Hardware-Software Coverification of Concurrent Embedded Real-Time Systems

Pao-Ann Hsiung
Institute of Information Science, Academia Sinica, Taipei, TATWAN.
E-mail: eric@iis.sinica.edu.tw

Abstract

The results of hardware-software codesign of concurrent
embedded real-time systems are often not verified or not
easily verifiable. This has serious consequences when high-
assurance systems are codesigned. The main difficulty lies
in the different time-scales of the embedded hardware, of
the embedded software, and of the environment. This dif-
ference makes hardware-software coverification not only a
difficult task for most systems, but has also restricted cov-
erification to the initial system specifications. Currently,
most codesign tools or methodologies only support valida-
tion in the form of cosimulation and testing of design al-
ternatives. Here, we propose a new formal coverification
method based on linear hybrid automata. The basic prob-
lems found in most coverification tasks are presented and
solved. For complex systems, a simplification strategy is
proposed to attack the state-space explosion occurring in
formal coverification. Experimental results show the feasi-
bility of our approach and the increase in verification scal-
ability through the application of the proposed method.

1. Introduction

An embedded real-time system is one which is installed
within a larger system called its environment. It is gener-
ally a compact, task-oriented, and budget-limited system.
It has to satisfy timing constraints as well as cost limits.
Hence, embedded real-time systems usually have both hard-
ware and software interacting with each other to accomplish
a specific task. Hardware tries to satisfy timing constraints,
and software reduces the overall cost and provides design
flexibility. The presence of both hardware and software in-
curs difficulties in verifying an embedded real-time system.
Some common obstacles faced are: the lack of a formal
method that can specify both hardware and software, the
different time scales of the hardware, the software, and the
environment, the requirement of communication protocols
between hardware and software, synchronization mecha-
nisms in hardware-software interfaces, and the lack of a for-

216

1068-3070/99 $10.00 © 1999 IEEE

mal verification technology devoted to hardware-sofiware
coverification. After a careful analysis of possible verifica-
tion techniques and a survey of existing approaches, we felt
the need of proposing a new coverification method that can
tackle some of the above problems and at the same time has
the potential of scaling to industrial processes.

The three different time scales of an embedded system
and its environment posed a great problem in previous ap-
proaches (see Section 2). The differing time scales lead to
an explosion of state-space during model composition for
coverification. Hybrid automata, as defined later in Sec-
tion 3, were proposed for modeling hybrid systems [2]. Not
only can each hybrid automaton have a different time scale,
but a hybrid automaton can also have different time scales
within each location (collection of states). This feature
allows the modeling of a multi-rate system that has sev-
eral timers with different progress rates. In the hardware-
software context, this means not only can we model a sin-
gle chip hardware (1-ASIC) and a uniprocessor software (1-
CPU), but also multi-chip hardware (n-ASIC) and multipro-
cessor software (m-CPU), where n > 0 and m > 0.

It is well-known that a protocol or any other control-
related system is best modeled by Finite State Machines
(FSM) [18]. The states and transitions occurring in pro-
tocols or controllers can be explicitly and formally speci-
fied by FSM. The theory of formal verification has a large
part based on FSM. Further, hardware-software systems ei-
ther require communication protocols for message-passing
or shared memory for synchronization. For the above two
reasons, if a complete hardware-software system is modeled
by FSM, then there is no need of specifying the interfaces
separately. Hybrid automata are another extension of FSM.

Another reason for using the hybrid automata model is
that an embedded digital system can always be perceived as
a linear system, that is, the clock rates are all linear. The
verification theory for linear hybrid automata was proposed
by Alur et al in [2] and already implemented in the HyTech
tool [17]. Our contribution mainly lies in modeling embed-
ded digital systems using the linear hybrid automata model,
demonstrating how basic coverification problems can be
solved, experimenting with real examples, and proposing

a simplification strategy for coverifying complex systems.
This article is organized as follows. Section 2 de-
scribes some related and previous work. Section 3 gives
the formal definition of a hybrid automaton and describes
how an embedded system can be modeled by a network
of hybrid automata. Section 4 presents some elementary
commonly-found coverification problems and how they are
solved. A simplification strategy is also presented for cov-
erifying complex systems. Section 5 presents an Ethernet
Bridge case study illustrating our coverification concepts
and method. Section 6 concludes with some future work.

