

The Design of a Synthesis Tool for Interrupt-based
Real Time Embedded Software

Trong-Yen Lee1, Pao-Ann Hsiung2, I-Mu Wu3, Chia-Chun Tsai1, and Wen-Ta Lee1
tylee@ntut.edu.tw, pahsiung@cs.ccu.edu.tw, WEMOVE_WU@dbtel.com.tw,

cct@en.ntut.edu.tw, wtlee@en.ntut.edu.tw
1Department of Electronic Engineering, National Taipei University of Technology, Taipei,

Taiwan, ROC.
2Department of Computer Science and Information Engineering, National Chung Cheng

University, Chiayi, Taiwan, ROC.
3DBTEL Taiwan Limited, Taipei, Taiwan, ROC.

Abstract
There is a general lack of CAD tools

for real-time embedded software, thus we
have developed a software synthesis tool
with a graphical user interface for real-time
embedded systems. We propose an Interrupt
Time Petri Nets (ITPN) model for real-time
embedded software requirements modeling.
ITPN can handle both interrupt behavior and
real-time constraints on tasks in a real-time
embedded system. An Interrupt-Based
Quasi-Dynamic Scheduling (IQDS)
algorithm is proposed to find valid task
schedules satisfying interrupt behavior
specifications and real-time constraints in a
real time embedded system. We use a Code
Generation algorithm to produce 8051
micro-controller C program code. The
graphical user interface makes our tool more
user-friendly. This tool supports the
Windows OS environment and can be used
for system model input and easy setting of
system parameters. Finally, we use two
industrial examples to illustrate the
correctness of our methodology and the
increase in productivity provided by our
real-time embedded software synthesis tool.

Keywords: Embedded System, Software
Synthesis, Interrupt-based Quasi Dynamic
Schedule, Interrupt Time Petri Nets.

1. Introduction
Due to rapid technology progress, there

has been a significant increase in system

complexity, decrease in time-to-market, and
growing demand for real-time embedded
systems. Therefore, the development of a
design tool has become indispensably
important for the design process of a system.
Recently, the methodology for
hardware-software co-design of a system
has become a major focus in both academia
and industries. Though there have been
some major breakthroughs related to this
field of research, yet to the best of our
knowledge there is a general lack of a
practical synthesis method for designing
software in real time embedded systems. We
will propose a method to address the above
problem and develop a practical tool for the
synthesis of real time embedded software.

A real time embedded system is required
to accomplish some dedicated set of periodic
tasks within real time deadlines. Some
examples include avionics flight control,
vehicle cruise control, and network-enabled
devices in home appliances. The
development time for real time embedded
software is crucial to the system design
process and can be reduced through various
techniques, such as adopting software reuse
techniques and seeking for the advancement
in software synthesis and verification [1],
[2], [3], [4], [5].

The purpose of this work is to not only
develop a software synthesis tool for
academia but also for industrial use. The
proposed real time embedded software
development environment will aid in
shortening time-to-market. This work will

~ 1284 ~

use a Digital Thermometer with
Microcontroller (DTM) and a Real-time
Stepping Motor Control (RSMC) to
demonstrate the benefits of the tool. In this
tool, Interrupt Time Petri Nets (ITPN) will
be proposed as our model for a real-time
embedded system. Then, an Interrupt-based
Quasi-Dynamic Scheduling (IQDS) will be
proposed for the synthesis of real-time
embedded software. We developed an
algorithm for embedded software code
generation.

This article is organized as follows.
Section 2 gives a brief overview about
previous work in real time embedded
software framework development. Section 3
describes the design of software synthesis
method and graphic interface in the tool.
Two embedded system examples are given
in Section 4. Section 5 concludes the article
and gives directions for future work.

