
Embedded software veri®cation in hardware±software
codesign

Pao-Ann Hsiung *

Academia Sinica, Institute of Information Science, Academic Road, Sec. 2, No. 128 Taipei, Taiwan, Republic of China

Received 1 May 2000; accepted 1 September 2000

Abstract

Concurrent Embedded Real-Time Software (CERTS) is intrinsically di�erent from traditional, sequential, indepen-

dent, and temporally unconstrained software. The veri®cation of software is more complex than hardware due to in-

herent ¯exibilities (dynamic behavior) that incur a multitude of possible system states. The veri®cation of CERTS is all

the more di�cult due to its concurrency and embeddedness. The work presented here shows how the complexity of

CERTS veri®cation can be reduced signi®cantly through answering common engineering questions such as when, where,

and how one must verify embedded software. First, a new Schedule-Verify-Map strategy is proposed to answer the when

question. Second, veri®cation under system concurrency is proposed to answer the where question. Finally, a complete

symbolic model checking procedure is proposed for CERTS veri®cation. Several application examples illustrate the

usefulness of our technique in increasing veri®cation scalability. Ó 2000 Elsevier Science B.V. All rights reserved.

Keywords: Embedded software; Software veri®cation; Symbolic model checking; System/process concurrency; Quasi-static scheduling;

Software synthesis

1. Introduction

With the burgeoning wide-spread embedding of
software into computerized systems and the in-
creasing complexity of today's hardware±software
systems, software veri®cation is an indispensable
procedure in system synthesis. Software veri®ca-
tion tries to uncover discrepancies in the interac-
tion between software and hardware, to guarantee
the satisfaction of real-time constraints by the
software under all circumstances, and to check if
the synthesized software is optimally con®gured.
In this work, we try to answer questions related to

software veri®cation such as when should software
be veri®ed, where should software be veri®ed, and
how should software be veri®ed.

When should software be veri®ed ? Embedded
software is synthesized through a process called
quasi-static scheduling (QSS) [25]. QSS computes
most of the schedule for a set of software processes
at compile time, leaving at run-time only the so-
lution of data-dependent decisions. After QSS,
software code is then generated through a simple
syntax mapping from the scheduled processes.
Veri®cation can be performed at three di�erent
points: before scheduling, after scheduling, and
after code generation. On one hand, before
scheduling, processes generally have some regions
in its state-space which will be eventually elimi-
nated by scheduling. On the other hand, after code

www.elsevier.com/locate/sysarc

Journal of Systems Architecture 46 (2000) 1435±1450

* Tel.: +886-2-2788-3799; fax: +886-2-2782-4814.

E-mail address: hpa@computer.org (P.-A. Hsiung).

1383-7621/00/$ - see front matter Ó 2000 Elsevier Science B.V. All rights reserved.

PII: S 1 3 8 3 - 7 6 2 1 (0 0) 0 0 0 3 4 - 5

generation, the software code is generally imple-
mentation-dependent and contains coding techni-
calities that do not really contribute toward the
actual behavior of the software. Hence, we pro-
pose to verify software after scheduling and before
code generation, which will be discussed in details
in Section 3.

Where should software be veri®ed ? There are
generally two kinds of concurrencies in a hard-
ware±software system: system concurrency and
process concurrency. System concurrency is gen-
erally associated with the number of Central
Processing Units (CPUs) or Application Speci®c
Instruction Processors (ASIPs) or Application
Speci®c Integrated Circuits (ASICs). Normally
there are dedicated CPUs for software execution.
Thus, we will con®ne ourselves to the number of
CPUs executing the software as the system con-
currency. Process concurrency is the maximum
degree of parallelism that a set of processes ex-
hibits during execution. Process concurrency is
generally much larger than system concurrency.
This is because if process concurrency were to be
smaller than system concurrency then the system
will be under-utilized, indicating a waste of re-
sources. Conventionally, software is veri®ed under
process concurrency. For example, we usually
verify a communication protocol under the maxi-
mum-process concurrency assumption. What we
propose here is that embedded software should
instead be veri®ed under the system concurrency.
This has a signi®cant impact on veri®cation e�-
ciency and scalability, as will be illustrated in
Section 4.

How should software be veri®ed ? An algorithmic
procedure for formal veri®cation that has gained
unforeseen popularity among veri®cation scientists
and likewise among design engineers, is called
model checking. Model checking is an automatic
procedure to verify if a given system satis®es a
given temporal property [4]. For dense real-time
systems, a system is often described using Timed
Automata (TA) [7] and a property is often speci®ed
in Timed Computation Tree Logic (TCTL) [14,15].
For hybrid systems, Linear Hybrid Automata
(LHA) [5,6] is a theoretically proven model for
veri®cation purposes. LHA was also recently used
as a formal model for timing coveri®cation of

hardware/software systems by the author [16].
Here, we assume that all processors in our target
system are homogeneous. Since we are mainly
verifying concurrent software that executes on
processors with the same clock rates, we will be
using the simpler TA model instead of LHA. We
propose two model-checking algorithms for Con-
current Embedded Real-Time Software (CERTS).
Basically, the algorithms work by abridging a set
of given TA into a smaller set to acquiesce for the
smaller system concurrency (as compared to pro-
cess concurrency) and then annotating the
abridged TA with pre-generated valid schedules.
Finally, model checking is applied on the abridged
and annotated set of TA. A detailed description is
given in Section 5.

This paper is organized as follows. Section 2
gives a brief survey of current software synthesis
methods in context of veri®cation. Section 3 an-
swers the when question by proposing a Schedule-
Verify-Map (SVM) strategy. Section 4 answers the
where question by demonstrating the validity of
verifying at the system concurrency instead of at
process concurrency. Section 5 answers the how
question by proposing two veri®cation algorithms
for CERTS. Section 6 gives several application
examples to support the answers presented in the
previous three sections. Section 7 concludes the
paper.

