
Object-Oriented Technology Transfer to Multiprocessor System-Level
Synthesisy

Pao-Ann Hsiung
Institute of Information Science

Academia Sinica, Taipei, Taiwan.

Trong-Yen Lee and Sao-Jie Chen
Department of Electrical Engineering

National Taiwan University, Taipei, Taiwan.

Abstract

Technology transfers between software and hardware engineering date back to a decade and a half.
Object-oriented technology from software engineering is one such successful transfer to hardware design.
There is a natural correspondence between object-oriented concepts and hardware design. The work pre-
sented in this paper extends the basic application of object-oriented technology to system-level synthesis
such that not only system modeling uses object-oriented technology, but the synthesis process itself is object-
oriented. The basic object-oriented structures required for synthesis are defined. How designs can be reused
by storing them in a design database and then retrieving them is explained. A simple implementation along
with application example illustrate how object-oriented technology increases component design manageabil-
ity, enforces synthesis efficiency, and saves design time and effort through the reuse of complete subsystems.

1 Introduction

One successful technology transfer from software engineering to hardware design is theobject-oriented
(OO) design paradigmwhich first manifested itself in the form of system decomposition into modules,
information hiding [13], and program families [14]. This success can be attributed to the natural concept
of perceiving a hardware component as an individual class with characteristics and operations [10]. In fact,
we believe that the decomposition of a system into objects is better defined and more explicit in hardware
than in software because a hardware system can be easily decomposed into components, while conventional
software programs are often structured using procedures that are morecontrol-orientedrather thanobject-
oriented. As pointed out by Smith et al. [17]: “Parnas’ concepts of information hiding and design families
may contribute to reducing the cost of design development and maintenance,” which was technically proved
by the recently proposedPerformance Synthesis Methodology(PSM) [8], an object-oriented system-level
design methodology for multiprocessor (MP) systems.

System-level synthesis is the process of automatic transformation from a set of system specifications in-
cluding architectural and performance requirements into a high-level architecture consisting of a description
of the various components such as processors, memory, and the number of each component used. For ex-
ample, the MICON system [1, 6], uses ahierarchical select-and-interconnectmethodology for system-level
synthesis. System-level synthesis usesoff-the-shelf building blocks[18], which are similar to reusable library
components in software engineering. These building blocks can be modeled as classes of objects and then
hierarchically classified based on the relationships between the classes. In MICON, the parts from the com-
ponent library are abstracted and organized into a functional hierarchy which is a directed, acyclic graph,
leaf-nodes correspond to available physical parts and internal nodes are abstract parts.

yThis research was supported by the National Science Council, Taipei, Taiwan under grant NSC 86-2221-E002-066.

1.1 Object-Oriented Technology and Hardware Design

Several concepts of object-oriented design in software engineering can be applied to hardware synthesis.
Some important concepts are described below. In the following, we assume that a class is an individual entity
as in the OO technology and it contains attributes which may be data members or function members.

Class Encapsulation: Parnas’ concept of information hiding or encapsulation tries to hide the portion of
design that is likely to change in the future by modularization and restricting access to the internal structure
through specific functions. This is similar to a hardware module. The data members of a class can be used
to model the static characteristics and dynamic states of a hardware component. Similarly, the function
members of a class can be used to describe the pins and module interactions of a hardware component.

Class Inheritance: Thoughinheritancewas introduced in the object-oriented technology, yet it has been
used by hardware designers since a long time. Hardware modules of the same type or functionality often
differ in only a few aspects either structurally or behaviorally. Inheritance avoids the undesired replication of
component information and allow quick transformation from existing classes to classes of new components.

Class Instances or Objects: The instantiation of a class involves a valuation of its data attributes such that
after each attribute is assigned a specific value, we will have a class instance or object. Different valuations
lead to different objects. This corresponds to the physical components that are available for system design.