2. Previous Work
Several techniques for software synthesis

from a concurrent functional specification
have been proposed [7], [8], [9], [10], [11],
[15], [16]. Buck and Lee [7] have introduced
the Boolean Data Flow (BDF) networks
model and proposed an algorithm to
compute a quasi-static schedule. However,
the problem of scheduling BDF with
bounded memory is undecidable, i.e. any
algorithm may fail to find a schedule even if
the BDF is schedulable. Hence, the
algorithm proposed by Buck can find a
solution only in special cases. Thoen et al. [8]
proposed a technique to exploit static
information in the specification and extract
from a constraint graph description of the
system statically schedulable clusters of
threads. The limit of this approach is that it
does not rely on a formal model and does
not address the problem of checking whether
a given specification is schedulable. Lin [9]
proposed an algorithm that generates a
software program from a concurrent process
specification through an intermediate
Petri-Nets representation. This approach is
based on the strong assumption that the Petri
Net is safe, i.e. buffers can store at most one

data unit. This on one hand guarantees
termination of the algorithm, on the other
hand it makes impossible to handle multirate
specifications, like FFT computations and
down-sampling. Safeness implies that the
model is always schedulable and therefore
also Lin’s method does not address the
problem of verifying schedulability of the
specification. Moreover, safeness excludes
the possibility to use Petri Nets where
source and sink transitions model the
interaction with the environment. This
makes impossible to specify inputs with
independent rate. Later, Zhu and Lin [10]
proposed a compositional synthesis method
that reduced the generated code size and
thus was more efficient.

Software synthesis method was proposed
for a more general Petri-Net framework by
Sgroi et al. [11]. A quasi-static scheduling
algorithm was proposed for Free-Choice
Petri Nets (FCPN) [11]. A necessary and
sufficient condition was given for a FCPN to
be schedulable. Schedulability was first
tested for a FCPN and then a valid schedule
generated. Decomposing a FCPN into a set
of Conflict-Free (CF) components which
were then individually and statically
scheduled. Code was finally generated from
the valid schedule.

Balarin et al. [12] proposed a software
synthesis produre for reactive embedded
systems in the Codesign Finite State
Machine (CFSM) [13] framework with the
POLIS hardware-software codesign tool
[13]. This work cannot be easily extended to
other more general frameworks.

Recently, Su and Hsiung [15] proposed an
Extended Quasi-Static Scheduling (EQSS)
using Complex-Choice Petri Nets (CCPNs)
as models to solve the issue of complex
choice structures. Gau and Hsiung [16]
proposed a Time-Memory Scheduling (TMS)
method for formally synthesizing and
automatically generating code for real-time
embedded software, using the Colored Time
Petri Nets model. Lee et al. [17] proposed a
methodology called ESSP (Embedded
Software Synthesis and Prototyping) for the
automatic design of embedded software.

~ 1285 ~

Later, Lee et al. [17] proposed a RESS
(Real-time Embedded Software Synthesis)
design methodology which adds real-time
constraints to ESSP [17]. In our current
work, we will focus on processing interrupts
in embedded software synthesis, we use
IQDS to synthesize the real-time embedded
software and use a code generation
procedure to generate the C code for 8051
microcontroller.

Several simulation or emulation boards
for single chip micro-controller, such as
Intel 8051 or ATMEL 89c51, have been
developed. As we know, tools for real-time
embedded software synthesis are still
lacking. Therefore, we developed a flexible
tool for real-time embedded software
system.

3. Software Synthesis Tool Design
3.1 Overview of the Tool Design

The framework of our software synthesis
tool is shown in Figure 1. For user
friendliness, we develop a graphical user
interface for easy input of embedded
software specification models. Embedded
software specification is represented by an
Interrupt Time Petri Net (ITPN) model
which can model the behavior of interrupt
events in embedded software. The software
specification is represented by ITPN which
will be scheduled by the proposed
Interrupt-based Quasi Dynamic Schedule
(IQDS) algorithm. If feasible software

schedules cannot be generated then we
rollback to the embedded software
specification and ask the user to recheck or
modify the specification. A valid schedule
will be found if all time constraints were met.
If feasible software schedules can be
generated, then a C code for 8051
microcontroller will be generated by a code
generation procedure. The target machine
code is finally loaded into the 89C51 or
87C51 microcontroller chip on the platform.

3.2 Interrupt Time Petri Nets Model
Interrupt Time Petri Nets (ITPN) are

proposed for modeling embedded software
specification input. ITPN is defined as
follows.