2. Embedded software synthesis

Currently, software synthesis is a hot topic of
research in the ®eld of hardware±software code-
sign. Previously, a large e�ort was directed to-
wards hardware synthesis and comparatively little
attention paid to software synthesis. Partial soft-
ware synthesis was mainly carried out for com-
munication protocols [24], plant controllers,
[8,9,23] and real-time schedulers [2,26] because
they generally exhibited regular behaviors. Only
recently has there been some work on auto-
matically generating software code for embedded
systems [10,21,22,25,27]. As far as the authors
know, no automatic software synthesis method is
available for concurrent real-time embedded soft-
ware. We are working on this portion of research,

1436 P.-A. Hsiung / Journal of Systems Architecture 46 (2000) 1435±1450

and this paper is the veri®cation part of the work.
In the following, we will brie¯y survey the existing
works on the synthesis of non-real-time software.

Lin [21,22] proposed an algorithm that gener-
ates a software program from a concurrent process
speci®cation through intermediate Petri-Net rep-
resentation. This approach is based on the as-
sumption that the Petri-Nets are safe, i.e., bu�ers
can store at most one data unit, which implies that
it is always schedulable. The proposed method
applies QSS to a set of safe Petri-Nets to produce a
set of corresponding state machines, which can
then be mapped syntactically to the ®nal software
code. Zhu and Lin [27] proposed a compositional
synthesis method that reduced the generated code
size and thus was more e�cient.

A software synthesis method was proposed for
a more general Petri-Net framework by Sgroi et al.
[25]. A QSS algorithm was proposed for Free-
Choice Petri Nets (FCPN) [25]. A necessary and
su�cient condition was given for a FCPN to be
schedulable. Schedulability was ®rst tested for a
FCPN and then a valid schedule generated by
decomposing a FCPN into a set of Con¯ict-Free
(CF) components which were then individually
and statically scheduled. Code was ®nally gener-
ated from the valid schedule.

Balarin et al. [10] proposed a software synthesis
procedure for reactive embedded systems in the
Codesign Finite State Machine (CFSM) [11]
framework with the POLIS hardware±software
codesign tool [11]. This work cannot be easily ex-
tended to other more general frameworks.

All the above work suggests that the research
on software synthesis is still at a very young stage
and without any veri®cation. We propose to in-
corporate software veri®cation into the synthesis
procedure for several reasons. Firstly, with the
increased use of Virtual Components (VC) or In-
tellectual Properties (IP), an embedded software
might be installed into more than one type of
system, hence its adaptability to various system
environments should be veri®ed. Secondly, since
software is inherently more complex than hard-
ware, mere simulation or testing might not un-
cover errors that could be drastic. Hence,
veri®cation is required especially for high assur-
ance systems. Thirdly, certain features of the

software part in a hardware±software system are
independent of the hardware. Verifying these fea-
tures together with the hardware would unneces-
sarily increase veri®cation complexity. Thus,
isolating software-speci®c faults might increase the
chances of successfully coverifying the entire sys-
tem. Lastly, if veri®cation is performed after the
complete software synthesis procedure, then the
implementation details in the generated software
code would simply obscure important behaviors of
the software, thus making software more di�cult
to verify.

In the following, we will illustrate our veri®ca-
tion approach based on the QSS method of soft-
ware synthesis. Our veri®cation approach is
independent of the scheduling method and hence
can be applied also to other methods of software
synthesis such as priority-based preemptive
scheduling.

3. Schedule-verify-map strategy

This section answers the when question, that is,
``when should software be veri®ed?'' The context in
which software veri®cation will be discussed is
embedded software synthesis, which was described
in Section 2. As depicted in Fig. 1, there are three
stages in synthesis (®rst row in the ®gure), namely,
process speci®cation, scheduling, and code genera-
tion.
· Stage (1). In process speci®cation, a set of com-

municating processes representing the behavior
of desired software is speci®ed. This speci®ca-
tion can be in the form of a set of Petri-Nets
[21,22,25,27], or in formal speci®cation languag-
es such as Esterel, LOTOS, and others.

· Stage (2). In scheduling, except for run-time de-
pendent computations, all other computations
in the speci®ed processes are quasi-statically
scheduled [22,25]. The scheduled processes are
usually represented by a set of ®nite state-ma-
chines.

· Stage (3). In code generation, the set of ®nite
state-machines is syntactically mapped to actual
software code. A software time loop may be uti-
lized to maintain the schedule in the ®nite state-
machines.

P.-A. Hsiung / Journal of Systems Architecture 46 (2000) 1435±1450 1437

3.1. Conventional veri®cation approaches

Theoretically, verifying the given processes can
be done after either one of the stages during soft-
ware synthesis. Veri®cation scientists try to verify
processes immediately after process speci®cation
(i.e., Stage (1)) to ®nd any speci®cation errors.
This is called the Verify-Schedule-Map (VSM)
approach (column 1 and row 1 in Fig. 1). Design
engineers try to verify the ®nal program after code
generation (i.e., Stage (3)). This is called the
Schedule-Map-Verify (SMV) approach (row 1 and
column 3 in Fig. 1). Both of these approaches
encounter di�erent degrees of state-space explo-
sion problems.

Verifying process speci®cation explores unnec-
essary regions in the state-space that would even-
tually not even exist in the ®nal software code.
These regions are basically those that will be elim-
inated after scheduling (Stage (2)). The problem
becomes worse when the degree of non-determin-
ism is high in the speci®cation or when the degree of
process concurrency increases. The degree of non-
determinism (dND) is the maximum number of dif-
ferent possible behaviors that a system can have in
any one state. The degree of process concurrency
(dPC) is de®ned as the maximum number of pro-
cesses that can execute concurrently in the system
speci®ed. Further details on how dND and dPC a�ect
veri®cation are discussed in Sections 3.2 and 4.