Class Relationships: Two classes may be related by a relationship such asaggregation(assembly-component),
generalization(superclass-subclass), anddependence(association). In the hardware perspective, aggregation
corresponds to the composition of sub-parts into a larger module, which is what designers do when creating
a 64-bit adder from two 32-bit adders. Generalization corresponds to the functional classification of hard-
ware components. Dependence is related to how a particular component depends on another component for
mutual interactions and synchronizations.

Hierarchical Structure of Design Families: Based on class relationships, a hierarchy of classes can be
constructed. For example, a parallel computer design is an aggregation of a memory subsystem, a system
interconnection network, and a processing subsystem, all of which may further be an aggregation or general-
ization of other component parts modeled as classes. This hierarchy represents a reusable and useful library
of components that can be used for synthesis.

Section 2 lists some previous related work. A more complete account of how a system can be modeled
using object-oriented techniques is presented in Section 3. Section 4 describes the manipulation of designs,
their reuse, basic object-oriented structures used in system-level synthesis, and how designs are stored, re-
trieved, and reused from a design database. Section 5 illustrates the implementation of our concepts and the
application of OO techniques. Section 6 concludes the paper with some future work.

2 Previous Related Work

Modularization in VLSI design date back to 1983, when a research group called VMOD (Modular VLSI)
[2] explored the similarities and dissimilarities between the techniques of software engineering and hardware
design. The group concluded that despite their certain dissimilarities, two concepts of software change
management, namely Parnas’ information hiding and families of design could profitably be extended to
VLSI design. This triggered researches in the application of modularization to VLSI design such as the
Software Cost Reduction (SCR) project [15], Gross’ abstract interface specification of VLSI designs [5], and
ADAS, a software/hardware codesign tool [4]. Besides these earlier work, only recently has this field of
research gained attention again. OO is now being incorporated into hardware description language such as
VHDL [3]. By making use of a behavioral hierarchy, some system-level synthesis specification languages
such as SpecCharts [12] also have the flavor of the OO technology. MICON Synthesizer Version 1 [6] uses a
functional hierarchy for system-level design automation. OO has also been combined with formal modeling
techniques such as Petri Nets for system modeling [11] and synthesis [9].

Although researches on the application of OO technology to hardware design have been going on and off
since the 1980’s, yet only recently an actual system-level synthesis methodology, calledPerformance Synthe-
sis Methodology(PSM) [8], based on OO techniques was proposed. Following this, OO has also been used
recently in the formal modeling of the system-level synthesis methodology resulting in an extended high-

level Petri Net calledMulti-token Object-oriented Bi-directional net(MOBnet) [9]. These recent progresses
show that efforts in this promising direction will be quite fruitful in the near future.

3 Object-Oriented System Model

3.1 Object-Oriented Structure

As far as notations and terminologies are concerned, we basically follow Rumbaugh’sObject Modeling
Technique(OMT) [16] which makes a clear distinction among the object model, the dynamic model, and the
functional model. By modeling each component, either abstract or physical, as a class with relationships to
other classes, aClass Hierarchy(CH) can be constructed, which is similar to Parnas’ hierarchical structure of
design families and Rumbaugh’s Object Model in OMT. We distinguish the classes representing components
into three kinds of nodes, namelyAggregate node(A-node),Generalized node(G-node), andPhysical node
(P-node). This distinction is made based on the relationship a class has with its child classes, if any. An ag-
gregate node is an assembly class representing something which is thewholein a “whole-part” relationship.
A generalized node is a superclass which is the parent in an “is-a” relationship. A physical node is a leaf
node in the Class Hierarchy and represents some available physical component that can be used directly for
design. This classification of classes into three kinds of nodes allows easy selection of appropriate design
actions at each node which will be discussed in subsection 3.3.

A generic class has attributes including data members and function members. We classify the data mem-
bers of a class intospecifications, pre-design characteristics, andpost-design characteristics, where a spec-
ification is a requirement, it may be a relation between several characteristics, a pre-design characteristic is
one whose value is known before design and a post-design characteristic is one whose value is known only
after design. Some function members are discussed in subsection 3.3.

