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Abstract 

Embedded real-time applications are often built 
from scratch on a trial-and-error basis, which leads to 
sub-optimal designs with latent errors that are not 
detectable in early stages of use or deployment and often 
incurs prolonged time-to-market. A new application 
framework called Verifiable Embedded Real-Time 
Application Framework (VERTAF) is proposed for 
embedded real-time application development, with the aim 
of reducing design errors and increasing design 
productivity. VERTAF is an integration of three 
technologies, namely object-oriented technology, software 
component technology, and formal verification technology. 
VERTAF consists of five software components: Implanter, 
Modeler, Scheduler, Verifier, and Generator. Experiences 
of using VERTAF show a significant increase in design 
productivity through design reuse, and a significant 
decrease in design time and effort through design 
verification. An example shows a relatively low design 
effort on the part of the designer using VERTAF. 

1. Introduction 

Current technology in designing embedded real-time 
software (ERTS) is quite immature such that software 
engineers tend to use a very rudimentary trial-and-error 
design technique, developing everything from scratch, 
applying only unit-testing, and producing sub-optimal 
software. To remedy the situation, this work tries to 
automate and systematize the design process so that ERTS 
is designed correctly and efficiently. In this process, we 
must analyze and solve various design issues such as the 
ease of user input, high-level design reuse, and satisfaction 
of resource and temporal constraints. 

In solution to the above three issues, we propose the 
integration of three technologies as follows. First, for 

modular user-friendly input of system requirements, 
object-oriented (OO) modeling is required. Second, for 
automating the design process through the integration of 
reusable off-the-shelf modules, software component (SC) 
technology is required. Third, to design embedded 
real-time software such that all specified resource and 
temporal constraints are satisfied, formal verification (FV) 
is required. The three technologies are all integrated into 
an application framework called Verifiable Embedded 
Real-Time Application Framework (VERTAF), which can 
efficiently produce verifiable embedded real-time software, 
such that design productivity is increased, design time and 
error are reduced, and heuristically optimal designs are 
produced. 

We will now briefly introduce object-oriented 
application frameworks (OOAF) and embedded real-time 
systems. OOAF is a reusable, “semi-complete” application 
that can be specialized to produce custom applications [2]. 
OOAF are application-domain specific reuse methods, 
such as user interfaces or real-time avionics. Examples 
include MacApp, ET++, Interviews, ACE, Microsoft's 
MFC and DCOM, Javasoft's RMI and implementation of 
OMG's CORBA. OOAF has the highest level of reuse in 
the design of an application. The primary benefits of 
OOAF stem from the modularity, reusability, extensibility, 
and inversion of control they provide to developers. 

An embedded real-time system is generally specified 
as a collection of tasks, which might share resources and 
interact with the system in which it is installed or with the 
environment. The tasks are usually independent and 
periodic. Execution time, period, deadline, type of priority 
and resource requirements are specified for each task. To 
statically guarantee satisfaction of all timing constraints, 
the tasks must be scheduled using priority-based 
scheduling algorithms such as rate-monotonic (RM) [3], 
earliest-deadline first (EDF) [3], mixed-priority (MP) [3], 
pin-wheel, etc. or using timed-based scheduling 
algorithms. 
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Real-time systems must satisfy stringent temporal 
constraints which formal verification can prove. VERTAF 
makes a pioneer step in incorporating formal verification 
into the design process. There are several formal methods 
that can be applied for formal verification of real-time 
systems such as model checking, process algebra, theorem 
proving, and other logic-related techniques. Here, we will 
use a formal method, called model checking, that is 
gradually gaining popularity among the industries and 
academia alike. Given a real-time system description S and 
a temporal property specification φ, model checking 
answers if S satisfies φ. A real-time system is modeled by a 
set of Timed Automata (TA) [4], a timed extension of 
conventional automata. A temporal property is specified 
using Timed Computation Tree Logic (TCTL) [5]. 

Using VERTAF, a developer can devote more time 
and effort to the actual application tasks, instead of 
real-time system peculiarities. Even program verification 
can be accomplished automatically by VERTAF since it 
has integrated formal verification into its design process. 
VERTAF is modularized into five software components 
that can be used at different stages of application 
development. The components are called Implanter, 
Modeler, Scheduler, Verifier, and Generator. 

