered
Method

Execution

Error Terminated

Constraint
Checking

Constraint Violated Kill Signal

Reset
Kill Signal

�

Figure 3. Autonomous Timed Process

Besides the event table, another table called the
Process Table records all the ATP constructed by the
Modeler. A record in the process table consists of the ATP
index, the associated ATO methods, and the execution time,
period, deadline, type of priority (fixed or dynamic), and
resource requirements for each method. The resource
requirement is specified as a real-numbered vector, where
each element corresponds to some system resources such
as memory, processor utilization, etc. and the real-number
corresponds to the amount of each resource required by
the particular ATO method. System resources are specified
by the designer within Implanter through ATO
instantiation of application domain objects.

3.3. Scheduler

The Call-Graph and the Process Table generated by
Modeler are scheduled into a feasible application by
Scheduler. There are several priority-based scheduling
policies such as rate-monotonic (RM), earliest-deadline
first (EDF), mixed priority (MP), pin-wheel (PW), etc. It is

Proceedings of the Fifth IEEE International Symposium on Object-Oriented Real-Time Distributed Computing (ISORC�02)
0-7695-1558-4/02 $17.00 © 2002 IEEE

sometimes evident from the application as to which
scheduling policy should be applied. But, in most
applications, the prime concern is the satisfaction of the
timing constraints, irrespective of which scheduling
algorithm is applied. Scheduler includes a design pattern
similar to the Strategy Pattern [1] adapted to real-time
systems. In this pattern, one and only one scheduling
algorithm must be chosen from the set of all scheduling
algorithms for scheduling the ATP or tasks characterized in
the Call-Graph and the Process Table.

Scheduler component mainly consists of two parts: a
Policy Selector (PS) and a Schedule Generator (SG). The
designer can choose to assign a particular scheduling
policy he/she deems fit or the designer can also choose to
allow VERTAF determine automatically the right choice.
The decision is made by performing schedulability tests
using each scheduling algorithm. One of the scheduling
algorithms in the successful cases is then selected as the
automatic decision result. When more than one algorithm
can perform the scheduling, the selection can be arbitrary
or based on some criteria such as the shortest schedule
length (i.e., the shortest scheduled time). Currently,
VERTAF leaves this option to the designer. Schedule
Generator generates the actual start/end timing of each
ATP based on the schedule policy chosen and on the
Call-Graph constraints such as precedence relationships.

In priority-based scheduling, a well-known problem
arises, namely the priority inversion problem, which
occurs when a high priority task is blocked from execution
due to some required resource being held by a low priority
task, while a middle priority task with a long execution
time preempts the low priority task resulting in the high
priority task exceeding its deadline. We adopt the priority
inheritance approach [22] to solve this problem.

3.4. Verifier

 The ATP model allows all tasks to have a uniform
dynamic behavior representation. ATP can be viewed as a
finite state machine. In Verifier component, each ATP is
further translated into a Timed Automaton (TA) [4]. In the
following, the set of integers and non-negative real
numbers are denoted by N and R≥0, respectively.
Definition 1: Mode Predicate
Given a set C of clock variables and a set D of discrete
variables, the syntax of a mode predicate η over C and D
is defined as: η := false | x~c | x−y~c | d~c | η1∧η2 | ¬η1,
where x, y ∈ C, ~ ∈ {≤, <, =, ≥, >}, c ∈ N, d ∈ D, and η1,
η2 are mode predicates.

Let B(C, D) represent the set of all mode predicates
over C and D. A TA is composed of various modes
interconnected by transitions. Variables are distinguished
into clock and discrete. Clock variables increment at a
uniform rate and can be reset on a transition. Discrete
variables change values only when assigned a new value

on a transition.
Definition 2: Timed Automaton
A Timed Automaton (TA) is an 8-tuple A = (M, m0, C, D, X,
E, T, R) such that: M is a finite set of modes, m0 ∈ M is the
initial mode, C is a set of clock variables, D is a set of
discrete variables, X: M → B(C, D) is an invariance
function that labels each mode with a condition true in that
mode, E ⊆ M×M is a set of transitions, T: E → B(C, D)
defines the transition triggering conditions, and R: E →
2C∪(D×N) is an assignment function that maps each
transition to a set of assignments such as resetting clock
variables and setting discrete variables to integer values.

A real-time system is often modeled as a network of
communicating TA. The TA may share global variables
including clock and discrete. State-spaces of a real-time
system modeled by a set of TA are generally very large
and grows exponentially with the large time constant and
the system degree of concurrency.