2. Previous Work

In the recent few years, due to computer technology rev-
olution, the widespread use of computers, and the obvious
benefits of installing a computing processor within a sys-
tem, embedded systems have taken advantage of this trend.
Large systems can now significantly decrease their over-
all cost by designing parts of embedded systems as soft-
ware executing on a general-purpose computation proces-
sor. This cost reduction is desirable, but it has also created a
few new problems of its own such as the rneed for a commu-
nication protocol between the hardware and software parts,
more complicated fault-tolerance problems, the myth that
software can be easily changed, without any heavy conse-
quences, and coverification problems.

Codesign is an ernerging field of research that deals
with designing systems that have both hardware and soft-
ware. In the past few years, several codesign methodologies
were proposed, such as COSMOS [12], TOSCA [4], ECOS
project [1], LOTOS-based codesign [22], CMAPS [19] to
name a few. Codesign tools also abound, such as Spec-
Syn [14], Ptolemy, and Polis [5] all three of UC Berkeley,
VULCAN [15] of Stanford University, COSYMA [13] of
Braunschweig University, CODES [8] of Siemens, Tyndex
of INRIA, SAW of CMU, COWARE of IMEC, and CHI-
NOOK [11] of Washington University. Either a combined
programming language such as VHDL with C and Hard-
wareC, or some formal specification language such as LO-
TOS, ETOILE, Esterel, graphical FSM, CSP, etc are used
for specifying embedded systems. Formal techniques have
often been limited to the specification stage such as formal
verification of the system specification in LOTOS [22].

From the above, most codesign methodologies or tools
currently validate the codesigns produced, instead of veri-
fying them. Validation occurs in the form of cosimulation
and testing. Coverification, although difficult, should not be
neglected, especially in high-consequence systems such as
nuclear projects, safety systems, etc. The main problems
faced in coverifying a design such as different time-scales,
etc. were presented in Section 1. Below, we briefly mention
two formal models that have been used for coverification

217

and/or codesign, namely CFSM and IPN.

Codesign FSM (CFSM) [9, 10, 6] is a formal model
used in the POLIS codesign tool [S]. Coverification is per-
formed by translating CFSM into traditional FSM and exist-
ing FSM-based verification techniques applied. The prob-
lem of different time scales is not solved because traditional
FSM either have no notion of time or their extension such
as Timed Automata [3] allow specification of clocks with a
single uniform rate only.

Intepreted Petri Nets (IPN) were used for synthesizing
interfaces in [23]. Temporal constraints were specified by
asserting a delay to a place in IPN. But, the delays occur-
ring in a multi-rate system must be transformed into a com-
mon base rate. This transformation is not always ideal or
straightforward.

Both CFSM and IPN have the same problem of having
to handle different time scales, either for coverification or
codesign. The hybrid automata model we use for formal
coverification solves the problem of different time-scales
and at the same time automatic coverification can be per-
formed. We will show how using this model, several cover-
ification problems are solved.

Further, existing real-time system verification tools such
as Uppaal [7], SGM (State-Graph Manipulators) [20, 24],
and others do not explicitly distinguish hardware and soft-
ware verification. Since our model is based on hybrid au-
tomata, we use the HyTech tool [17] developed by Hen-
zinger, et al. HyTech is a tool for verifying hybrid systems.

3. Hybrid Automata Model

The hardware-software timing coverification approach
proposed in this article is mainly based on the hybrid au-
tomata model. There are various reasons for using such a
model as given in Section 1. In this section, hybrid systems
are defined and illustrated with examples, the hybrid au-
tomata model is formally defined, and two different system
models for hardware-software coverification are proposed.

The hybrid automata model was initially proposed for
hybrid systems. A hybrid system consists of a discrete pro-
gram with an analog environment [2]. For example, a ther-
mostat which controls the temperature of a room by sensing
the temperature and controlling a heater is a hybrid system
because when the heater is off the temperature (z) decreases
with a rate of — Kz and when the heater is on, the tempera-
ture changes with a rate of K (h — z), where K is a constant
related to the room and h is a constant related to the power
of the heater. The specification for the thermostat is that the
temperature should be maintained between m and M de-
grees (0 < m < M). Other examples of hybrid systems
include a water-level monitor, timed mutual-exclusion pro-
tocol, leaking gas burner, and a game of billiards [16, 17].
Hybrid systems can also be composed in parallel. Linear

hybrid systems are hybrid systems that have their activities,
invariants, and transition relations all expressed as linear ex-
pressions on the system variables [2].