The article organization is as follows. Section 2 
gives some previous and related work on applying 
object-oriented technology to real-time system design. 
Section 3 describes the five components of VERTAF using 
a Components view. Section 4 illustrates how a designer 
may use VERTAF to actually develop an embedded 
real-time application. Section 5 presents the experimental 
results of two different examples developed using 
VERTAF. Section 6 gives the final conclusions. 

2. Previous Work 

Although object-oriented technology has been 
applied to the design of real-time systems in several 
proposed work [6] - [12], there have been very few works 
on the development of OOAF for real-time application 
design. Two recently proposed OOAF are Object-Oriented 
Real-Time System Framework (OORTSF) [13], [14], [15] 
and SESAG [16], [17]. OORTSF and SESAG are simple 
frameworks that have been applied to avionics software 
development. Some design patterns were proposed related 
to real-time application design. Code can be automatically 
generated. But, there are still some scheduling and 
real-time synchronization issues left not handled such as 

asynchronous event handling and protocol hooking. The 
flexibility of specifying real-time objects, the ease of using 
the frameworks, the benefits of applying them, and other 
issues related to OOAFs are not described in the two 
works. VERTAF is, in fact, a newer more enhanced 
version of SESAG, incorporating software component 
technology, formal verification technology, industry 
standards such as Unified Modeling Language (UML) and 
Java, and multi-level reuse. According to the knowledge of 
the authors, besides OORTSF and SESAG, there is 
practically no other work on enterprise application 
frameworks devoted to real-time application development. 
As far as middleware integration frameworks for real-time 
applications are concerned, there has been a TAO 
Real-Time ORB proposed by Schmidt recently [18]. 

As far as software components are concerned, 
Stewart has recently proposed port-based object models, 
framework process models, state variable table for 
inter-process communication, and code-generation for 
both Real-Time Operating System (RTOS) and real-time 
executive environments [19]. All of the above concepts 
and implementations proposed by Stewart aid in 
developing robust, reusable software components with 
well-defined uniform interfaces. 

3. VERTAF Components 

Figure 1 illustrates the components of VERTAF. We 
use the industry standard Unified Modeling Language 
(UML) [20] for illustration. VERTAF consists of five basic 
software components: Implanter, Modeler, Scheduler, 
Verifier, and Generator. The given sequential order is the 
sequence in which they are used. In general, a user may 
use the five components of VERTAF as follows. Given a 
software application to be designed, an engineer identifies 
and specifies the objects that are specific to the application 
using the Implanter component. Real-time and embedding 
constraints are specified within the application objects. 
The application objects are then transformed by the 
Modeler component into standard uniform process models, 
each of which represents a real-time task. Scheduler 
checks the schedulability of the tasks and schedules them 
using some scheduling algorithm. Verifier proves the 
feasibility of the scheduled set of tasks by showing if they 
satisfy all the given real-time and embedding constraints. 
Finally, Generator is used to generate the application code 
based on the decisions made in the other components. 
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3.1. Implanter 

The Implanter component acts as the main interface 
between application domain objects and VERTAF. 
Application domain objects are those objects that 
constitute the application that the designer desires to 
design. Through the use of Implanter, a designer can spend 
most of his/her efforts and time on the organization of 
application-specific details, instead of re-implementing 
objects representing real-time tasks.  

A standard uniform object model is provided in 
Implanter such that all embedded real-time tasks can be 
specified using that model. In the following, we will 
describe the newly proposed Autonomous Timed Object 
(ATO) model for application domain object specification. 

ATO incorporates advantageous features of two 
object models, namely Port-Based Object (PBO) [19] and 
Time-triggered Message-triggered Object (TMO) [21]. 
PBO is suitable for modeling embedded objects with 
standard interfaces such as in, out, and resource ports. 
Like PBO, ATO also adopts a standard interface for 
objects. Unlike PBO, ATO need not be independent and 
ATO methods (functions) need not be of a single type (the 
cycle method for both periodic and aperiodic tasks). Only 
the external interface of an ATO is adopted from PBO, 
while the internal methods are adaptations of those defined 
in TMO. 

The basic structure of our newly proposed ATO is 
illustrated in Figure 2. There are four types of ports 
leading to and from an ATO, namely configuration, in, out, 
and resource ports. An ATO is initialized through the 
configuration ports. Instantiation is required because an 
ATO may be a generic class or a generic component. For 

example, a protocol stack component specified as an ATO 
may contain some parameters (counters, timers, access 
rates, …) which need to be assigned constant values 
before the protocol stack is deployed for use. After 
instantiation, an ATO may be configured either as a 
periodic or an aperiodic task. For aperiodic task 
configuration, it may be activated through resource ports 
that are connected to sensors or through events 
implemented in shared memory. For periodic task 
configuration, ATO is activated by a timer implemented in 
VERTAF. Upon activation, ATO reads data from in ports, 
executes corresponding methods, computes results, and 
writes data on out ports. ATO interface is suitable for 
modeling embedded objects due to its generic format. 