A temporal constraint can be specified using Timed
Computation Tree Logic (TCTL) [5].
Definition 3: Timed Computation Tree Logic (TCTL)
A timed computation tree logic formula has the following
syntax: φ ::= η | ∃�φ′ | ∃φ′U~cφ′′ | ¬φ′ | φ′∨φ′′ (1)
Here, η is a mode predicate (Definition 1), φ′, φ′′ are
TCTL formulae, ~ ∈ {<, ≤, =, ≥, >}, and c ∈ N. ∃�φ′
means there exists a computation, from the current state,
along which φ′ is always true. ∃φ′U~cφ′′ means there exists
a computation, from the current state, along which φ′ is
true until φ′′ becomes true, within the time constraint of ~c.
Traditional shorthands like ∃�, ∀�, ∀�, ∀U, ∧, and →
can all be defined [5].

The resulting set of TA and a TCTL specification
can be then verified using the popular model checking
technique. As shown in Figure 4, given a set of timed

Symbolic_Mcheck(S, φ)
Set of TA S;
TCTL formula φ;
{

Let Reach = Unvisited = {Rinit};
While (Unvisited ≠ NULL) {

R′ = Dequeue(Unvisited);
For all out-going transition e of R′ {

R′′ = Successor_Region(R′, e);
If R′′ is consistent and R′′∉Reach

{
Reach = Reach ∪ {R″};
Queue(R″, Unvisited); }}}

Label_Region(Reach, φ);
Return L(Rinit);

}

Figure 4. Symbolic Model Checking

Proceedings of the Fifth IEEE International Symposium on Object-Oriented Real-Time Distributed Computing (ISORC�02)
0-7695-1558-4/02 $17.00 © 2002 IEEE

automata S modeling a real-time system and a TCTL
property specification φ, model checking answers if S
satisfies φ. A model checker can be implemented using a
labeling algorithm, which labels each region (collection of
states) recursively with a Boolean condition on the
satisfaction of intermediate formulae of a given TCTL
specification. There is extensive theory on model checking,
interested readers may refer to [5] for further details.
 Some formal verification tools that perform model
checking include UPPAAL [23], KRONOS [24], and SGM
[25], [26]. A kernel portion of such a model checker is
implemented in VERTAF as the Verifier component. Thus,
an application can automatically verify if the set of
specified ATP satisfy any given real-time constraint. It
must be noted here that VERTAF allows verification only
after scheduling. The reason behind such a restriction is
that after scheduling the degree of non-determinism in the
dynamic behavior of a system is much lesser than that
before scheduling. This approach allows more scalable
verification for embedded real-time applications as has
been emphasized in [27].

3.5. Generator

Generator component of VERTAF is responsible for
generating the OO code for an embedded real-time
application under development by a designer. The codes of
all the previously described four components are used in
this component to generate the final application code. It
consists of six parts: VERTAF main program, implanter
code, modeler code, scheduler code, verifier code, and
execution code.

Two different types of main programs can be
generated depending on whether there is a Real-Time
Operating System (RTOS) or not. When there is an RTOS
installed in an embedded system, a set of ATP is generated
by the modeler. The ATPs execute as conventional
real-time processes within the installed RTOS. When there
is no RTOS, ATP is not generated by the modeler because
there is no OS to handle and execute them. Instead, a
real-time executive takes charge by scheduling and
executing the ATO specified by a user. Another difference
is that processes can be preemptive when there is an RTOS,
whereas the methods in an ATO, once started, must
execute to completion. Process and event tables are
generated in both cases for schedulability analysis.

The main OO program maintains a global clock,
which is used for recording progress in the developed
system or application. It also contains exception handler
for error recovery, fault handling, and other mechanisms to
handle exceptions such as constraint violations. The main
program ensures that the system is always in an acceptable
state by monitoring for constraint violations such as
missed deadlines.

4. Application Development

After an overview of the VERTAF framework, this section
describes how one actually designs a real-time application
using VERTAF. Figure 5 illustrates the development
strategy (central column) in context of both the
Components (left column) and the Classes (right column)
of VERTAF. Rectangular boxes represent processes to be
accomplished either by the user or by VERTAF. Ovals
represent class instantiations. There are three phases in the
application development of VERTAF, namely,
Specification, Integration, and Generation.

 Identify and
Instantiate ATO

Has RTOS?