Definition 1. Interrupt Time Petri Net
(ITPN)
A Interrupt Time Petri Net is a 5-tuple (P, T,
I, O, Ω),
P: is a non-empty finite set of places, {p0,
p1, …, pn}.
T: is a non-empty finite set of transitions, {t0,
t1, …, tn}.
I: is an input function, T Æ P.
O: is a output function, P Æ T.
Ω:Ω(t)=(α, β, γ), where α: Earliest
Firing Time (EFT), β: Latest Firing Time
(LFT), γ: The type of interrupt in 8051
microcontroller. �

An example of the ITPN model is shown in
Figure 2.

Definition 2. Choice Block (CB)
A choice block is a branch from a place P to
two or more transitions. A CB includes
two situations that are free choice and
complex choice. In free choice, the input arc
into transition is only one. In complex
choice, the input arcs into transition are
more than one. �

t1(α1, β1, γ1)

t2(α2, β2, γ2)

p1

p2

p0

t3(α3, β3, γ3)
p3

Initial Place
End Place

Figure 2 The example of IPTN model

Interrupt Time Petri Nets
Model

Interrupt-based Quasi
Dynamic Schedule

Code Generation

Software Synthesis

Graphical User Interface

Figure 1 Software Synthesis Tool
Framework

~ 1286 ~

3.3 Interrupt-based Quasi Dynamic
Scheduling

Software synthesis is a scheduling process
whereby feasible software schedules are
generated such that they satisfy all
user-given functional requirements, timing
constraints, and memory constraints. Here,
we propose an Interrupt-based
Quasi-Dynamic Scheduling (IQDS) method
for the synthesis of embedded software.
IQDS takes a set of Interrupt Time Petri
Nets (ITPN) as input along with timing and
memory constraints such as periods,
deadlines, and an upper bound on system
memory space. The IQDS algorithm has
four steps as shown in the following and the
detailed algorithm is shown in Table 1.

Step 1: Find the initial place, end place, and
choice block (CB). The procedure is
shown in item (1) on Table 1.

Step 2: Decompose the ITPN into two parts:
z Statically schedulable non-choice

blocks
z The choice block set (CBS)
The procedure is shown in the item (2)
and item (3) on Table 1, respectively.

Step 3: Search the routes for each CB in
CBS and derive all routes from Initial
Place. The procedure is shown from item
(4) to item (21) on Table 1.

Step 4: Check the real-time constraints for
all routes. The procedure is shown item
(22) in Table 1. The detailed algorithm for
checking the system real-time constraints
is shown in Table 2. A valid schedule of
embedded software was found by the
IQDS algorithm if the all time constraints
are met.

3.4 Code Generation

Code generation is a procedure which
generates the Intel 8051 code from the valid
schedules. The procedures of code
generation are shown in the following and
the detailed algorithm is shown in Table 3.

Step 1: Differentiate main function,
sub-function, and Interrupt Service
Routine (ISR). The procedures are shown
in item (1) to (5) on Table 3.

Step 2: Print transition’s content from initial
place. The procedure is shown in item (6)
on Table 3.

Step 3: Print “if then else”. The procedures
are shown in item (7) to (20) on Table 3.

Step 4: Combine main function,
sub-function, and ISR. The procedure is
shown in item (21) on Table 3.

3.5 Graphical User Interface

Our tool has a Graphical User Interface
(GUI) for embedded software synthesis.
This tool is designed under the following
environment: Pentium IV 1.4GHz CPU,
256MB DDR RAM, Windows XP OS,
Visual Basic 6.0 programming language.