3.2 Object-Oriented Relationships

Three kinds of relationships serve as guidelines for design automation, namelyaggregation, generaliza-
tion, anddependence. Aggregation denotes the “whole/part” relationship in which a component class is a
“part-of” a class representing the whole assembly. Generalization denotes the relationship between a class
and its one or more refined versions. Often the design characteristics of two adjacently-connected compo-
nents in an MP system are interrelated such that the synthesis of one affects the other. This relationship is
modeled as the dependence relationship. Dependence is further classified intoabsoluteandrelative. Absolute
dependence is a dependence between thespecificationof one component and thepost-design characteristic
of another component such that the former component must wait for the latter to be completely synthesized
before it can begin synthesis. Relative dependence is a dependence between thespecificationsof two com-
ponents such that the synthesis is possible only when the dependent specification of the component to be
synthesized has a value assigned by querying the other component. For example, a Memory class is said to
be absolutely dependent on a CPU class because the memory access time (m) can be expressed in terms of
the processor cycle time (p) asm = k � p, wherek is a constant and it is assumed thatm is a specification
andp a post-design characteristic. Further, a Cluster Control Unit (CCU) and a System Interconnect (SI)
are relatively dependent because the CCUdata transfer rate(dCCU) and the SIdata transfer rate(dSI) are
related asdSI = c � dCCU, wherec is a constant and it is assumed that bothdSI anddCCU are the required
specifications.

Each type of relationship allows us to perform different synthesis actions, thus the synthesis process
is guided by the relationships. When encountered with an aggregation relationship, the class which is an
aggregation of other classes can be synthesized by composing one or more instances of its child classes.
When a generalization relationship is reached, the superclass representing a generalization of sub-classes
can be implemented by selecting one or more of its child classes. This is the design-space exploration step
in system-level synthesis. On encountering a dependence relationship, a class checks with the classes having
dependence relationships with it to request for or submit data values before any other synthesis actions are
taken. Thus, the dependence relationship has the highest priority among all relationships that a class may
have with other classes.

3.3 Object-Oriented Operators

As mentioned in the previous subsections, different types of classes and relationships allow different
synthesis actions, we use object-oriented operators to represent these actions. The target of these operations
are the classes in the Class Hierarchy. There are three operators, namelyiterator, generator, andupdator
corresponding to the three relationships aggregation, generalization, and dependence, respectively.

“Iterator” is the actual synthesis operator, it is used at an A-node for synthesizing this aggregate class
of components. Based on the specifications satisfaction of an A-node, the iteratoriteratesthrough its child
classes selecting some of them to be interconnected into the aggregate. “Generator” is the design-space
exploration operator, it is used at a G-node for implementing this generalized class of components. Based
on the specifications satisfaction of a G-node, the generatorgeneratesa sequence of classes ordered in the
preference of their feasibility in implementing the G-node. This order of feasibility preference may be a
simple cost-based heuristic as in PSM [8] or a fuzzy comparison of specifications as in ICOS [7]. “Updator”
is the query operator since its main job is to query others for specification values. This operator is quite
essential for hardware consistency and feasible integration. The updator operator is used by a class whenever
it has a dependence relationship with another class.

3.4 Class Hierarchy

The above object-oriented structure dealt with how a component can be modeled as a class and how
classes are divided into three types; object-oriented relationships described how classes may be related and
how relationships be used to guide synthesis; and object-oriented operators described what kinds of actions
can be taken at different nodes. By modeling all the components of a system as classes, we are thus able to
construct a hierarchy of classes calledClass Hierarchy, where classes are inter-related by the object-oriented
relationships. This hierarchy is usually constructed apriori just like how a software library is constructed for
future use. An example of Class Hierarchy for a hierarchical parallel computer system is given in Fig. 1. The
purpose of this hierarchy is to serve as a framework in which synthesis proceeds. The main concept of object-
oriented synthesis can be briefly defined as follows: “Starting from the root node of a Class Hierarchy, which
represents the computer system to be designed, wetraversedown the hierarchy using class relationships as
guidelines, choosing appropriate operators at each node, performing corresponding actions, and synthesizing
or implementing components along the hierarchy.”