A hybrid automaton can be formally defined as follows.

Definition 1 Hybrid Automaton (HA)

A hybrid automaton (HA) is atuple H = (L,V, B, E,a,n)
such that: L is a set of locations, V' is a set of variables, B
is a set of synchronization labels, E is a set of edges called
transitions, E = {ele = (I,b,u,1"),l,I' € L,b € B,u C
V21, where V is the set of all valuations of the variables in
V, a is a labeling function that assigns to each location a
set of activities which are time-invariant, and 7 is a labeling
function that assigns to each location [€ L an invartant
condition n(l) C V.

A state of a hybrid automaton H is a pair (/,v), where
l € L and v is a valuation of the variablesin V. A run of H
is a finite or infinite sequence

piog = a1 =4 ¢))
where o; = (li,vi), ti € RZO, fi € a(li), fl(O) =
v, fi(t) € n(l;)Vt,0 < t < t;, and ;4 is a transition
successor of o} = (I;, fi(t:)).

An embedded system with hardware and software can
be mapped into a network of linear hybrid automata (LHA).
In the simplest case, one hybrid automaton represents the
hardware and one represents the software. The hardware
and software interfaces are modeled into the hardware hy-
brid automaton (HHA) and the software hybrid automa-
ton (SHA), respectively. Another form of modeling could
be mapping hardware into several LHA each representing
some physical hardware component and software into sev-
eral LHA each representing a software process.

In the following, two different models are proposed for
the two types of embedded system architectures found to-
day, namely, 1-ASIC/1-CPU and multi-ASIC/multi-CPU.
How the models can be interchangeably used is explained.

3.1. Simple Model

This model consists of only two LHA, one representing
the hardware and one the software. This model is suitable
for 1-ASIC/1-CPU embedded systems because there are
only two clock rates: one for the ASIC and one for the CPU
executing the software. If the interaction of the embedded
system with its environment is to be verified then one more
LHA is specified for modeling the environment. Synchro-
nization between the hardware and the software is achieved
by declaring synchronization labels on transitions of the
LHA. A more complex system consisting of n-ASIC/m-
CPU (n,m > 0) can also be modeled using the simple
model, but the verification accuracy have to be traded-off
for model simplicity and verification scalability because the

218

clock rates are now declared as ranges instead of a single
value. The rate range for hardware must cover all the n
ASICs’ clock rates and the rate range for the software must
cover all the m CPUs’ clock rates. In this case, the sim-
ple model can only guarantee that if the hardware and the
software clock rates are within that range, then the system
is correct or feasible, but it does not guarantee correctness
or safeness for specific rate values. The network model as
presented in the following will be a more accurate one for
such systems.

An example of a simple model is given in Fig. 1 which
models a generic hardware-software system where the hard-
ware waits for a specific period of time for response from
the software. The hardware times out if the software does
not respond within the time limit.

3.2. Network Model

This model consists of more than two LHA, where ei-
ther the hardware or the software or both are represented
by collections of LHA. This model is suitable for an n-
ASIC/m-CPU system, where each ASIC and each CPU can
be represented by one LHA. In this case, there would be
n + m LHA in the network model. If the number of LHA is
too large and thus affects verification, then a more compact
model can be obtained by modeling each type of ASIC and
each type of CPU by a single LHA. Assuming that there is
a small number of different types of ASICs and CPUs, then
the network model would be more manageable and verifi-
able. Although synchronizations among the hardware and
the software components can again be achieved by synchro-
nization labels as in the simple model, yet due to the com-
plex behavior of the system, communication protocols are
used instead. A communication protocol is modeled by an
individual LHA, so as to maintain modularity and ease of
verification. If two or more codesign alternatives, produced
as a result of some codesign methodology, were similar in
respects except for the communication protocol used in the
hardware-software interface, then the network model can
be easily reused by just replacing the LHA representing the
communication protocol by a new one.