Table 1 Interrupt-based quasi-dynamic
scheduling (IQDS)

 IQDS_Scheduling ()Ω , , , , OITP {
int CountRoute=1; //CountRoute : the number of element in Route[]
bool Schedulable = true, Continue = false, Stop = false;
char X, Y, Z, Result;
string Route[], StaticRoute;
Search Initial Place, End Place, Choice Place (1)
Build Extable(i) for CB(i); //1≦i≦m; where m is the number of choice block; CB:Choice Block (2)
Search CBSi for CB(i); //CBSi : Choice Block Set for CB(i) (3)
X = Static_Scheduling (tj); (4)
//tj is a transition which is after the Initial Place, tj∈T, 1≦j≦n, n is the number of transition
if (X = 0) { (5)

Route[CountRoute] = StaticRoute;} //Only one route (6)
else {

do{
CountRoute = CountRoute + CountCBSX －1; (7)
// CountCBSX : the number of CBSX for CB(X)
Extend (Route[]); //Extend route (8)
For (k = 1 ; k <= CountRoute ; k++) { (9)

if (Route[k] has not end yet) { (10)
Y = the end of transition in Route[k]; (11)
Z = Static_Scheduling (Y); (12)
if (Z = 0) { (13)

stract(Route[k], StaticRoute); (14)
//Combine Route[k] and StaticRoute
End of Route[k]; (15)
if (k = = CountRoute) { (16)

Continue = false;} (17)
else{

X=Z; (18)
Continue = true; (19)
Break;}}}} //End of the for (20)

}while(Continue = true)} (21)
Real_Time_Check (Route[l]); //1≦l≦CountRoute (22)

Table 2 Check real-time constraints
algorithm

 Real_Time_Check(Route[i]){ //where 1≦i≦CountRoute
bool Permit = true, Result;
int RouteTimej = 0, SystemPeriod;
for each route Wj∈Route[i] { (1)

for each tk∈Wj { //where 1≦k≦n; n : the number of transition in Wj (2)
Permit = InterruptPermit(tk); (3)

if (Permit = true) { (4)
RouteTimej = RouteTimej +β(tk)}; //β: LFT (5)

else {
Schedulable = false; (6)
break; }} //End of for

if (RouteTimej < SystemPeriod) { (7)
Schedulable = true;} (8)

else {
Schedulable = false; (9)
break;}} //End of for (10)

if (Schedulable = true) {
System is schedulable;}

else {
System is not schedulable;}}

//---//
bool InterruptPermit(char tra) {

ISRTime =γ(tra) ISR time; (11)
if (ISRTime < β(tra)－α(tra)){ //α: EFT (12)

return result = true;} (13)
else{

return result = False;}} (14)

~ 1287 ~

The input consists of, graphical ITPN
models and the output is Keil C code.

The tool window is shown in Figure 3.
The GUI functions include (1) model entry:
edit, add, and delete components, (2)
scheduling results display, and (3) printing
Intel 8051 C code. The tool can be used for
generating real time embedded software
through synthesis as shown in the following:

Step 1: Enter the system specification
graphically.

Step 2: Enter the sub-functions and ISRs.
Step 3: Choose transition’s contents.
Step 4: Scheduling and code generation.

4. Embedded System Examples

In this section, we use two embedded
system examples to illustrate our proposed
software synthesis tool. First, we show the
Digital Thermometer with Microcontroller
(DTM) example. The function of DTM
system is to measure and display the
environment temperature in real time using a
microcontroller. The system software will be
embedded into the memory of the
microcontroller. First, the ITPN model of the
DTM system is entered using our tool. Then,
the transitions in the DTM system are
entered for which real time constraints and
interrupts are specified. Due to page limits,
the final partial code generated for the DTM
system is shown in Figure 4.

The other example is a Real-time Stepping
Motor Control (RSMC). The embedded
software specification is to control the speed
of stepping motor in real time with speed
change including interrupt events. Due to
page limits, only partial code synthesis by
our tool is shown in Figure 5.