4 Design Manipulation and Reuse

Given a Class Hierarchy representing the static structure of a target machine, this section discusses how the
various component designs represented by classes in the hierarchy can be manipulated dynamically during
synthesis. An important concept of object-oriented technology, namelyclass reuse, is technically applied to
hardware design such that complete subsystems can be reused, thus saving design cost, time, and effort.

Design manipulation and reuse in an object-oriented environment is best discussed within the framework
of an actual system-level synthesis methodology. We useIntelligent Concurrent Object-Oriented Synthesis
(ICOS) methodology [7], a newly proposed methodology for the synthesis of multiprocessor systems, which
is discussed briefly as follows. ICOS works in a fully object-oriented environment. Its main phases are
Specification Analysis, Concurrent Design, andSystem Integration.

An ICOS designer inputs system-level specifications such as the type of processor, the memory organiza-
tion, and the system interconnection scheme. After going through the three design phases, ICOS outputs a
synthesized MP consisting of system-level architecture descriptions. ICOS methodology uses several tech-
niques including object-oriented modeling, design reuse through intelligent learning, fuzzy design-space
exploration, and concurrent synthesis to make the synthesis process more efficient and feasible. As shown
in Fig. 2, the main phase, namely Concurrent Design, is further divided into four steps:specification update,
component reuse by learning, component synthesis, anddesign storing.

When a designer is synthesizing a system using ICOS, the OO design environment must provide certain
structures for the methodology to use for dynamically manipulating the classes, instead of only referring

Memory
Subsystem

System
Interconnect

Processing
Subsystem

Computer
System

Global Control
Unit

Main
Memory

Cache
Memory

Primary

Secondary

Globallly
Shared

Distributed
Shared

Globally
Distributed

Distributed
Unshared

Shared
Bus

MIN Cube Processor
Cluster

CCU LI SI InterfacePE

Scheduler I/O Intf. Buffer

Shared Bus MIN RISC CISCCube

Processor Local Memory

Cache RAM

I/O
Processor

I/O
Interface

CCU
Interface

A-node

G-node

P-node

Memory
Controller

Priority Time

Figure 1. Class Hierarchy

to a static Class Hierarchy. In this paper, we assume theconcurrentsynthesis scheme similar to that in
ICOS, where more than one component can undergo synthesis at the same time. Concurrently synthesized
components can communicate specifications through the dependence relationships in CH. Besides CH, the
OO design environment must be able to globally maintain a structure to broadcast the current design status so
that components that are concurrently undergoing synthesis may know exactly what the current design status
is. Such a broadcast structure is theDesign Hierarchyas described in subsection 4.1. The OO environment
must also provide a sequencer for components to be designed, so that the synthesis methodology knows
which is the “next” component to begin synthesis. This is implemented as a queue structure called the
Design Queueas described in subsection 4.2. Another structure that must be implemented in an OO design
environment is the design database used for design reuse. This is called theLearning Hierarchy(LH) and
described in subsection 4.4.

4.1 Design Hierarchy

In order to keep track of all the design alternatives generated during synthesis, a hierarchy of currently
synthesized classes, calledDesign Hierarchy(DH), is maintained. It is animplementationof the Class
Hierarchy, that is classes in CH are substituted byreal designs with specifications. For example, Fig. 3
depicts a completed design alternative consisting of a shared-memory multiprocessor architecture with 1024
processors interconnected by a generalized-cube multistage interconnection network, and 8 GB of main
memory. Besides representing the current state of synthesis, it may be used for various other purposes.

1. Information Query: When a component under design needs information related to the current design
architecture, they can be answered by refering to DH. For example, an inquiry could be: “Is the current
design using any secondary level cache?”