Construct ATP, PT,
ET, and CG

Register Resources

Schedule ATP

Construct TA &
TCTL spec

Model Check

Generate Code

USER

YES

NO

VERTAF

USER/VERTAF

USER/VERTAF

VERTAF

VERTAF

VERTAF

ATO

Instances

Process_
Table

Call-Graph

Scheduling
Policy

Verified
Call-Graph

OO
Application

Program

IMPLANTER

MODELER

SCHEDULER

VERIFIER

GENERATOR

VERTAF

COMPONENTS

VERTAF APPLICATION

DEVELOPMENT STRATEGY
VERTAF CLASS
INSTANTIATION

Scheduled
Call-Graph

Event_
Table

Figure 5. Application Development in VERTAF

� Specification: A user of VERTAF begins with
specifying his/her system. The user may either define
application domain objects (such as in the AICC
example presented in Section 5) or directly input tasks
by instantiating the Process_Table class and the
Call_Graph class. When application domain objects
are specified, Process_Table and Call_Graph are
instantiated in VERTAF by the Modeler component.

� Integration: At this stage, we have the Process_Table
and Call_Graph instantiated either by the user or by
Modeler in VERTAF. VERTAF then distinguishes
passive objects from active ones. This distinction is
required so that implicit resources may be identified.
Any object that does not actively call other object
methods is called a passive object; otherwise it is an
active one. ATP from the Process_Table and their
interdependencies from the Call_Graph are scheduled

Proceedings of the Fifth IEEE International Symposium on Object-Oriented Real-Time Distributed Computing (ISORC�02)
0-7695-1558-4/02 $17.00 © 2002 IEEE

using a user-specified scheduling policy or through
automatic decision by VERTAF.

� Generation: After integration, we already have the
skeleton for a feasible application where tasks have
been explicitly distinguished, registered, scheduled,
resources allocated without conflicts, and timing
constraints satisfied through scheduling. Code
generation is carried out by VERTAF as described in
Section 3.5.

5. Application and Experimental Results

 An industrial application example developed using
VERTAF is presented in this section: a cruiser example
consisting of 12 tasks used to control the vehicle speed
under different circumstances. The benefits of using
VERTAF in developing the example have been evaluated
and the results show a marked improvement in design
productivity and efficiency.

AICC (Autonomous Intelligent Cruise Controller)
system application [29] was developed and installed in a
Saab automobile by Hansson et al. The AICC system can
receive information from road signs and adapt the speed of
the vehicle to automatically follow speed limits. Also, with
a vehicle in front cruising at lower speed the AICC adapts
the speed and maintains safe distance. The AICC can also
receive information from the roadside (e.g. from traffic
lights) to calculate a speed profile which will reduce
emission by avoiding stop and go at traffic lights. The
system architecture consisting of both hardware (HW) and
software (SW) is as shown in Figure 6. The software
development methodology used in [29] is based on sets of
interconnected so-called software circuits (SC). Each SC
has a set of input connectors where data is received and a
set of output connectors where data is produced. We model
the software circuits in [29] as active application domain
objects in VERTAF.

Electronic
Servo Throttle

(SW)

EBS Gateway
(HW/SW)

DS Gateway
(HW/SW)

SRC Gateway
(SW)

SRC MMI
(SW)

System Control
Unit (HW)

Main Instrument
Controller
(HW/SW)

Electronic
Brake System

Distance
Sensor

Short Range
Communication

Transponder
Display

Throttle speed brake

RS232 RS232

Cruise Control
Switches

Controller Area Network (CAN)-bus

RS232

�

Figure 6. AICC Example: System Architecture

As shown in Figure 7, there are five domain objects
specified by the designer of AICC for implementing a
Basement system. Basement is a vehicle's internal
real-time architecture developed in the Vehicle Internal
Architecture (VIA) project [29], within the Swedish Road
Transport Informatics Programme. Each object may

correspond (map) to one or more tasks. Process Table and
Call-Graph generated by the Modeler component are as
shown in Table 1 and Figure 7, respectively. There are
totally 12 tasks performed in 5 objects. Two different
resources were identified in VERTAF, namely, SRC and
Display. This application took 5 days for a real-time
system designer using VERTAF. The same application
took the same designer 20 days to complete development.
This significant decrease in design time was because
VERTAF automatically extracted the tasks and constraints
from the object specifications.