4, Coverification Techniques

Using the hybrid automata model for an embedded sys-
tem, solution techniques are proposed for some commonly-
found coverification problems. The five commonly-found
elementary coverification problems presented here include:
Software Synchronization, Hardware Synchronization, Soft-
ware Concurrency, Hardware Concurrency, and Integrated
Codesign Alternative Verification. A systematic simplifica-
tion technique called SHIV (Software-Hardware-Interface

dxy, € [5/6,7/6)
zp <1

¥
s IS, C

zs = O\ dzs € [3/4,4/F]

xp = 6
h \

one done
— start
Th = 10(>$h, < hmags 25 :=10 >1‘5 2 Smin
Tp =
s> mn
Hardware Software

Figure 1. Software Synchronization

Verification) is also presented for verifying complex sys-
tems. SHIV decomposes the LHA models into three parts,
namely the software, the hardware, and the interface, and
ensures that a system is safe by verifying each part.

4.1. Software Synchronization

In most embedded systems, the software accomplishes
some tasks that are costly for the hardware. Often, the hard-
ware makes a request. to the software for performing a task
and waits for the software to respond. Blocking synchro-
nization is assumed throughout this article because embed-
ded systems are generally synchronous. Asynchrony in-
creases complexity and embedded systems usually cannot
afford it. The hardware after making a request waits for a
pre-specified period of time, as determined by the system
specification or the codesign methodology. If the time limit
is reached and the software has not yet responded, the hard-
ware enters a dangerous ambiguous state and the system is
unsafe. Coverification must ensure that all such software
synchronizations are successful for the given different time
scales of the hardware and the software.

Figure 1 shows a LHA simple model of a software syn-
chronization. The hardware has a relative clock rate of
[5/6,7/6] and the software [3/4,4/5]. Running the model
using the HyTech tool, we found that software synchroniza-
tion is guaranteed only if 9h ey > 148ma,. Further anal-
ysis shows that if [k, hy] and [sq, s,] were the hardware
and software clock rates, respectively, then the condition
for software synchronization is a parametric expression:

@

where hy,q. is the maximum time the hardware, after rak-
ing arequest, will wait for the software response and 45, is
the maximum time the software must take for computation
of the requested task or equivalently the slowest computa-
tion delay.

Sthimas 2 BuSmin

4.2, Hardware Synchronization

In contrast to software synchronization, hardware syn-
chronization involves a minimum time that the hardware

219

dxy, € [5/6,7/6)
T, <1
Init

Ty =

zs = O\ dzs € [3/4,4/5]

start

done
— start
;.h - 10 h 2 hmin zs:=0 >1s > Smazx
h = done
Quait D7z Bead>
Ts & Smax
Hardware Software

Figure 2. Hardware Synchronization

must wait after making a request to the software. This sit-
uation occurs in the execution of periodic tasks, where the
start time of two instances of the same tasks must be sepa-
rated by a minimum time interval. For example, when the
software is responsible for digital signal processing, if two
instances of the same tasks overlap randomly, then the com-
putation of the first task will be affected by the second one,
thus causing a delay in all future outputs. The situation be-
comes worse when more than two instances of the same task
all overlap causing a heavy workload on the processor exe-
cuting the software. Coverification in this case must ensure
that the hardware does not violate the minimum wait time
constraints.

Figure 2 shows a hybrid automata model of a hardware
synchronization. The hardware and software relative clock-
rate ranges were [5/6,7/6] and [3/4,4/5], respectively.
The model specification was executed using HyTech and
the results obtained: hardware synchronization is guaran-
teed when the parametric condition 258,40, > 24hmin i
satisfied. Further analytical study shows that if the hardware
and software clock-rate ranges were [hy, hy,] and [s;, s,,], re-
spectively, then the hardware synchronization is guaranteed
only if the following condition is satisfied.

3)

hl Smax 2 suhmin

where s;q, i the maximum computation time of the soft-
ware and h,,;p, 1S the minimum wait-time of the hardware.

4.3. Software Concurrency

If a multiprocessor system is within cost constraints for
executing the software, a natural question that arises is how
many computation processors must be used to speed up
software execution in order to cope with hardware require-
ments and thus guarantee a safe and feasible system. This
question can be answered through Software Concurrency
Coverification (SCC). Software concurrency coverification
mainly derives parametric conditions that must be satisfied
by a m-processor system (. > 1) to ensure a safe system.
The clock rates for each configuration of the m-processor
system (m > 1) must be estimated. The hardware waits

zp = 0 dzp € [3/5,2/3]
zp <1 msl?ﬂ N
g =
start donel,done2, done3 s < Imits
zp =1) h<hmaz- dz sy 6[1/4,3/7]
zp = = restart] Zs < Snying

Ts = Smin,

dxsz € [1/2,2/3]

restart] restart2 restart2
xp =0 zp:=0 Ts = Sming
dzs3 € [3/414/5] done3
Hardware Software Ts < Sming

Figure 3. Software Concurrency

for some minimum period of time after making a request.
By increasing the quantity of processors, the software per-
formance could be improved and thus the results could be
produced within the hardware minimum period of time.