2. Synthesis Rollback: There may arise a situation in concurrent synthesis where a particular component
cannot be synthesized under the currently derived specifications, at this point of synthesis, a rollback
of design steps could possibly alter or re-design some previously designed components such that the
specifications related to the unsynthesizable component are relaxed and synthesis can proceed further.
Rollback may also propagate from an unsynthesizable component upwards in the Design Hierarchy.

3. Design Completion Check: Design Hierarchy can also indicate when a design alternative is complete
for further processing such as simulation and performance evaluation.

Class
Hierarchy

(CH)

design storing

component synthesis

component reuse by
learning

specification update

node_type

Yes

No

A-node/P-node

G-node

learning successful?

Component
Design

end

Learning
Hierarchy

(LH)

Figure 2. ICOS Concurrent Design

Memory
Subsystem

System
Interconnect

Processing
Subsystem

Computer
System

Global Control
Unit

Cube
MIN Cluster

No. = 8

GCUPSSSIMSS

CS

PE

No. = 128

SI IntfLICCU

Bus

Main Memory

Size = 8 GB

Figure 3. Design Hierarchy

4.2 Design Queue

Design Hierarchy stores the components which have already been synthesized, but there is a stage in the
design life-cycle where a component is already selected orreadyfor synthesis, but has to wait for its turn. At
this stage, we need a queue structure that holds the components which are ready for synthesis. We call such a
queue structure Design Queue (DQ). After removing an A-node from the front of the queue, it is synthesized
into several component classes which have then to be appended to DQ. After removing a G-node from the
front of the queue, it is implemented into one or more specialized classes which have then to be appended
to DQ. Whenever a P-node results from some component synthesis process, it is not appended to the queue,
but instead it is instantiated into actual physical instances.

4.3 Design State

DH and DQ are global structures visible to all components. When a component is in DH or DQ, it is
supposed to be in a “passive” state and when it is outside these structures, it is in an “active” state. The reason
for distinguishing between passive and active states mainly lies in the fact that a component represented
by a class remains in anidle condition in DH or DQ, whereas itactively seeksto synthesize itself using
appropriate operators and relationships as guidelines while outside DH or DQ. Figure 4 illustrates how a
component can transit from passive to active and then back to a passive state. While active, a component first
updates whatever specifications are needed, then it tries to reuse previously designed components. If no such
components exists, it goes on to synthesize itself. At this point, it may encounter a deadlock situation where
it cannot complete synthesis due to some unsatisfiable specification, it enters a rollback state which leads to
the earlier specification update state. If a component is reused or synthesized successfully, it enters DH and
remains in the passive state.

4.4 Design Reuse

Class “reuse” in the object-oriented technology often means how undesired replication is avoided through
the repetitive use of the same class. In this paper, reuse is distinguished into two kinds:current reuse and
futurereuse. Current reuse is defined as the repeated use of a class for the same design in the current synthesis.
For example, a hierarchical parallel computer architecture consisting of a group of processor clusters, may
have memory bothlocally in each cluster as well asglobally in the system; hence the Memory class can be
reused for cluster and system by just re-assigning some attribute values such as the memory size. Future
reuse is defined as the storing of a synthesized component in some design database for retrieval and use
in future syntheses. For example, when a processing subsystem, satisfying certain given architecture and

queued in
DQ

(Passive)

remove from DQ

specification
update
(Active)

component
reuse

(Active)

component
synthesis
(Active)

synthesis
rollback
(Active)

synthesized
(Passive)

A-node/P-node

G-node

synthesis
deadlock

reuse
 successful

reuse not
successful

Figure 4. Class State Transition Diagram

Memory
Size = 1 GB

LI
MIPSCPU

Processing
Subsystem

Cluster

PSS

Memory
Size = 1 GB

LIAlpha
CPU

Future
Bus

CCU
2

1

11

2

1

2

1

2

1

2

Cube
2

2

Size = 1.5 GB

version
number

Figure 5. Learning Hierarchy

performance specifications, is synthesized, it may be stored so that whenever similar specifications are given,
that designed instance may be reused. Current reuse can be accomplished by traversing the Class Hierarchy
and identifying similar components. Future reuse needs a design database for storing synthesized component
designs. One implementation of such a design database is theLearning Hierarchyas described below.