Veri®cation of software program code also in-
dulges in unnecessary state-space explosions and
thus a�ects scalability in the number or size of
processes veri®able. Software programs usually
contain many auxiliary, implementation-depen-
dent variables, that contribute towards neither the
real behavior of the software nor the satisfaction
of speci®ed real-time constraints by the software.
As is well-known, the state-space size explored
during veri®cation increases exponentially with the
number of clock variables and largest integer
constant used [4]. The state-space size also in-
creases drastically with the number of free vari-
ables. Software programs generally contain a lot of
variables, the number of which is not optimized
either by the software synthesis procedure or by
the software compiler.

In conclusion, both of the above approaches
unnecessarily explore regions in the state-space
that do not contribute towards the actual goal of
veri®cation. Thus, in Section 3.2 a new approach is
proposed called SVM as illustrated by row 1 and
column 2 of Fig. 1.

3.2. Proposed SVM approach

To overcome the di�culties in veri®cation pre-
sented in Section 3.1, we propose a new approach
called SVM. In SVM, veri®cation is performed

Fig. 1. En-route veri®cation for concurrent embedded real-time software synthesis.

1438 P.-A. Hsiung / Journal of Systems Architecture 46 (2000) 1435±1450

after scheduling and before code generation. Since
scheduling eliminates certain regions in the state-
space, SVM will obviously explore a much smaller
part of the state-space. The degree of reduction is
analyzed in Section 3.3. Since the target of veri®-
cation is a set of scheduled processes and not
program code, SVM will also search a smaller
state-space than the engineers' approach (veri®-
cation after code generation).

Comparing the two conventional approaches ±
VSM adopted by veri®cation scientists, SMV
adopted by design engineers, and our proposed
SVM approach, we have the pros and cons of each
summarized in Table 1. On comparison, it is ob-
served that SVM is a good trade-o� between
practical feasibility (column 4) and veri®cation
completeness (column 6). Although VSM is more
than complete, its practical feasibility is often
hindered by the exponentially large state-space.
SMV is the most practical among the three ap-
proaches, yet it is an incomplete validation process
(mostly accomplished through simulation and
testing that covers less than 100% of the system
behavior). A more detailed analysis on the SVM
approach is presented in Section 3.3.

3.3. Analysis

To analyze the advantage of the SVM strategy
in comparison with the conventional approaches,
some formal notations, de®nitions, and results are
necessary. The sets of integers and non-negative
real numbers are denoted by N and RP 0, re-
spectively.

TA is composed of various modes intercon-
nected by transitions. Variables are segregated into
categories of clock and discrete. Clock variables
increment at a uniform rate and can be reset on a
transition, whereas discrete variables change val-
ues only when assigned a new value on a transi-

tion. A TA may remain in a particular mode as
long as the values of all its variables satisfy a mode
predicate, which is a conjunction of clock con-
straints and boolean propositions.

De®nition 1 (Mode predicate). Given a set C of
clock variables and a set D of discrete variables,
the syntax of a mode predicate g over C and D is
de®ned as: g :� false j x � c j xÿ y � c j d � c
jg1^g2 j:g1, where x;y2C, �2f6;< ;�;P;>g,
c2N, d2D, and g1;g2 are mode predicates. �

Let B�C;D� be the set of all mode predicates
over C and D. A TA may go from a mode to
another, that is perform a transition, when the
triggering condition (also speci®ed as a mode
predicate) is satis®ed by the current valuation of
clock and discrete variables. On a transition,
some clocks may be reset to zero and some
discrete variables may be assigned new integer
values.

De®nition 2 (Timed automaton). A timed autom-
aton (TA) is a tuple Ai � �Mi;m0

i ;Ci;Di;
vi;Ei; si; qi� such that: Mi is a ®nite set of modes,
m0

i 2 M is the initial mode, Ci is a set of clock
variables, Di is a set of discrete variables,
vi : Mi 7!B�Ci;Di� is an invariance function that
labels each mode with a condition true in that
mode, Ei � Mi �Mi is a set of transitions,
si : Ei 7!B�Ci;Di� de®nes the transition triggering
conditions, and qi : Ei 7!2Ci[�Di�N� is an assignment
function that maps each transition to a set of as-
signments such as resetting some clock variables
and setting some discrete variables to speci®c in-
teger values. �

De®nition 3 (System state). Given a system S of n
processes fP1; P2; . . . ; Pngmodeled by a set of n TA,
fAi jAi � �Mi;m0

i ;Ci;Di; vi;Ei; si; qi�; 16 i6 ng, a

Table 1

Comparison of three veri®cation approaches

Veri®cation approach Correctness Feasibility State-space size Completeness

(1) VSM Too sure Vague Exponentially large More than complete

(2) SVM Sure Largely Reduced Complete

(3) SMV Not sure Practical Small to Medium Incomplete

P.-A. Hsiung / Journal of Systems Architecture 46 (2000) 1435±1450 1439

state s of system S is de®ned as a mapping from
f1; . . . ; ng [Si Ci [

S
i Di to

S
16 i6 n Mi [N[RP 0

such that
· 8i 2 f1; . . . ; ng, s�i� 2 Mi is the mode of Ai in s,
· 8i; 8x 2 Ci; s�x� 2 RP 0 is the reading of clock x

in s, such that s�x� � Vi vi�s�i��, and
· 8i; 8d 2 Di; s�d� 2N is the value of d in s, such

that s�d� � Vi vi�s�i��. �

De®nition 4 (Mode transition). Given a system S
of n processes fP1; P2; . . . ; Png modeled by a set of n
TA, fAi jAi��Mi;m0

i ;Ci;Di;vi;Ei;si;qi�; 16 i6ng,
and two system states s and s0, there is a mode
transition from s to s0 in S, in symbols s! s0, i�
there is an 16i6n such that
· �s�i�; s0�i�� 2 Ei;
· s�i� � si�s�i�; s0�i��;
· for all 16 j6 n and j 6� i, s�j� � s0�j�;
· 8x 2 X �x 2 qi�s�i�; s0�i��) zs0�x� � 0�^�
�x 62 qi�s�i�; s0�i��) s0�x� � s�x���. �

With the above given de®nitions on TA, system
state, and mode transition, we will start analyzing
SVM by ®rst de®ning the concepts of state non-
determinism in a system, and then using it to
quantify the bene®ts obtain by SVM.