Figure 3 shows a hybrid automata model for a system
with one hardware and three possible software configura-
tions: 1-processor, 2-processor, and 3-processor systems.
The hardware relative clock rate is assumed to be [3/5, 2/3]
and that of the software configurations [1/4, 3/7], [1/2, 2/3],
and [3/4, 4/5], respectively. A sub-linear increase in com-
puting power of the software configurations is assumed. If
hmaz is the maximum hardware wait-time time and $,,,;,, is
the slowest software computation period, then on running
through HyTech either one of the following holds.

o all the three configurations are safe if Ayor > 3Smin,

e only the 1-processor system is not safe if hpap >
2Smin, OT

¢ only the 3-processor system is safe if Apmae > Smin.

Depending on the particular task at hand, hy,4, and sypip
could be estimated and the degree of software concurrency
obtained through coverification.

4.4. Hardware Concurrency

In contrast to software concurrency coverification, which
increases software performance to meet hardware require-
ments, Hardware Concurrency Coverification (HCC) de-
creases the hardware cost to meet both the cost and software
requirements. Often a cheaper, slower hardware could sat-
isfy all timing requirements in an embedded system. Opting
for such a hardware could decrease overall system cost, thus
leaving more budget for other embedded systems. Hard-
ware concurrency coverification derives parametric condi-
tions for each hardware-software configuration and the ver-
ification engineer could then decide on one particular con-
figuration that meets the timing requirements.

220

deny € [1/4,3/@Wain_D
restart] Q A
Tp < hming
dzpz € [1/2,2 G Waiz restartl restart2
restart2 Zs > Smaz Ts > Smaz
Zh < hming =0 z,:=0

Th 2 hming
done3

Software

Figure 4. Hardware Concurrency

Figure 4 shows the LHA model of hardware concur-
rency coverification with three hardware configurations H;,
H,, and H; and one software configuration (S). The hard-
ware clock rates are respectively [1/4,3/7],[1/2,2/3], and
[3/4,4/5] and that of the software is [3/5,2/3]. Suppose
that Amin, , Amin,, and Apin, are the respective minimum
time that the hardware configurations must wait (see Hard-
ware Synchronization Coverification in SubSection 4.2) and
Smag be the maximum computation time of software. Run-
ning this model through HyTech, we obtain the result that
the system configurations are safe only if the following con-
ditions are satisfied.

o (Hy,S) is safe if 3hmin, < Smaz»
o (H1,S) and (Hy, S) are safe if 2hmin, < Smaz,
e (Hy,S5),(H2,S),and (Hs, S) are all safe if hpin, <

Smaz .

Hence, if in the slowest and cheapest hardware configura-
tion (H) the condition 3A i, < Smas 1S met, then we can
use H; instead of the costlier Hy and Hj hardware config-
urations.

4.5. Integrated Codesign Alternative Verification

Integrated Codesign Alternative Verification (ICAV)
handles the case of complex embedded systems with more
than one hardware architectures and a multiprocessor sys-
tem for executing the software. Several codesign alterna-
tives may be produced and validated by a codesign method-
ology. Normally the selection criterion may depend on ei-
ther the cost (minimum cost) or the performance (maxi-
mum throughput) or both (minimum cost-performance ra-
tio). ICAV proposes a new criterion, namely Incompatibil-
ity Ratio of Software-Hardware (IRiSH), which is defined
as the safest ratio of hardware and software clock rates. By
a safe ratio, it means that the ratio is either a minimum or a
maximum that must be satisfied by an embedded system’s

Table 1. ICAV Example

| HW Clock [SWClock | C[P[C/P] p
C: | [3/2,15/8] | [3/4,4/5]] 1000 | 100 | 10.00 | 2.5
C. | 3/2,15/8] | [1/2,5/8] | 750 | 80 | 9.38 | 3.75
Cs | [5/6,7/6] | [3/4,4/5] | 650 | 60 | 10.83 | 1.56
Ci | [5/6,7/6] | [1/2,5/8] | 500 | 50 | 10.00 | 2.33