 

ATO Name 

Event-Triggered Methods 

Time-Triggered Methods 

In Ports Out Ports 

Resource Ports 

Configuration Ports 

�

Figure 2. Autonomous Timed Object 

Within ATO, there are two types of methods, namely 
Event-Triggered Methods (ETM) and Time-Triggered 
Methods (TTM). ETM are conventional object methods 
that execute only when called by another object, that is, it 
is triggered by a method call. ETM is used for modeling 
aperiodic task execution, since aperiodic tasks are also 
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triggered by some in-coming event. TTM are object 
methods that were created due to the requirement of timely 
and predictable behavior from real-time systems. TTM are 
also called spontaneous methods in TMO. Execution of 
TTM does not require any in-coming event; TTM merely 
starts execution upon reaching a pre-specified time point. 
As far as inter-ATO interactions are concerned, ETM is 
one way of interacting, and another way is through global 
and local state variable tables as defined in the PBO model. 
State variable tables have lesser overhead when 
implemented in shared memory than message passing 
mechanisms. Thus, they are more appropriate for 
embedded systems. 

3.2. Modeler 

Every syntactic model must have a semantic model, 
which controls precisely how the model must behave in a 
dynamic environment. Corresponding to the ATO model, 
we next define its dynamic behavior using an Autonomous 
Timed Process (ATP) model. Each instance of an ATO has 
one corresponding ATP, which means there may be more 
than one ATP associated with a generic ATO in a system 
under design. The number of ATP associated with a 
generic ATO usually depends on the number of use cases 
the ATO has. 

Figure 3 illustrates a basic ATP. Upon an ATO 
declaration, a new ATP is created, which is then 
configured into an instantiated object process. A newly 
created process, being unaware of the current system state, 
is updated through its in ports. This updated state is a 
stable state in which a process resides until it receives an 
interrupt. There are two types of interrupts that an ATP can 
receive: event and timer. An event interrupt indicates an 
aperiodic or sporadic task, and a corresponding 
event-triggered method is executed. A timer interrupt 
indicates a periodic task, and a corresponding 
time-triggered method is executed. After each method 
execution, all related temporal constraints are checked for 
violation or satisfaction. If a constraint is violated, then the 
ATP enters an Error state. ATP is reset by an error 
handling routine and then enters Updated state. A kill 
signal may be received before or after method execution, 
which terminates the process. 

A standard uniform process model in the form of 
ATP increases the predictability of an embedded real-time 
application and also its ease of analysis and its verification 
scalability. In contrast to the framework process defined 
for PBO, ATP is not independent. When an ATP receives 
an event, it knows which ATP is the generating source of 
the event. All such events passed among ATP are recorded 
in an Event Table, such that a record consists of the source 
ATP, the destination ATP, the event type, and the 
associated variable values. The event table can also be 
represented as a Call-Graph, which is a directed graph G = 

(V, E), where nodes in V represent ATP and arcs in E 
represent the call relationships (event propagation) 
between two ATP. This graph is useful for schedulability 
test, resource allocation, scheduling, and conflict 
resolution. 
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Figure 3. Autonomous Timed Process 

Besides the event table, another table called the 
Process Table records all the ATP constructed by the 
Modeler. A record in the process table consists of the ATP 
index, the associated ATO methods, and the execution time, 
period, deadline, type of priority (fixed or dynamic), and 
resource requirements for each method. The resource 
requirement is specified as a real-numbered vector, where 
each element corresponds to some system resources such 
as memory, processor utilization, etc. and the real-number 
corresponds to the amount of each resource required by 
the particular ATO method. System resources are specified 
by the designer within Implanter through ATO 
instantiation of application domain objects. 