6. Conclusion

An object-oriented application framework, called
VERTAF, was proposed for embedded real-time systems
application development. It was a result of the integration
of three different technologies: object-oriented technology,
software component technology, and formal verification
technology. The integration resulted in verifiable objects
and components, and thus eliminated design errors at an
early stage. Different levels of re-use, including
object-level and component-level, increased design
productivity and decreased overall design effort and time.

Table 1. AICC Example: Process Table
Task Object P* E* D*
1 Traffic Light Info SRC 200 10 400
2 Speed Limit Info SRC 200 10 400
3 Proceeding Vehicle

Estimator
ICCReg 100 8 100

4 Speed Sensor ICCReg 100 5 100
5 Distance Control ICCReg 100 15 100
6 Green Wave Control ICCReg 100 15 100
7 Speed Limit Control ICCReg 100 15 100
8 Coordination & Final

Control
Final_Control 50 20 50

9 Cruise Switches Supervisor 100 15 100
10 ICC Main Control Supervisor 100 20 100
11 Cruise Info Supervisor 100 20 100
12 Speed Actuator EST 50 5 50

Traffic

Light Info

(SRC)

Speed

Limit Info

(SRC)

SRC

T=200ms

Preceding Vehicle

Estimator

(Distance Sensor)

Speed

Sensor

(EBC)

Distance

Control

Green
wave

Control

Speed Limit

Control
ICC Regulator

T=100ms

Cruise
Switches

(Main
Instrument
Controller)

ICC

Main

Control

Coordination &

Final Control

Cruise
Info
(Main

Instrument
Controller)

Speed
Actuator

(EST)

T=100ms Supervisor

Final Control
EST

T=50ms

Figure 7. AICC Example: Call-Graph

P: Period, E: Execution Time, D: Deadline, *in ms, SRC: Short Range
Communication, ICCReg: ICC Regulator, EST: Electronic Servo Throttle�

Proceedings of the Fifth IEEE International Symposium on Object-Oriented Real-Time Distributed Computing (ISORC�02)
0-7695-1558-4/02 $17.00 © 2002 IEEE

A new Autonomous Timed Object model was proposed for
users to implant real-time objects into the framework and a
corresponding Autonomous Timed Process model was
proposed for modeling its dynamic behavior and for
system verification. Totally, five components were
developed and presented in VERTAF, including Implanter,
Modeler, Scheduler, Verifier, and Generator. An
application example was developed using VERTAF, which
showed how design time is significantly reduced due to a
large extent of object and code reuse from VERTAF.

References

[1] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design
Patterns: Elements of Reusable Object-Oriented Software,
Reading, MA: Addison-Wesley, 1995.

[2] R. Johnson and B. Foote, “Designing reusable classes,”
Journal of Object-Oriented Programming, Vol. 1, pp.
22–35, June 1988.

[3] C. Liu and J. Layland, “Scheduling algorithms for
multiprogramming in a hard-real time environment,”
Journal of the Association for Computing Machinery, Vol.
20, pp. 46–61, January 1973.

[4] R. Alur and D. Dill, “Automata for modeling real-time
systems,” Theoretical Computer Science, Vol. 126, No. 2,
pp. 183–236, April 1994.

[5] T. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine,
“Symbolic model checking for real-time systems,” in
Proceedings IEEE Logics in Computer Science, 1992.

[6] A. Attoui and M. Schneider, “An object oriented model for
parallel and reactive systems,” in Proceedings Real-Time
Systems Symposium, pp. 84–93, December 1991.

[7] D. Hammer, L. Welch, and O. van Roosmalen, “A
taxonomy for distributed object-oriented real-time
systems,” ACM OOPS Messenger, Vol. 7, pp. 78–85,
January 1996.

[8] Y. Ishikawa, H. Tokuda, and C. W. Mercer,
“Object-oriented real-time language design: Constructs for
timing constraints,” ACM SIGPLAN Notices,
ECOOP/OOPSLA'90 Proceedings, Vol. 25, pp. 289–298,
October 1990.

[9] B. Achauer, “Objects in real-time systems: Issues for
language implementors,” ACM OOPS Messenger, Vol. 7,
pp. 21–27, January 1996.

[10] L. R. Welch, “A metrics-driven approach for utilizing
concurrency in object-oriented real-time systems,” ACM
OOPS Messenger, Vol. 7, pp. 70–77, January 1996.