C: Cost, P: Performance, p: IRiSH

clock rates in order for the system to be safe. IRiSH is a
global minimum ratio when there are purely software syn-
chronizations, it is a global maximum ratio when there are
purely hardware synchronizations, otherwise it is expressed
as a range with its lower bound being the minimum of all
locally minimal ratios corresponding to software synchro-
nizations and its upper bound being the maximum of all
locally maximal ratios corresponding to hardware synchro-
nizations. This metric achieves a better trade-off between
the hardware and the software than the conventional cost-
performance ratio because the latter can be deceiving at
times when the cost is especially low cr the performance
has peak bursts.

JRiSH is best illustrated by an example as shown in
Fig. 5. There are two hardware alternatives with clock rates
[3/2,15/8] and [5/6,7/6] and two software alternatives
with clock rates [3/4,4/5] and [1/2,5/8]. This example is
a case of multiple software synchronization. Table 1 shows
the four different configurations (C, C, Cs, Cy) achiev-
able by the two hardware and the two software alterna-
tives along with their costs, performance values, and cost-
performance ratios. We observe that under different metrics
the best design configuration is different:

e (4 has the least cost, but it has a poor performance,
o (71 has the best performance, but it has a high cost,

¢ (', has the best cost-performance ratio, but on apply-
ing ICAV we found that it has the largest software-
hardware incompatibility, that is the highest IRiSH,
which means synchronization and other communica-
tions could require a large effort, and

C'3 has the least IRiSH, which means that the hard-
ware and the software are the least incompatible and
thus achieves a better hardware-software trade-off
than the others.

4.6. Software-Hardware-Interface Verification

A new modularized verification strategy called Software-
Hardware-Interface Verification (SHIV) is proposed for

221

Software

Hardware

Figure 5. Integrated Codesign Alternative Ver-
ification

hardware-software embedded systems. Generally, the soft-
ware and the hardware of an embedded system communi-
cate either through an interface using communication proto-
cols or through shared memory using synchronization vari-
ables. The interface is often explicit and important in an
embedded system. The SHIV strategy verifies an embed-
ded system by verifying each part individually, namely the
hardware, the software, and the interface. The assume-
guarantee principle of formal modular verification [21] is
employed in SHIV. In verifying (guaranteeing) the inter-
face, it is assumed that both the hardware and the software
themselves are correct. Similarly, the principle is applied to
the other two parts: the hardware and the software.

In the context of the linear hybrid automata model, SHIV
works as follows. SHIV must perform each of the following
steps to verify a system.

o Software Verification: The triggering conditions on
transitions interconnecting interface and software are
assumed to be TRUE. All clock variables are either
reset or advanced a period of time depending on the
triggering conditions on the above transitions.

Hardware Verification: The triggering conditions on
the transitions interconnecting interface and hardware
are assumed to be TRUE. All clock variables are ei-
ther reset or advanced a period of time depending on
the triggering conditions on the above transitions.

Interface Verification: The triggering conditions on
the transitions interconnecting the interface and the
hardware and on the transitions interconnecting the
interface and the software are assumed to be TRUE.
All clock variables are either reset or advanced a pe-
riod of time depending on the triggering conditions
on the above transitions.

5. Ethernet Bridge Case Study

Besides the five elementary problems presented in the
previous section, we had applied our approach to several

Inl Outl In2 Out2 In3 Out3

It \ data =

Portl Port2 Port3 Init
=0 =
Input Input2 Tnput3 z o z 0
Outputl Multiplexor Output3 Inputl Input2 Input3
ut2 Request-In $x=45" L= 4 7 =4
Control z:=0 z:=0
z = 9 (Create Re
Request Answer ata = Yo = 11
ta := 0 =
Table Access T = Control =9
data=1 o=10 fa=10 data=
Data-In Data-Out data =0 daélia:_:_ 8 (:li:a:ti 0_ 1 data :=
Memory Table Access
date =0y ez 2
Figure 6. Ethernet Bridge: Process Graph ata = ata =