5. Conclusion and Future Work
A graphical software synthesis tool for

Figure 3 Graphical user interface of IQDS tool

Model Entry

Print Code

Display Scheduling Result

 Code_Generation (Route[i]) { //1≦i≦s ; s : the number of element in Route[]

int count, CountWaitVisitTra, CountCBSX; char X, Y ; string WaitVisitTra[]; bool Result, Stop;
switch(classification){ //Differentiate main-function, sub-function, and ISR (1)

case “main”: printf “main(){”; (2)
printf “while(1){”; (3)
break;

case “ISR”: printf “void ISR(void){”; (4)
break;

case “Sub”: printf “void Function_Name(void){”; (5)
break;}

X = Print_Static_Route(tj); (6)
//tj is a transition which is after the Initial Place, tj∈T, 1≦j≦u, u is the number of transition
if (X != 0){ (7)

count = 1; (8)
CountWaitVisitTra = CountCBSX;
//CountCBSX : the number of CBSX for CB(X), CB(X) : The Xth choice block
//CountWaitVisitTra : the number of element in WaitVisitTra[]
for (r = count; r = CountWaitVisitTra; r++){ (9)

WaitVisitTra[r] = CBSX for CB(X) ;} (10)
do{

printf “if (condition){” or “else if (condition)”; (11)
Y = Print_Static_Route (WaitVisitTra[count]); (12)
if (Y = 0){ (13)

count = count + 1;} (14)
else{

CountWaitVisitTra = CountWaitVisitTra + CountCBSY－1; (15)
for (s = count + 1; s = CountWaitVisitTra－CountCBSY; s++){ (16)

WaitVisitTra[s + CountCBSY] = WaitVisitTra[s];} (17)
for (u = count; u = count + CountCBSY; u++){ (18)

WaitVisitTra[u] = CBSY for CB(Y);} (19)
while(count <= CountWaitVisitTra)} (20)

Combine main-function, sub-function, and ISR;} (21)
//--//
char Print_Static_Route (char tra){

print “{”;
do{

printf interrupt enable and content for tra; //Ex : IE = 0x81
search pk which after tra; //where PK ∈ P; 1≦k≦v, v is the number of place
if (pk is a choice block) {

Stop = false; //continue do loop
Return Result = CB(q); //1≦q≦w, w is the number of choice block

else{
if (pk is an End Place){

printf “}”;
Stop = true; //stop do loop
Return Result = 0;} //meet an end place

else{
Stop = false;} //continue do loop

}while(Stop = false)

Table 3 Code generation algorithm

~ 1288 ~

real-time embedded system was developed,
including a graphical user interface, an
interrupt-based quasi-dynamic scheduling,
and a code generation procedure. The tool
will reduce development time for embedded
software.

This version of our embedded software
synthesis tool is only supports the 8051
microcontroller. Therefore, we will improve
it by adding the code generation of ARM
microcontroller in our next version.

6. References
[1] K. Altisen, G. Gössler, A.Pneuli, J. Sifakis, S.

Tripakis, and S. Yovine, “A framework for
scheduler synthesis,” In Proceedings of the
Real-Time System Symposium (RTSS’99), IEEE
Computer Society Press, 1999.

[2] F. Balarin and M. Chiodo. “Software synthesis
for complex reactive embedded systems,” In
Proceedings of International Conference on
Computer Design (ICCD’99), IEEE CS Press,
October 1999. 634 – 639.

[3] L. A. Cortes, P. Eles, and Z. Peng, “Formal
co-verification of embedded systems using
model checking,” In Proceedings of
EUROMICRO, 2000. 106-113.

[4] P. -A. Hsiung, “Formal synthesis and code
generation of embedded real-time software,” In
Proceedings of the International Symposium on
Hard-ware/Software Codesign (CODES'01,
Copenhagen, Denmark), ACM Press, New York,
USA, April 2001. 208–213.

[5] P. -A. Hsiung, W.-B. See, T.-Y. Lee, J.-M Fu, and
S.-J. Chen, “Formal verification of embedded
real-time software in component-based
application frameworks,” In Proceedings of the
8th Asia-Pacific Software Engineering

Conference (APSEC 2001, Macau, China), IEEE
CS Press, December 2001.71-78.

[6] T.-Y. Lee, P.-A. Hsiung, and S.-J. Chen, “A case
study in codesign of distributed systems —
vehicle parking management system,” In
Proceedings of the International Conference on
Parallel and Distributed Processing Techniques
and Applications (PDPTA'99, Las Vegas, USA),
CSREA Press, June 1999, 2982–2987.