[11] M. Gergeleit, J. Kaiser, and H. Streich, “Checking timing
constraints in distributed object-oriented programs,” ACM
OOPS Messenger, Special Issue on Object-Oriented
Real-Time Systems, Vol. 7, pp. 51–58, January 1996.

[12] J. Browne, “Object-oriented development of real-time
systems: Verification of functionality and performance,”
ACM OOPS Messenger, Special Issue on Object-Oriented
Real-Time Systems, Vol. 7, pp. 59–62, January 1996.

[13] W.-B. See and S.-J. Chen, “Object-oriented real-time
system framework,” in Domain-Specific Application
Frameworks (M. E. Fayad and R. E. Johnson, eds.), ch. 16,
pp. 327–338, John Wiley, 2000.

[14] W.-B. See and S.-J. Chen, “High-level reuse in the design
of an object-oriented real-time system framework,” in
Proceedings International Computer Symposium, pp.
363–370, December 1996.

[15] T. Kuan, W.-B. See, and S.-J. Chen, “An object-oriented
real-time framework and development environment,” in
Proceedings OOPSLA'95 Workshop #18, 1995.

[16] P.-A. Hsiung, “RTFrame: An Object-Oriented Application
Framework for Real-Time Applications,” in Proceedings
of the 27th International Conference on Technology of
Object-Oriented Languages and Systems (TOOLS'98), pp.
138–147, IEEE Computer Society Press, September 1998.

[17] P.-A. Hsiung, “Object-Oriented Application Framework
Design for Real-Time Systems,” in Proceedings of the 4th
International Symposium on Real-Time and Media Systems
(RAMS'98), pp. 221–227, September 1998.

[18] D. Schmidt, “Applying design patterns and frameworks to
develop object-oriented communication software,”
Handbook of Programming Languages, Vol. I, 1997.

[19] D. B. Stewart, R. A. Volpe, and P. K. Khosla, “Design of
dynamically reconfigurable real-time software using
port-based objects,” IEEE Transactions on Software
Engineering, Vol. 23, No. 12, December 1997.

[20] J. Rumbaugh, G. Booch, and I. Jacobson, The UML
Reference Guide, Addison Wesley Longman, 1999.

[21] K. H. Kim, “APIs for Real-Time Distributed Object
Programming,” IEEE Computer, Vol. 33, No. 6, pp. 72–80,
June 2000.

[22] L. Sha, R. Rajkumar, and J. Lehoczky, “Priority
Inheritance Protocols: An Approach to Real-Time
Synchronization”, Technical Report CMU-CS-87-181,
Computer Science Department, Carnegie Mellon
University, November 1987.

[23] J. Bengtsson, K. Larsen, F. Larsson, P. Petterson, Y. Wang,
and C. Weise, “New Generation of UPPAAL,”
Proceedings of the International Workshop on Software
Tools for Technology Transfer (STTT'98), July 1998.

[24] C. Daws, A. Olivers, S. Tripakis, and S. Yovine, “The tools
KRONOS,” Hybrid System III, Lecture Notes in Computer
Science, Vol. 1066, pp. 208–219, 1996.

[25] P.-A. Hsiung and F. Wang, “User-friendly verification,” in
Proceedings of IFIP TC6/WG6.1 Joint International
Conference on Formal Description Techniques For
Distributed Systems and Communication Protocols &
Protocol Specification, Testing, And Verification,
(FORTE/PSTV '99), October 1999.

[26] F. Wang and P.-A. Hsiung, “Efficient and User-Friendly
Verification,” IEEE Transactions on Computers, Vol. 51,
No. 1, pp. 61–83, January 2002.

[27] P.-A. Hsiung, “Embedded Software Verification in
Hardware-Software Codesign,” Journal of Systems
Architecture — the Euromicro Journal, Vol. 46, No. 15, pp.
1435–1450, Elsevier Science, December 2000.

[28] G. Bollella, J. Gosling, B. Brosgol, P. Dibble, S. Furr, and
M. Turnbull, The Real-Time Specification for Java,
Addison Wesley, USA, January 2000.

[29] H. A. Hansson, H. W. Lawson, M. Stromberg, and S.
Larsson, “BASEMENT: A distributed real-time
architecture for vehicle applications,” Real-Time Systems,
Vol. 11, No. 3, pp. 223–244, 1996.

Proceedings of the Fifth IEEE International Symposium on Object-Oriented Real-Time Distributed Computing (ISORC�02)
0-7695-1558-4/02 $17.00 © 2002 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