Retrieve Data>

. Fi . idge:
real-world systems. An Ethernet Bridge example is pre- igure 7. Ethernet Bridge: LHA Model

sented in this section for illustration. Figure 6 shows the
process graph of an Ethernet Bridge [22]. Bridges extend
LANs by providing increased length, number of stations, Software Hardware
performance, and reliability. They operate below the MAC T, =0

Service Boundary, and is transparent to protocols operating \'d“t“ =0

above the boundary, in the Logical Link Control (LLC). It is Cnit
assumed as in [22] that the Ethernet LANSs operate under the
CSMA/CD access method. The basic function performed
by bridges are: (1) frame forwarding, (2) learning station
addresses, and (3) resolving topology loops with the span-
ning tree algorithm. The commuuication estimates given

in [22] were transformed into our linear hybrid automata, @, =9] data =1
. PR . . data =1 data :=0
which is illustrated in Fig. 7. data =0
It was found that if the LHA model in Fig. 7 was di-
rectly verified using HyTech, it could not terminate even af- FalY Jdata =1
ter modifying the system model as indicated in the HyTech
user guide [17]. Finally, the SHIV strategy was applied. Figure 8. Ethernet Bridge: HW/SW Models

The decomposed hardware and software LHA are shown in
Fig. 8 and the interface LHA in Fig. 9. We present the inter-
face verification which is the most important for a codesign

problem. The bridge processing rate was taken as 3000 pps Software Hardware
(packets per second) and the hardware area constraint was \z;tji 0

assumed to be 4000 as in [22].
Given a hardware clock range of [51/10, 6] and a soft-
ware clock range of [1/5, 2/5], the safety condition was

>
T = 22 Ts = Smaz a =
4hmin S 51smaw (4) Ratkicary data =
‘—». C_Emor

For the estimates found in [22], A,y is 127 and s,,44 s 10, dota
hence the above equation is satisfied. answer
Since Equation (4) depends on clock rates, a further
analysis shows that if [hy, h,] and [s;, s,,] were the respec-
tive hardware and software clock ranges, then the condition

Figure 9. Ethernet Bridge: Interface Models

222

would be as follows.

hmin

of Syhmin < hiSmaz 5

Smaz

6. Conclusion

A linear hybrid automata model based coverification ap-
proach was proposed for hardware-software embedded sys-
tems. It was shown how different time scales of the hard-
ware and the software and the environment could be han-
dled by the model. Five commonly-found elementary cov-
erification problems were presented and solved using the
proposed approach. A simplification strategy called SHIV
was also proposed for complex systems. Finally, an Eth-
ernet Bridge case study was presented which showed how
SHIV could be used to verify a system when the traditicnal
approach failed. Future work will include developing more
strategies using the linear hybrid automata model to sclve
other coverification problems.

References

(n

(2]

(3]

[4]

[5

—

[6

[t}

{7

(8]

M. Aiguier, J. Benzakki, G. Bernot, S. Beroff, D. Dupont,
L. Freund, M. Israel, and F. Rousseau. ECOS: A generic
codesign environment for the prototyping of real-time appli-
cations. In J.-M. Berge, O. Levia, and J. Rouillard, editors,
Hardware/Software Co-Design and Co-Verification. Kluwer
Academic Publishers, 1997.

R. Alur, C. Courcoubetis, N. Halbwachs, T. Henzinger, F.-H.
Ho, X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine. The
algorithmic analysis of hybrid systems. Theoretical Com-
puter Science, 138:3-34, 1995.

R. Alur and D. Dill. Automata for modeling real-time sys-
tems. Theoretical Computer Science, 126(2):183-236, Apr.
1994.

S. Antoniazzi, A. Balboni, W. Fornaciari, and D. Sciuto.
The role of VHDL within TOSCA co-design framework. In
Procs. Euro-VHDL, Grenoble, France, Sept. 1994.

F. Balarin, M. Chiodo, P. Giusto, H. Hsich, A. Jurec-
ska, L. Lavagno, . Passerone, A. Sangiovanni-Vincentelli,
E. Sentovich, K. Suzuki, and B. Tabbara. Hardware-
Software Co-Design of Embedded Systems: The Polis Ap-
proach. Kluwer Academic Publishers, 1997.

F. Balarin, H. Hsieh, A. Jurecska, L. Lavagno, and
A. Sangiovanni-Vincentelli. Formal verification of embed-
ded systems based on CFSM networks. In Proceedings of
the Design Automation Conference, 1996.