De®nition 5 (State non-determinism). Given a
system S of n processes fP1; P2; . . . ; Png modeled
by a set of n TA, fAi jAi � �Mi;m0

i ;Ci;Di; vi;
Ei; si; qi�; 16 i6 ng, and a state s of system S, the
state non-determinism of s is de®ned as the total
number of mode transitions (s! s0), whose oc-
currence at s is non-deterministic (arbitrarily de-
cided), where s0 is a successor system state.
Notationally, we have the following de®nition for
the state non-determinism (w�s�) at s:

w�s� � P16 i6 nx�s�i��; �1�

where x�m� is the number of out-going transitions
of a mode m, which are non-deterministic. �

In general, not all state non-determinism (w�s�)
at a state (s) can be quasi-statically scheduled. We
denote by wqss�s� those non-determinism that can
be quasi-statically scheduled. In notations,

wqss�s� � P16 i6 nxqss�s�i��; �2�

where xqss�m� is the number of out-going transi-
tions of a mode m, which are non-deterministic
and can be quasi-statically scheduled.

Considering the overall e�ect of QSS on veri®-
cation complexity, we have the following results.
First, given a state s of a system S, since all QSS
non-determinism have been eliminated before
SVM, the reduction obtained is a multiplicative
factor of wqss�s� for a state s. Second, along a
computation run of a system (that is, a sequence of
alternating states and mode transitions), the
combined e�ect of state non-determinisms at a
state s and a successor state s0 is multiplicative.
This means that the combined non-determinism is
wqss�s� � wqss�s0�. Thus, the overall reduction e�ect
of QSS on a system behavior can be quanti®ed by
the total number of non-determinisms, Wqss�S�,
resolved by QSS for a system S, as follows.

Wqss�S� �
Y

s2Reach�S�
wqss�s�

�
Y

s2Reach�S�

Y
16 i6 n

xqss�s�i��; �3�

where Reach(S) is the set of reachable states of
system S.

Here, the resolution of a set of non-determi-
nisms at a state, s, means instead of considering all
possible successor states, s0, due to the concurrent
non-determinisms in each process, QSS has ®xed
(that is, scheduled) only one of the successor states
as a valid scheduled state, where s! s0. Hence, the
total number of computation runs that SVM ex-
plores is Wqss�S� times less than that explored by
the VSM approach for a system S.

Taking limits on Wqss�S�, we ®nd that it is a
double exponential term in the number of system
processes, n, and in the size of the reachable state-
space jReach�S�j, as given in the following.

Wqss�S� ! �dND�n�jReach�S�j
; �4�

where dND is the maximum degree of non-deter-
minism of all processes, p1; p2; . . . ; pn. This shows a
double exponential decrease in the number of
computation runs that need be explored by SVM
compared to VSM.

1440 P.-A. Hsiung / Journal of Systems Architecture 46 (2000) 1435±1450

The above was an analytical comparison be-
tween the proposed SVM approach and the VSM
approach. For a comparison between SVM and
SMV, since each ®nal generated program code
might contain di�erent number of auxiliary vari-
ables and data structures, it is di�cult to analyze
theoretically. Nevertheless, the number of com-
putation runs explored by SMV will be de®nitely
larger than that by the SVM approach due to an
increase in state-space size with an increase in the
number of variables.

4. Handling concurrency

This section answers the where question, that is,
``where should software be veri®ed ?'' The context in
which software veri®cation will be discussed is
embedded software synthesis, which was described
in Section 2. In general, embedded software is
executed on one or more embedded micro-
processors. The system concurrency, dSC, as de®ned
in Section 1, is the number of CPUs allocated for
executing an embedded software program. The
degree of process concurrency, dPC, as de®ned in
Section 1, is the maximum number of processes
that can execute concurrently in the system speci-
®ed. As described in the rest of this section, we
propose to verify embedded software under system
concurrency, rather than under process concur-
rency.

4.1. Process concurrency and system concurrency

Nearly all veri®cation theory is based on pro-
cess concurrency. In general, a system is speci®ed
as consisting of a set of processes and the system is
then expected to be veri®ed under the assumption
that all the processes execute concurrently. How-
ever, in the real-world of computerized embedded
systems, concurrency is generally limited by the
embedding system, that is, the hardware architec-
ture that provides an execution environment. The
former is process concurrency, while the latter is
system concurrency. System concurrency is gen-
erally much smaller than process concurrency. For
example, in a two-processor system executing 200

processes concurrently, the process concurrency is
200, but the system concurrency is only two.

Concurrent software is also generally speci®ed
as a set of processes. For example, an image pro-
cessing task may consists of several concurrent
processes working on a part of the image data, but
if there are only two processors then there can be
at most only two processes working concurrently.
Communication protocol algorithms are also
considered to be executed by a set of processes
running concurrently. For example, a system of 10
processes, obeying the Fischer's Mutual Exclusion
Protocol (FMEP) [1,19,20] and executing on ®ve
processors, has a maximum degree of concurrency
of ®ve, and not 10. TA for a typical process
obeying FMEP is given in Fig. 2.

4.2. Veri®cation under di�erent concurrencies

The scalability of formal veri®cation, especially
that of model checking, strictly depends on in-
herent concurrencies in a system model. The size of
state-spaces explored by model checking grows
exponentially with an increase in concurrency. For
example, a two-process system obeying FMEP has
70 modes and 160 transitions [18], a three-process
system has 1239 modes and 4013 transitions, and a
4-process system has approximately 28K modes
and 120K transitions. The increase is drastic.