3.3. Scheduler 

The Call-Graph and the Process Table generated by 
Modeler are scheduled into a feasible application by 
Scheduler. There are several priority-based scheduling 
policies such as rate-monotonic (RM), earliest-deadline 
first (EDF), mixed priority (MP), pin-wheel (PW), etc. It is 
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sometimes evident from the application as to which 
scheduling policy should be applied. But, in most 
applications, the prime concern is the satisfaction of the 
timing constraints, irrespective of which scheduling 
algorithm is applied. Scheduler includes a design pattern 
similar to the Strategy Pattern [1] adapted to real-time 
systems. In this pattern, one and only one scheduling 
algorithm must be chosen from the set of all scheduling 
algorithms for scheduling the ATP or tasks characterized in 
the Call-Graph and the Process Table. 

Scheduler component mainly consists of two parts: a 
Policy Selector (PS) and a Schedule Generator (SG). The 
designer can choose to assign a particular scheduling 
policy he/she deems fit or the designer can also choose to 
allow VERTAF determine automatically the right choice. 
The decision is made by performing schedulability tests 
using each scheduling algorithm. One of the scheduling 
algorithms in the successful cases is then selected as the 
automatic decision result. When more than one algorithm 
can perform the scheduling, the selection can be arbitrary 
or based on some criteria such as the shortest schedule 
length (i.e., the shortest scheduled time). Currently, 
VERTAF leaves this option to the designer. Schedule 
Generator generates the actual start/end timing of each 
ATP based on the schedule policy chosen and on the 
Call-Graph constraints such as precedence relationships. 

In priority-based scheduling, a well-known problem 
arises, namely the priority inversion problem, which 
occurs when a high priority task is blocked from execution 
due to some required resource being held by a low priority 
task, while a middle priority task with a long execution 
time preempts the low priority task resulting in the high 
priority task exceeding its deadline. We adopt the priority 
inheritance approach [22] to solve this problem. 

3.4. Verifier 

 The ATP model allows all tasks to have a uniform 
dynamic behavior representation. ATP can be viewed as a 
finite state machine. In Verifier component, each ATP is 
further translated into a Timed Automaton (TA) [4]. In the 
following, the set of integers and non-negative real 
numbers are denoted by N and R≥0, respectively. 
Definition 1: Mode Predicate 
Given a set C of clock variables and a set D of discrete 
variables, the syntax of a mode predicate η over C and D 
is defined as: η := false | x~c | x−y~c | d~c | η1∧η2 | ¬η1, 
where x, y ∈ C, ~ ∈ {≤, <, =, ≥, >}, c ∈ N, d ∈ D, and η1, 
η2 are mode predicates. 

Let B(C, D) represent the set of all mode predicates 
over C and D. A TA is composed of various modes 
interconnected by transitions. Variables are distinguished 
into clock and discrete. Clock variables increment at a 
uniform rate and can be reset on a transition. Discrete 
variables change values only when assigned a new value 

on a transition. 
Definition 2: Timed Automaton 
A Timed Automaton (TA) is an 8-tuple A = (M, m0, C, D, X, 
E, T, R) such that: M is a finite set of modes, m0 ∈ M is the 
initial mode, C is a set of clock variables, D is a set of 
discrete variables, X: M → B(C, D) is an invariance 
function that labels each mode with a condition true in that 
mode, E ⊆ M×M is a set of transitions, T: E → B(C, D) 
defines the transition triggering conditions, and R: E → 
2C∪(D×N) is an assignment function that maps each 
transition to a set of assignments such as resetting clock 
variables and setting discrete variables to integer values. 

A real-time system is often modeled as a network of 
communicating TA. The TA may share global variables 
including clock and discrete. State-spaces of a real-time 
system modeled by a set of TA are generally very large 
and grows exponentially with the large time constant and 
the system degree of concurrency. 

A temporal constraint can be specified using Timed 
Computation Tree Logic (TCTL) [5]. 
Definition 3: Timed Computation Tree Logic (TCTL) 
A timed computation tree logic formula has the following 
syntax: φ ::= η | ∃�φ′ | ∃φ′U~cφ′′ | ¬φ′ | φ′∨φ′′ (1) 
Here, η is a mode predicate (Definition 1), φ′, φ′′ are 
TCTL formulae, ~ ∈ {<, ≤, =, ≥, >}, and c ∈ N. ∃�φ′ 
means there exists a computation, from the current state, 
along which φ′ is always true. ∃φ′U~cφ′′ means there exists 
a computation, from the current state, along which φ′ is 
true until φ′′ becomes true, within the time constraint of ~c. 
Traditional shorthands like ∃�, ∀�, ∀�, ∀U, ∧, and → 
can all be defined [5]. 