J. Bengtsson, K. Larsen, F. Larsson, P. Petterson, Y. Wang,
and C. Weise. New generation of UPPAAL. In Procs. of the
International Workshop on Software Tools for Technology
Transfer (STTT’98), July 1998,

K. Buchenrieder and C. Veith. CODES: A practical concur-
rent design environment. In Procs. International Workshop
on Hardware-Software Co-Design, 1992.

223

(91

(10]

(1]

f12]

[13]

[14]

[15]

[16]

{17}

(18]

[19]

[20]

[21]

[22]

[23]

(24]

M. Chiodo, P. Giusto, H. Hsieh, A. Jurecska, L. Lavagno,
and A. Sangiovanni-Vincentelli. Synthesis of software
programs from CFSM specifications. Technical Report
UCB/ERL M94/87, U.C. Berkeley, 1994.

M. Chiodo, P. Giusto, H. Hsieh, A. Jurecska, L. Lavagno,
and A. Sangiovanni-Vincentelli. Synthesis of software pro-
grams from CFSM specifications. In Proceedings of the De-
sign Automation Conference, June 1995.

P. Chou, R. Ortega, and G. Borriello. The CHINOOK
hardware-software co-synthesis system. In Procs. Interna-
tional Symposium on System Synthesis, 1995.

J. Daveau, G. Marchioro, T. Ben-Ismail, and A. Jerraya.
COSMOS: An SDL based hardware/software codesign envi-
ronment. In J.-M. Berge, O. Levia, and J. Rouillard, editors,
Hardware/Software Co-Design and Co-Verification. Kluwer
Academic Publishers, 1997.

R. Ernst, J. Henkel, and T. Benner. Hardware-software
cosynthesis for micro-controliers. IEEE Design and Test of

Computers, 10(4), Dec. 1993.
D. Gajski, F. Vahid, and S. Narayan. A design methodol-

ogy for system specification refinement. In Procs. European
Design Automation Conference, Feb. 1994.

R. Gupta and G. De Micheli. Hardware-software cosynthe-
sis for digital systems. IEEE Design and Test of Computers,
10(3), Sept. 1993.

T. Henzinger, P.-H. Ho, and H. Wong-Toi. HyTech: The next
generation. In Procs. 16th Real-Time Systems Symposium,
pages 56-65. IEEE Computer Society Press, 1995.

T. Henzinger, P.-H. Ho, and H. Wong-Toi. A user guide to
HyTech. In Procs. Tools and Algorithms for the Construc-
tion and Analysis of Systems (TACAS), LNCS, volume 1019,
pages 41-71. Springer Verlag, 1995.

J. Hopcroft and J. D. Ullman. Introduction to Automata The-
ory, Languages, and Computation. Addison Wesley Pub-
lishing Company, 1979.

P-A. Hsiung. CMAPS: A cosynthesis methodology for
application-oriented parallel systems. ACM Trans. on De-
sign Automation of Electronic Systems, 5(2), April 2000.
P.-A. Hsiung and F. Wang. A state-graph manipulator tool
for real-time system specification and verification. In Proc.
Sth. IEEE International Conference on Real-Time Comput-
ing Systems and Applications (RTCSA’98), Oct. 1998.

O. Kupferman and M. Vardi. On the complexity of branch-
ing modular model checking. In Procs. 6th International
Conference on Concurrency Theory, LNCS, volume 962,
Aug. 1995.

L. Sanchez, M. L. Lopez, N. Martinez, C. Carreras, J. Lopez,
C. Delgado-Kloos, A. Royo, and P. Breuer. Co-design at
work: The ethernet bridge case study. In J.-M. Berge,
0. Levia, and J. Rouillard, editors, Hardware/Software Co-
Design and Co-Verification. Kluwer Academic Publishers,
1997.

C. Vial and B. Rouzeyre. Hardware-software co-synthesis:
Modelling and synthesis of interfaces using interpreted petri
nets. In J.-M. Berge, O. Levia, and J. Rouillard, editors,
Hardware/Software Co-Design and Co-Verification. Kluwer
Academic Publishers, 1997.

F. Wang and P-A. Hsiung. Automatic verification on the

large. In Proc. 3rd IEEE High-Assurance Systems Engineer-
ing Symposium (HASE’98), pages 134141, Nov. 1998.