[7] J. Buck, Scheduling dynamic dataflow graphs
with bounded memory using the token flow
model, Ph. D, dissertation, UC Berkeley, 1993.

[8] F. Thoen et al, “Real-time multi-tasking in
software synthesis for information processing
systems,” In Proceedings of the International
System Synthesis Symposium, 1995, 48-53.

[9] B. Lin, “Software synthesis of process-based
concurrent programs,” In Proceedings of the
IEEE/ACM 35th Design Automation Conference
(DAC’98), June 1998, 502-505.

[10] X. Zhu and B. Lin, “Compositional software
synthesis of communicating processes,” In
Proceedings of the IEEE International
Conference on Computer Design, October 1999,
646-651.

[11] M. Sgroi and L. Lavagno, “Synthesis of
embedded software using free-choice Petri nets,”
In Proceedings of the IEEE/ACM 36th Design
Automation Conference (DAC’99), June 1999,
805-810.

[12] F. Balarin and M. Chiodo, Software synthesis for
complex reactive embedded systems. In
Proceedings of International Conference on
Computer Design (ICCD’99), IEEE CS Press,
October 1999, 634-639.

[13] F. Balarin et al., Hardware-software Co-design of
Embedded Systems: the POLIS Approach,
Kluwer Academic Publishers, 1997.

[14] J. Zhu and R. Denton, “Timed Petri nets and
their application to communication protocol
specification,” In Proceedings of the 21st IEEE
Military Communication Conference, San Diego,
CA, 1988, 195-199.

[15] F.-S. Su and P.-A. Hsiung, “Extended quasi-static
scheduling for formal synthesis and code
generation of embedded software,” In
Proceedings of the 10th IEEE/ACM
International Symposium on Hardware/Software
Codesign, (CODES'02, Colorado, USA), IEEE
CS Press, May 2002.

[16] C. -H. Gau and P. -A. Hsiung “Time-memory
scheduling and code generation of real-time
embedded software,” In Proceedings of the 8th
International Conference on Real-Time
Computing Systems and Applications
(RTCSA'02, Tokyo, Japan), March 2002, 19-27.

[17] T.-Y. Lee, P.-A. Hsiung, I-Mu Wu, and Feng-Shi
Su, “ESSP: An Embedded Software Synthesis
and Prototyping Methodology,” In Proceedings
of the International Computer Symposium,
(ICS’2002, NDHU, Taiwan), December 2002,
150-157.

[18] T.-Y. Lee, P.-A. Hsiung, I-M. Wu, and F.-S. Su,
“RESS: Real-Time Embedded Software
Synthesis and Prototyping Methodology,” In
Proceedings of the 9th International Conference
on Real-Time and Embedded Computing Systems
and Applications (RTCSA’2003, Tainan, Taiwan),
February 2003. 143-158.

 #include “reg51.h”
Void EX0_int(void) interrupt 0
{

simple--;
� if (p6)
� { simple=4000;
�� value=ADC_Port;
�� convert3();
� }
}
Void T0_int(void) interrupt 1 {

TH0=(65536-5000)/256;
TL0=(65536-5000)%256;

� 4segdisplay();
}
Main(){
TCON=0x01;
TMOD=0x01;
TH0=(65536-5000)/256;
TL0=(65536-5000)%256;
SCON=0x30;
while(1){
� IE=0x83;
 TR0=1;
� UARTBoudRate(19600);
� ADC_Port=0;
� SCONTraRec();
}}

Figure 4 Partial
code for the
DTM system

 #include “reg51.h”

Main(){
TCON=0x01;
TMOD=0x11;
TH0=(65536-2000)/256;
TL0=(65536-2000)%256;
TH1=(65536-speed)/256;
TL1=(65536-speed)%256;
while(1){

IE=0x8b;
 TR0=1;
 TR1=1;
� P2=KeyData;
� if (p2)
� {TR1=0;
�� P1_7=1;}
� else if (p2)
� {TR1=1;

direct=1;}
� else if (p2)
� {TR1=1;
�� direct=0;}
}}

Figure 5 Partial
code for the RSMC
system

~ 1289 ~