4.4.1 Learning Hierarchy and Object Storing

Learning Hierarchy (LH) is a hierarchy of synthesized objects instead of abstract classes as in the Class
Hierarchy. Its main purpose is to store designs learnt from previous synthesis experiences for future reuse.
An example of LH is given in Fig. 5. Adesign versionof a component is defined as one instance of the
component design satisfying a set of valuations for the specifications of all constituent objects. For example,
a Memory Subsystem class, an aggregate of main memory, cache memory, and memory controller, may
have a design version which was synthesized satisfying specifications of 20 GB main memory with 6 ns
access time, 1 MB cache memory with snoopy-write-invalidate coherence protocol and a memory controller
costing $ 2,000. Each component from CH may have one or more design versions stored in LH. Whenever a
component, which may be complete subsystem, is synthesized, it is stored in LH as follows:

(a) Represent the component as a sub-tree of the Class Hierarchy.
(b) Each constituent object of the sub-tree will have auniquename as specified in CH, but thesameversion

number, which is different from all other previously assigned version numbers.
(c) All kinds of specifications, including architectural requirements, performance constraints, and synthesis-

related restrictions must be included with the constituent objects along with the corresponding value
assignments.

(d) Integrate the component into the current LH by storing each constituent object in its corresponding
location in the hierarchy.

The relationships among the Class Hierarchy, Design Hierarchy, and Design Hierarchy are illustrated in
Fig. 6.

4.4.2 Object Searching and Retrieval

Learning Hierarchy is maintained as onesinglehierarchy instead ofmultiplehierarchies for ease of search-
ing and retrieval. A single hierarchy allows synthesis systems to traverse down the hierarchy searching in a

Class
Hierarchy

Learning
Hierarchy

Design
Hierarchy

Object REUSE

Class Implementation

for SYNTHESIS
Object STORING

for reuse

Figure 6. Relationships among the CH,
DH, and LH

generic.update_spec(){
 if (generic.type==P-node) return 0;
 for each spec ∈ generic.SPEC do
 i = 0;
 while(spec=NULL) do
 if(last_dep_class()) break;
 query_spec(spec, dep_class[i++];
 endwhile
 if(spec==NULL) query_user(spec);
 endfor
}

generic.reuse(){
 switch(generic.type){
 case “A-node”: if(generic.synthesized) fsgl();

 else return 0; break;
 case “G-node”: if(generic.synthesized) egl();

 else return 0; break;
 }
}

generic.synthesize(){
 if(generic.type==A-node)
 synthesize() = iterate();
 else if(generic.type==G-node)
 synthesize() = generate();
 else synthesize() = NoOp();
}

iterate(){
 for each generic.child do
 if required(generic.child){
 AddDH(generic.child);
 if((generic.child).type != P-node)

AppendDQ(generic.child);
 else instantify(generic.child); }
 explore_design_space();
 endfor
}

generate(){
 for each generic.child do
 if(acceptable(generic.child) {
 AddDH(generic.child);
 if((generic.child).type != P-node)
 AppendQ(generic.child);
 else { instantify(generic.child); dse(); }
 }
 endfor
}

Figure 7. Some Class Functions

depth-first search manner for the node location of the component under design. Once the location is found,
an appropriate design version of the component is selected. This selection depends on the synthesis method-
ology. For example, ICOS uses a fuzzy specification-guided learning process [7]. After selecting a design
version, using the version number as asearch key, LH is then traversed in a breadth-first search manner so
that all constituent objects of that design version can be found.

The multiple-version single-hierarchy structure of LH also allows one to directly reuse a partial design of
some stored design version because each constituent object has its own set of specifications and a valuation.
For example, suppose a Processing Subsystem class has a design version stored in LH, and currently we need
to synthesize a Cluster Interconnection class, which is part of the Processing Subsystem and satisfies all our
specifications, thus it can be directly reused. This allows flexible reusing of all parts of a design version.