The concurrency of a system is generally spec-
i®ed as the number of processes running in the
system. This is incorrect when embedded systems
are concerned, because the actual concurrency
(number of processors) is much smaller than the

Fig. 2. Fischer's mutual exclusion protocol (ith process).

P.-A. Hsiung / Journal of Systems Architecture 46 (2000) 1435±1450 1441

number of processes. For example, if veri®cation is
performed for a four-process signal polling system
executing on two processors, then the size of state-
space explored is only 57 modes and 79 transitions,
which is much smaller than that for a 4-process
system veri®ed under process concurrency of four
(78K modes and 205K transitions). TA for the
signal polling system is given in Fig. 3.

For ease of discussion, we will adopt the fol-
lowing notations. In the rest of this paper, unless
mentioned otherwise, assume we are given a sys-
tem S with n processes P � fP1; P2; . . . ; Png,
modeled by n TA A � fA1;A2; . . . ;Ang, re-
spectively, where Ai � �Mi;m0

i ;Ci;Di; vi;Ei; si; qi�,
16 i6 n. Also, assume there are m processors in
system S, that is, Q � fQ1;Q2; . . . ;Qmg. Hence, a
system is de®ned as a two-tuple S � hP;Qi.

On software synthesis, the n processes in P are
QSS on the m processors in Q (refer to Section 2
for software synthesis methods). Let Z be the set
of valid schedules generated by any software syn-
thesis method, that is, Z � ffi j fi � hPk1

; Pk2
;

. . . ; Pkri; Pkj 2 P; 16 j6 r6 n; 16 i6mg, where
fi � hPk1

; Pk2
; . . . ; Pkri is a schedule for processor Qi,

such that processes Pk1
; Pk2

; . . . ; Pkr are scheduled to
run on Qi. Here, it is assumed that processes are
scheduled non-preemptively, which is not a severe
restriction as most preemptions can always be re-
moved by breaking a process into two or more at

its preemption points. Further, loop repetitions in a
schedule can be denoted by a bar on a sequence of
processes with an integer on top of the bar to de-
note the number of times the loop is repeated. For
example,

hP1; P3; P5

3

; P8; P10i
is a schedule for ®rst executing P1, then executing
three times the sequence of P3; P5, and ®nally the
rest of the schedule P8; P10.

The main issue in handling concurrency is how
do we verify n processes under the system con-
currency of m processors. In the following Sections
4.3 and 4.4, we propose two di�erent approaches
for solve this issue, namely, processor-oriented
veri®cation and process-oriented veri®cation.

4.3. Processor-oriented veri®cation

A straightforward method is to create a new TA
for modeling the behavior of each processor. This
is called processor-oriented veri®cation. Besides
being straightforward, it can be easily extended to
include process preemptions due to the ¯exibility
in directly incorporating schedule changes into the
structure of a processor timed automaton.

Based on the syntax representation of a TA, we
know that each process automaton, Ai, either has
a transition, ef 2 Ei, that loops back to the initial
mode, m0

i , from some mode in Mi n fm0
i g or has a

®nal mode, mf 2 Mi. A looping transition is de®ned
as one that loops back to the initial mode from
some non-initial mode. A ®nal mode is de®ned as
an accepting mode, from which there is no out-
going transition.

A processor timed automaton, Bi � �M 0
i ;m

00
i ;

C0i ;D
0
i; v
0
i;E

0
i; s
0
i; q
0
i�, is constructed for processor Qi

as follows. For each process, Pkj , that appears in
the schedule fi, include the process automaton Akj

into Bi. The inclusion method involves how two
consecutive TA, Akj and Akj�1

are to be merged
into the new Bi. For each looping transition, ef in
Ekj , change the destination mode of ef into the
initial mode, m0

kj�1
, of Akj�1

. For each ®nal mode,
mf , create a new transition, e0f , from mf to the
initial mode, m0

kj�1
, of Akj�1

. Thus, transitions ef

and e0f interconnect the two consecutive TA, AkjFig. 3. Signal polling system.

1442 P.-A. Hsiung / Journal of Systems Architecture 46 (2000) 1435±1450

and Akj�1
in the new TA Bi. Recall that a loop

may exist in a schedule, as denoted by an overline
bar and a number indicating the number of times
the loop must execute. Suppose a partial schedule

Pkj ; . . . ; Pkj�v

u

is to be looped for u times, where u > 1, v P 0, and
kj; . . . ; kj�v 2 f1; . . . ; ng. Counter variables are
created to keep count of the number of times the
loop has executed. Interconnecting transitions
connect Akj�v with the initial mode of Akv and
with the initial mode of the next process after the
loop in a schedule.

The set of newly created processor automata,
B � fB1; . . . ;Bmg, is then used for the system
model in the model-checking procedure as de-
scribed in Section 5.

4.4. Process-oriented veri®cation

Another method of verifying n processes, run-
ning under the system concurrency of m proces-
sors, is by directly restricting the execution of the
process timed automata in A. This approach is
called process-oriented veri®cation. This approach
does not allow process preemption, but is more
elegant.

A processor locking variable is used to restrict
the execution of a process according to a schedule.
A processor locking variable is a mutual exclusion
variable that indicates which process is currently
being executed on a processor. For example, a
processor locking variable, lk, locks processor Qk

and if lk � kj, then process Pkj is currently being
executed on processor Qk.

Modi®cations of process timed automata are
carried out as follows. Create a set of m processor
locking variables, fl1; . . . ; lmg, such that lk locks
processor Qk, 16 k6m. Suppose the processor
schedules are as follows: fk � hPk1

; Pk2
; . . . ; Pkri,

16 k6m, 16 r6 n. Let the initial value of lk be k1.
Assume that process Pkj is scheduled on processor
Qk, 16 j6 r. Modify each process timed automa-
ton, Akj , as follows:
· Create a new initial mode, m00kj

, for Akj ,
· Create a new transition, e0, leading from m00kj

to
the original initial mode m0

kj
,

· Let the triggering condition skj�e0� be lk � kj.
· For each looping transition (de®ned in Section

4.3), e, let qkj
�e� � qkj

�e�; �lk :� kj�1�, where
Pkj�1

is the next process scheduled to be executed
on processor Qk after Pkj and ``;'' is a concatena-
tion operator for an assignment statement.