The resulting set of TA and a TCTL specification 
can be then verified using the popular model checking 
technique. As shown in Figure 4, given a set of timed 

Symbolic_Mcheck(S, φ) 
Set of TA S; 
TCTL formula φ; 
{ 

Let Reach = Unvisited = {Rinit}; 
While (Unvisited ≠ NULL) { 

R′ = Dequeue(Unvisited); 
For all out-going transition e of R′ { 

R′′ = Successor_Region(R′, e); 
If R′′ is consistent and R′′∉Reach 

{ 
Reach = Reach ∪ {R″}; 
Queue(R″, Unvisited); }}} 

Label_Region(Reach, φ); 
Return L(Rinit); 

} 

Figure 4. Symbolic Model Checking 
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automata S modeling a real-time system and a TCTL 
property specification φ, model checking answers if S 
satisfies φ. A model checker can be implemented using a 
labeling algorithm, which labels each region (collection of 
states) recursively with a Boolean condition on the 
satisfaction of intermediate formulae of a given TCTL 
specification. There is extensive theory on model checking, 
interested readers may refer to [5] for further details. 
 Some formal verification tools that perform model 
checking include UPPAAL [23], KRONOS [24], and SGM 
[25], [26]. A kernel portion of such a model checker is 
implemented in VERTAF as the Verifier component. Thus, 
an application can automatically verify if the set of 
specified ATP satisfy any given real-time constraint. It 
must be noted here that VERTAF allows verification only 
after scheduling. The reason behind such a restriction is 
that after scheduling the degree of non-determinism in the 
dynamic behavior of a system is much lesser than that 
before scheduling. This approach allows more scalable 
verification for embedded real-time applications as has 
been emphasized in [27]. 

3.5. Generator 

Generator component of VERTAF is responsible for 
generating the OO code for an embedded real-time 
application under development by a designer. The codes of 
all the previously described four components are used in 
this component to generate the final application code. It 
consists of six parts: VERTAF main program, implanter 
code, modeler code, scheduler code, verifier code, and 
execution code. 

Two different types of main programs can be 
generated depending on whether there is a Real-Time 
Operating System (RTOS) or not. When there is an RTOS 
installed in an embedded system, a set of ATP is generated 
by the modeler. The ATPs execute as conventional 
real-time processes within the installed RTOS. When there 
is no RTOS, ATP is not generated by the modeler because 
there is no OS to handle and execute them. Instead, a 
real-time executive takes charge by scheduling and 
executing the ATO specified by a user. Another difference 
is that processes can be preemptive when there is an RTOS, 
whereas the methods in an ATO, once started, must 
execute to completion. Process and event tables are 
generated in both cases for schedulability analysis. 

The main OO program maintains a global clock, 
which is used for recording progress in the developed 
system or application. It also contains exception handler 
for error recovery, fault handling, and other mechanisms to 
handle exceptions such as constraint violations. The main 
program ensures that the system is always in an acceptable 
state by monitoring for constraint violations such as 
missed deadlines. 

4. Application Development 

After an overview of the VERTAF framework, this section 
describes how one actually designs a real-time application 
using VERTAF. Figure 5 illustrates the development 
strategy (central column) in context of both the 
Components (left column) and the Classes (right column) 
of VERTAF. Rectangular boxes represent processes to be 
accomplished either by the user or by VERTAF. Ovals 
represent class instantiations. There are three phases in the 
application development of VERTAF, namely, 
Specification, Integration, and Generation.  
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Figure 5. Application Development in VERTAF 

� Specification: A user of VERTAF begins with 
specifying his/her system. The user may either define 
application domain objects (such as in the AICC 
example presented in Section 5) or directly input tasks 
by instantiating the Process_Table class and the 
Call_Graph class. When application domain objects 
are specified, Process_Table and Call_Graph are 
instantiated in VERTAF by the Modeler component. 

� Integration: At this stage, we have the Process_Table 
and Call_Graph instantiated either by the user or by 
Modeler in VERTAF. VERTAF then distinguishes 
passive objects from active ones. This distinction is 
required so that implicit resources may be identified. 
Any object that does not actively call other object 
methods is called a passive object; otherwise it is an 
active one. ATP from the Process_Table and their 
interdependencies from the Call_Graph are scheduled 
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using a user-specified scheduling policy or through 
automatic decision by VERTAF. 

� Generation: After integration, we already have the 
skeleton for a feasible application where tasks have 
been explicitly distinguished, registered, scheduled, 
resources allocated without conflicts, and timing 
constraints satisfied through scheduling. Code 
generation is carried out by VERTAF as described in 
Section 3.5. 