5 Application Example

The application of object-oriented technology to system-level design automation as discussed in Sections
3 and 4 was implemented using the C++ object-oriented programming language. Some of the generic class
functions are described in Fig. 7.

5.1 Application Example

Our target system is specified to be a tightly-coupled shared-memory multiprocessor architecture with
a maximum cost of $ 12,000, at least 1 GB main memory and 1024 processors interconnected using a
multistage interconnection network. The design steps are given in Table 1 and the intermediate status of DH
are given in Fig. 8.

Starting from the root node, the target system is iteratively synthesized by traversing down the Class
Hierarchy towards the leaf nodes (P-nodes). The root node in this example is Computer System (CS) which
is an A-node, the relationship it has with its child classes is aggregation, hence we use the “iterator” to
synthesizeCS into Memory SubSystem (MSS), System Interconnect (SI), Processing SubSystem (PSS), and
Global Control Unit (GCU), all of which are appended to the Design Queue (DQ). This completes step (a)
in Table 1. Now, in step (b), MSS is removed from the front of DQ. Though MSS is an A-node, there is a
memory subsystem in LH that satisfies all the specifications of MSS, and that subsystem isreusedfor MSS

and thus no component is appended to DQ in this step. Next, in step (c) SI which is a G-node is removed
from DQ and a design-space exploration (DSE) is performed using the “generator” at SI, which results in the
two alternative multistage interconnection networks (MIN): Cube and Omega. These MINs are physically
available components so they are not appended to DQ. They are, in fact, instantiated into actual usable
objects in ICOS. In step (d), PSS is synthesized into Cluster. In step (e), GCU is synthesized by reusing an
acceptable design version from LH. In step (f), Cluster is synthesized into CCU, LI, and PE. In step (g),
CCU is synthesized by reusing a design version from LH. Steps (h) and (i) complete the synthesis process
by synthesizing LI and PE through DSE and reuse. This synthesis process terminates when DQ is empty.

Table 1. Illustrative Example Design Steps

Step Node CT Op Action DQ Status
(a) CS A itr synth fMSS,SI,PSS,GCUg
(b) MSS A itr synth fSI,PSS,GCUg
(c) SI G gen DSE fPSS,GCUg
(d) PSS A itr synth fGCU,Clusterg
(e) GCU A itr reuse fClusterg
(f) Cluster A itr synth fCCU,LI,PEg
(g) CCU A itr reuse fLI,PEg
(h) LI G gen DSE fPEg
(i) PE A itr reuse fg

CT = Class Type, itr = iterator, gen = generator, and synth = synthesis

Learning
Hierarchy

Class
Hierarchy

Memory
Subsystem

System
Interconnect

Processing
Subsystem

Computer
System

Global Control
Unit

Cube
MIN

Omega
MIN

Cluster

Reuse

DSE

Computer
System

Memory
Subsystem

System
Interconnect

Processing
Subsystem

Computer
System

Global Control
Unit

GCUPSSSIMSS

CS

step (b) – step (e)

step (f) – step (i)

step (a)

Reuse

PE SI IntfLICCU

Reuse Reuse

DSE

Bus

Figure 8. An Illustrative Example (intermediate DH status)

The above example shows how classes are synthesized or implemented in an object-oriented design envi-
ronment. It also shows how the three hierarchies CH, DH, and LH are used for synthesis. A more elaborate
synthesis methodology based on the object-oriented design environment presented in this paper can be found
in [7].

6 Conclusion and Future Work

The intuitive correspondence between object-oriented technology in software engineering and hardware
design in system-level synthesis was discussed, explored, and realized in a working object-oriented design
environment. Besides the static modeling of components, it was shown how classes can be dynamically
manipulated during synthesis, what kind of structures or hierarchies are required for synthesis, and how
designs can be reused in the current synthesis as well as for future syntheses. Our initial concepts were
realized into an actual environment by implementing it and running examples. PSM [8] and ICOS [7] are two
methodologies that have been based on this environment. MOBnet [9] was a recently proposed theoretical
framework for such an OO design environment. All these go to show that our OO design environment is
conceptually, technically, and theoretically applicable to system-level synthesis.