· For each loop repetition in a schedule (denoted
by an overline bar), a counter variable is created
to count the number of times the loop has
executed.

A basic assumption made here is that each
process is scheduled on a single processor and
no preemption is allowed. The set of modi®ed
process timed automata in A is now denoted
by A0 � fA0

1; . . . ;A0
ng, which is ®nally input to

the model-checking procedure as described in
Section 5.

5. Model checking embedded software

The framework of veri®cation that we use for
software veri®cation is the popular model checking
framework [4,15], as introduced in Section 1.
Model checking veri®es if a given system satis®es a
given property. In our framework, a real-time
system is described using TA [7] (see De®nition 2)
and a temporal property is speci®ed using Timed
Computation Tree Logic (TCTL) [14,15] (see
De®nition 6).

In our framework, recall from Section 4.2, a
system S � hP;Qi is composed of the following
components:
· a set of n processes, P � fP1; . . . ; Png, modeled

by n timed automata A � fA1; . . . ;Ang, re-
spectively, where Ai��Mi;m0

i ;Ci;Di;vi; Ei;si;qi�,
16i6n, and

· a set of m processors, Q � fQ1; . . . ;Qmg.

De®nition 6 (Timed computation tree logic formu-
la). A timed computation tree logic formula has
the following syntax.

/ ::� g j 9�/0 j 9/0U�c/
00 j :/0 j /0 _ /00: �5�

Here, g is a mode predicate in B�[n
i�1Ci;[n

i�1Di�, /0,
/00 are TCTL formulae, � 2 f<; 6 ;�; P ; >g,
and c 2N. 9�/0 means there exists a computa-
tion, from the current state, along which /0 is

P.-A. Hsiung / Journal of Systems Architecture 46 (2000) 1435±1450 1443

always true. 9/0U�c/
00 means there exists a com-

putation, from the current state, along which /0 is
true until /00 becomes true, within the time con-
straint of � c. Traditional shorthands like 9}, 8},
8}, 8U, ^, and ! can all be de®ned [15].

�

Besides a system model and a property speci®-
cation, since we are verifying embedded software,
we also need the schedules generated by an em-
bedded software synthesis procedure (see Section
2). Recall from Section 4.2, a set of schedules is
denoted by: Z � ffk j fk � hPk1

; Pk2
; . . . ; Pkri; Pkj 2

P; 16 j6 r6 n; 16 k6 ng, where fk � hPk1
; Pk2

;
. . . ; Pkri is a schedule for processor Qk, such that
processes Pk1

; Pk2
; . . . ; Pkr are scheduled to run on

Qk, r > 0.
We are now ready to formulate our problem.

De®nition 7 (CERTS verification problem). Given
a real-time system S � hP;Qi, a TCTL formula
/, and a set of schedules Z, CERTS veri®cation
problem is to verify if S satis®es / under the
schedule Z. In notations, this is represented as
S �Z /. �

A model checking solution to the CERTS ver-
i®cation problem is proposed in this Section. Two
model checking algorithms are given in Tables 2
and 3. The former is based on the processor-ori-
ented veri®cation approach presented in Section
4.3, while the latter is based on the process-ori-
ented veri®cation approach presented in Section
4.4. The main di�erence in these two algorithms is
in the set of TA, which is input to the Symbol-

ic_MCheck() procedure (Table 4).
In the processor-oriented veri®cation approach,

as given in Table 2, a set of TA, B, is constructed,
from the system description and from the set of
schedules (generated from a synthesis method), to
model the set of processors and this set is input to
the symbolic model checking procedure. The con-
struction procedure (Construct Processor TA��)
was described in Section 4.3.

In the process-oriented veri®cation approach, as
given in Table 3, a set of TA, A0, is constructed by
modifying the set of process TA, A, given in the
system description and this set is input to the

symbolic model checking procedure. The con-
struction procedure (Modify Process TA��) was
described in Section 4.4.

The symbolic model checking procedure
(Symbolic MCheck��) used in the two algorithms
(Tables 2 and 3) is given in Table 4. A region is
de®ned symbolically as a collection of states that
satisfy a symbolic condition on clock variable
values and a symbolic condition on discrete vari-
able values. Given a region R, its symbolic clock
condition and symbolic discrete variable condition
are represented by R:ClockCond and R:DVarCond,
respectively. In most model checking tools, Dif-
ference Bound Matrices (DBM) [3,13] and Binary

Table 2

Model checking algorithm for embedded software (processor-

oriented)

Model_Check_Embedded_Software1�S;/;Z�
system S � hP;Qi; // Pi 2 P modeled by

//Ai � �Mi;m0
i ;Ci;Di; vi;Ei; si;qi� 2A

tctl formula /;

schedule set Z;

{

Let B be an empty set of TA;

For k � 1; . . . ; jQj {

Bk � Construct Processor TA�A; fk�;
// where Bk is a timed automaton.

B � B [fBkg;
}

Symbolic_MCheck�B;/�;
}

Table 3

Model checking algorithm for embedded software (process-

oriented)

Model_Check_Embedded_Software2�S;/;Z�
system S � hP;Qi; // Pi 2 P modeled by

//Ai � �Mi;m0
i ;Ci;Di; vi;Ei; si;qi� 2A

tctl formula /;

schedule set Z;

{

Let A0 be an empty set of TA;

For k � 1; . . . ; jPj {

A0
k �Modify Process TA�Ak ; Z�;

// where A0
k is a timed automaton.