5. Application and Experimental Results 

 An industrial application example developed using 
VERTAF is presented in this section: a cruiser example 
consisting of 12 tasks used to control the vehicle speed 
under different circumstances. The benefits of using 
VERTAF in developing the example have been evaluated 
and the results show a marked improvement in design 
productivity and efficiency. 

AICC (Autonomous Intelligent Cruise Controller) 
system application [29] was developed and installed in a 
Saab automobile by Hansson et al. The AICC system can 
receive information from road signs and adapt the speed of 
the vehicle to automatically follow speed limits. Also, with 
a vehicle in front cruising at lower speed the AICC adapts 
the speed and maintains safe distance. The AICC can also 
receive information from the roadside (e.g. from traffic 
lights) to calculate a speed profile which will reduce 
emission by avoiding stop and go at traffic lights. The 
system architecture consisting of both hardware (HW) and 
software (SW) is as shown in Figure 6. The software 
development methodology used in [29] is based on sets of 
interconnected so-called software circuits (SC). Each SC 
has a set of input connectors where data is received and a 
set of output connectors where data is produced. We model 
the software circuits in [29] as active application domain 
objects in VERTAF. 

Electronic
Servo Throttle

(SW)

EBS Gateway
(HW/SW)

DS Gateway
(HW/SW)

SRC Gateway
(SW)

SRC MMI
(SW)

System Control
Unit (HW)

Main Instrument
Controller
(HW/SW)

Electronic
Brake System

Distance
Sensor

Short Range
Communication

Transponder
Display

Throttle speed brake

RS232 RS232

Cruise Control
Switches

Controller Area Network (CAN)-bus

RS232

�

Figure 6. AICC Example: System Architecture 

As shown in Figure 7, there are five domain objects 
specified by the designer of AICC for implementing a 
Basement system. Basement is a vehicle's internal 
real-time architecture developed in the Vehicle Internal 
Architecture (VIA) project [29], within the Swedish Road 
Transport Informatics Programme. Each object may 

correspond (map) to one or more tasks. Process Table and 
Call-Graph generated by the Modeler component are as 
shown in Table 1 and Figure 7, respectively. There are 
totally 12 tasks performed in 5 objects. Two different 
resources were identified in VERTAF, namely, SRC and 
Display. This application took 5 days for a real-time 
system designer using VERTAF. The same application 
took the same designer 20 days to complete development. 
This significant decrease in design time was because 
VERTAF automatically extracted the tasks and constraints 
from the object specifications. 

6. Conclusion 

An object-oriented application framework, called 
VERTAF, was proposed for embedded real-time systems 
application development. It was a result of the integration 
of three different technologies: object-oriented technology, 
software component technology, and formal verification 
technology. The integration resulted in verifiable objects 
and components, and thus eliminated design errors at an 
early stage. Different levels of re-use, including 
object-level and component-level, increased design 
productivity and decreased overall design effort and time. 

Table 1. AICC Example: Process Table 
# Task Object P* E* D* 
1 Traffic Light Info SRC 200 10 400 
2 Speed Limit Info SRC 200 10 400 
3 Proceeding Vehicle 

Estimator 
ICCReg 100 8 100 

4 Speed Sensor ICCReg 100 5 100 
5 Distance Control ICCReg 100 15 100 
6 Green Wave Control ICCReg 100 15 100 
7 Speed Limit Control ICCReg 100 15 100 
8 Coordination & Final 

Control 
Final_Control 50 20 50 

9 Cruise Switches Supervisor 100 15 100 
10 ICC Main Control Supervisor 100 20 100 
11 Cruise Info Supervisor 100 20 100 
12 Speed Actuator EST 50 5 50 
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Figure 7. AICC Example: Call-Graph 

P: Period, E: Execution Time, D: Deadline, *in ms, SRC: Short Range 
Communication, ICCReg: ICC Regulator, EST: Electronic Servo Throttle�
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A new Autonomous Timed Object model was proposed for 
users to implant real-time objects into the framework and a 
corresponding Autonomous Timed Process model was 
proposed for modeling its dynamic behavior and for 
system verification. Totally, five components were 
developed and presented in VERTAF, including Implanter, 
Modeler, Scheduler, Verifier, and Generator. An 
application example was developed using VERTAF, which 
showed how design time is significantly reduced due to a 
large extent of object and code reuse from VERTAF. 
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