Future work in this direction will try to incorporate some further OO principles and engineering wisdoms.
Hardware-software codesign is a field where OO will certainly be a productive technology as both hardware
and software components can be modeled as classes which are implementation independent.

References

[1] W. P. Birmingham, A. P. Gupta, and D. P. Siewiorek. The MICON system for computer design. InProc. 26th
ACM/IEEE Design Automation Conference, pages 135–140, 1989.

[2] F. R. Jr. Brooks, R. R. Gross, and L. S. Heath. Transfer of software methodology to VLSI design. Technical Report
TR 84-007, Univ. of North Carolina, Chapel Hill, 1984.

[3] M. J. Chung and S. Kim. An object-oriented VHDL design environment. InProc. 27th ACM/IEEE Design Au-
tomation Conference, pages 431–436, 1990.

[4] G. A. Frank, C. U. Smith, and J. A. Cuadrado. An architecture design and assessment system for software/hardware
codesign. InProc. 22nd ACM/IEEE Design Automation Conference, June 1985.

[5] R. R. Gross.Using software technology to specify abstract interfaces in VLSI design. PhD thesis, Univ. of North
Carolina at Chapel Hill, June 1985. Dept. Computer Science Tech. Rep., TR-85-017.

[6] A. P. Gupta, W. P. Birmingham, and D. P. Siewiorek. Automating the design of computer systems.IEEE Trans. on
CAD, 12(4):473–487, April 1993.

[7] P.-A. Hsiung, C.-H. Chen, T.-Y. Lee, and S.-J. Chen. ICOS: An intelligent concurrent object-oriented synthesis
methodology for multiprocessor systems.ACM Trans. on Design Automation of Electronic Systems, 3(2), April
1998.

[8] P.-A. Hsiung, S.-J. Chen, T.-C. Hu, and S.-C. Wang. PSM: An object-oriented synthesis approach to multiprocessor
system design.IEEE Trans. on VLSI Systems, 4(1):83–97, Mar. 1996.

[9] P.-A. Hsiung, T.-Y. Lee, and S.-J. Chen. MOBnet: An extended Petri net model for the concurrent object-oriented
system-level synthesis of multiprocessor systems.IEICE Trans. on Information and Systems, E80-D(2):232–242,
Feb. 1997.

[10] S. Kumar, J. H. Aylor, B. W. Johnson, and Wm. A. Wulf. Object-oriented techniques in hardware design.IEEE
Computer, 27(6):64–70, June 1994.

[11] Y. K. Lee and S. J. Park. OPNets: An object-oriented high-level Petri net model for real-time system modeling.
Journal Systems Software, 20:69–86, 1993.

[12] S. Narayan, F. Vahid, and D. D. Gajski. System specification with the SpecCharts language.IEEE Design and Test
of Computers, pages 6–13, Dec. 1992.

[13] D. L. Parnas. On the criteria to be used in decomposing systems into modules.Commun. ACM, 15(12):1053–1058,
Dec. 1972.

[14] D. L. Parnas. On the design and development of program families.IEEE Trans. on Soft. Eng., SE-2(1):1–9, Mar.
1976.

[15] D. L. Parnas. The modular structure of complex systems.IEEE Trans. on Soft. Eng., SE-11(3):259–266, Mar. 1985.

[16] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen.Object-Oriented Modeling and Design.
Prentice-Hall, Englewood Cliffs, 1991.

[17] C. U. Smith and R. R. Gross. Technology transfer between VLSI design and software engineering.Proc. of the
IEEE, 74(6):875–887, June 1986.

[18] J. R. Tobias. LSI/VLSI building blocks.IEEE Computer, 14(8):83–101, Aug. 1981.