A0 �A0 [fA0
kg;

}

Symbolic_MCheck�A0;/�;
}

1444 P.-A. Hsiung / Journal of Systems Architecture 46 (2000) 1435±1450

Decision Diagrams (BDD) [12] are used to imple-
ment the symbolic clock and discrete variable
conditions, respectively. Details on DBM and
BDD can be found in the references. Discussion
on them are out of scope here.

In the symbolic model checking procedure, two
data-structures are maintained: a queue of regions
(Unvisited) and a set of reachable regions (Reach).
The former keeps a record of which regions are yet
to be explored, while the latter keeps a record of all
the regions reached. The procedure starts from an
initial region, Rinit, which is a cartesian product of
the initial modes of all the TA in the input set of
TA, B. Initially, the initial region is queued in
Unvisited and recorded in Reach. A region, R0, is
dequeued from Unvisited and corresponding to
each out-going transition, e, of R0 a successor
region, R00, is constructed by the function
Successor Region�R0; e� (see Table 5). If R00 is
consistent and is not already in Reach, then it is
recorded in Reach and queued in Unvisited for
further exploration of its successors. The proce-
dure loops until all regions in the queue have
been explored. Finally, the regions in Reach
are labeled according to the labeling algorithm
Label Reach�Reach;/� (see Table 6), where / is a

TCTL formula, such that S �Z / is to be veri®ed.
This procedure ®nally outputs the label that has
been assigned to the initial region, Rinit.

As detailed in Table 5 (Successor Region��),
the successor region is constructed as follows.
Given a region R and an out-going transition e,
the successor region R0 is constructed by ®rst
advancing (Advance()) all clock values till it
satis®es the triggering condition (e:Trigger) of e,
while at the same time still satisfying the clock
condition of R, R:ClockCond. This ®rst step
gives an intermediate symbolic clock condition
R0:ClockCond for the successor region R0. Sec-
ond, the clock resets in e:Assign are applied to
R0:ClockCond by Assign(). Third, the clock con-
ditions of all sub-regions of R0 have also to be
satis®ed by R0:ClockCond. Finally, the discrete
variable values are assigned to R:DVarCond to
obtain the new symbolic condition R0:DVarCond.
In this way, both the clock and discrete variable
symbolic conditions of the successor region R0

are thus computed.
The labeling algorithm, Label_Region(), is pre-

sented in Table 6. This algorithm assigns a label,
L�R;/�, to each region, R, in the set of regions
RSet. The label indicates if the region R satis®es /.
This labeling is computed as follows. For a mode
predicate (see De®nition 1), the label is true if the
region satis®es the mode predicate and it is false
otherwise. For a TCTL path formula, /, the label
is computed recursively according to the semantics
of the formula.

Table 4

Symbolic model checking procedure

Symbolic_MCheck�B;/�
set of TA B; // Bi � �M 0

i ;m
00
i ;C

0
i ;D

0
i; v
0
i;E

0
i; s
0
i; q
0
i� 2 B; i P 1

tctl formula /;

{

Let Reach � Unvisited � fRinitg;
// Reach;Unvisited: Set of Regions,

// Rinit : r001 � r002 � . . .� r00jBj,
// where r00i is an initial region of Bi.

While (Unvisited 6� NULL) {

R0 � Dequeue�Unvisited�; // R0: a region

For all out-going transition, e, of R0 {

R00 � Successor Region�R0; e�; // R00: a region

If R00 is consistent and R00 62 Reach {

Reach � Reach [fR00g;
Queue�R00;Unvisited�;
}

}

}

Label_Region�Reach;/�;
Return L�Rinit�; // where L is the label assigned by

// Label_Region();

}

Table 5

Successor region function

Successor_Region�R; e�
region R;

transition e;

{

R0 � New Region��;
R0:ClockCond � Advance�R:ClockCond�^
e:Trigger ^ R:ClockCond;

R0:ClockCond � Assign�R0:ClockCond; e:Assign�;
R0:ClockCond � R0:ClockCond^
�Vi R0: SubRegioni:ClockCond�R0��;
R0:DVarCond � Assign�R:DVarCond; e:Assign�;
Return R0;

}

P.-A. Hsiung / Journal of Systems Architecture 46 (2000) 1435±1450 1445

The symbolic model checking procedure pre-
sented above veri®es if the input set B of TA
satis®es the given TCTL formula /. Application
examples are given in Section 6 to illustrate and
compare the two proposed veri®cation approaches
and also how they compare with traditional
approaches.

6. Examples

Several application examples are given here to
illustrate our proposed model checking procedure
for the veri®cation of concurrent embedded real-
time software. First, we will illustrate the SVM
approach proposed in Section 3.2 and how it
compares with the conventional VSM approach
described in Section 3.1. Second, we will illustrate
the two veri®cation approaches presented in Sec-

tions 4.3 and 4.4. Comparisons are also made be-
tween the two proposed approaches. It illustrates
the advantage of verifying under system concur-
rency, compared to verifying under process con-
currency.

In the following experiments, we use the State-
Graph Manipulators (SGM) [17,18], a high-level
real-time system veri®cation tool based on the
model checking framework. SGM allows ¯exibility
in comparing di�erent veri®cation techniques,
such as reduction technique, scheduling technique,
etc. Hence, we used SGM. All the experiments
were run on a Sun 296 MHz UltraSPARC-II
workstation with 256 MB physical memory.

6.1. SVM approach versus VSM approach

The proposed SVM approach was compared
analytically with the conventional VSM approach

Table 6

Label region function

Label_Region�RSet;/�
set of regions RSet;

tctl formula /;

{

For each R 2 RSet, calculate recursively the label of R, L�R�, as follows:

case / � x � c:

L�R;/� :� true; if x � c is true in R,

false; otherwise

case / � xÿ y � c:

L�R;/� :� true; if xÿ y � c is true in R,

false; otherwise

case / � d � c:

L�R;/� :� true; if d � c is true in R,

false; otherwise

case / � g1 ^ g2:

L�R;/� :� true; if both g1 and g2 are true in R,

false; otherwise

case / � :g1:

L�R;/� :� true; if g1 is false in R,

false; otherwise

case / � 9}/0U�c/
00:

L�R;/� :� true; if there is a successor R0 of R such that L�R0;/00� is true, and

there is a path, p, from R to R0 such that for all regions R00 along p,

L�R00;/0� is true and time�R;R0� � c is true, where time �R;R0�
is the amount of time for going from a state in R to a state in R0,
along path p.

false ; otherwise

Similarly for the other cases: / � 9�/0U�c/
00, / � 8}/0U�c/

00, and / � 8�/0U�c/
00.

}

1446 P.-A. Hsiung / Journal of Systems Architecture 46 (2000) 1435±1450

in Section 3.3. Here, we will illustrate through
application examples the actual comparison be-
tween the two veri®cation approaches.

6.1.1. Fischer's mutual exclusion protocol
The ®rst example is the Fischer's Mutual Ex-

clusion Protocol (FMEP) [1,19,20] as ®rst intro-
duced in Section 4.1 and illustrated by a process
timed automaton in Fig. 2. In this example, each
process tries to enter a critical section (M4) by
checking to determine whether the value of vari-
able lock is zero, writing its index (i) to lock within
less than one time unit after lock is read as zero,
and then re-checking if the value of lock is still its
index after one time unit. The read time should be
less than the write time for the protocol to work
properly. This is exactly the property to be veri-
®ed. In Fig. 2, xi is a clock variable and lock is a
discrete variable.

The size of state-space of a system of processes
obeying the FMEP increases exponentially due to
a drastic increase in the number of possible con-
currencies. This is observable from the non-sched-
uled rows in Table 7. The number of modes and
transitions represent the state-space sizes that the
conventional VSM approach needs to explore for
veri®cation. Here, n, the number of processes in
the system, was varied from 2 to 6 to observe the
e�ect of increasing concurrency on the state-space
sizes. For illustrating SVM, a system of process
timed automata was scheduled by assigning pri-
orities to concurrent lock variable writes (transi-
tion M2 ! M3). The results of scheduling
FMEP processes are given by the scheduled rows

in Table 7. On comparison, we observe a large
di�erence between the state-space sizes explored by
the two approaches. Thus, veri®cation scalability
is improved when the SVM approach is adopted.

6.1.2. Signal polling system
The second example is the signal polling system

(SPS) as ®rst introduced in Section 4.2 and illus-
trated by a process timed automaton in Fig. 3.
This example illustrates not only how SVM ex-
plores a smaller state-space compared to VSM, but
also how di�erent scheduling techniques a�ect the
sizes of state-spaces explored for veri®cation.

This application is a distributed signal polling
system that is generally located at each entry/exit
gates of a parking lot. In this example, each pro-
cess initializes a counter to 500 vacant parking
spaces. Then, it starts to poll for any Car-Entry,
Car-Exit, or Check-Count signal. When a signal is
detected, appropriate actions are carried out. The
counter value is decremented for a Car-Entry sig-
nal and incremented for a Car-Exit signal. The
counter value is output for a Check-Count signal.
After completing actions, the polling process is
repeated. Here, we need to verify that a car is never
allowed entry when there are no vacant parking
space available (Count � 0).

Experiments were carried out for this example
with and without scheduling, the details of which
are shown in Table 8. Veri®cation of a 4-process
signal polling system required exploring 78K
modes with 205K transitions when no scheduling
was applied. This is a very large state-space, the
construction of which requires large amounts of

Table 7

SVM versus VSM: Fischer's mutual exclusion protocol

n Scheduled Approach #Modes #Trans Memory (MB) Time (s)

2 No VSM 23 38 0.78 0.08

2 Yes SVM 8 9 0.78 0.05

3 No VSM 103 249 0.97 0.57

3 Yes SVM 22 28 0.88 0.27

4 No VSM 467 1532 2.28 7.31

4 Yes SVM 82 115 1.81 3.65

5 No VSM 2381 10,065 10.47 113.00

5 Yes SVM 392 767 10.40 68.25

6 No VSM 14,181 74,046 98.02 2487.00

6 Yes SVM 2284 3589 88.48 1610.22

P.-A. Hsiung / Journal of Systems Architecture 46 (2000) 1435±1450 1447

memory (178 MB) and time (9608 s). Three
scheduling techniques were applied to this exam-
ple: post-signal scheduling, pre-signal scheduling,
and both post-signal and pre-signal scheduling.
Post-signal scheduling is scheduling of the pro-
cesses that have detected signals concurrently. Pre-
signal scheduling is scheduling of processes before
any signal detection is started. We observe from
Table 8 that the three types of scheduling tech-
niques result in di�erent sizes of state-spaces. Ap-
plying both post- and pre-signal scheduling results
in the smallest state-space. Applying pre-signal
scheduling results in a smaller state-space than
applying post-signal scheduling. This is consistent
with our intuition, because pre-signal scheduling
applies a much greater restriction on the behavior
of the processes than post-signal scheduling.

6.2. System concurrency versus process concurrency

Instead of process concurrency (number of
processes), veri®cation under system concurrency
(number of processors executing software) was
proposed in Section 4. Two di�erent models were
also proposed, namely, processor-oriented and
process-oriented in Sections 4.3 and 4.4, respec-
tively. Here, veri®cation under system concurrency
is performed for two application examples and
both the models compared with the conventional
veri®cation under process concurrency.

6.2.1. Fischer's mutual exclusion protocol
This example is a 4-process system obeying the

Fischer's Mutual Exclusion Protocol (FMEP). See
Section 6.1.1 for a short description on FMEP.
Three di�erent system con®gurations are consid-
ered: one processor, two processors, and four
processors. The 4-process software system was
executed on all the three system con®gurations and
the state-space sizes recorded as shown in Table 9,
where column n represents the number of pro-
cesses and column m represents the number of
processors.

It can be observed that compared to verifying
under process concurrency (row 1 of Table 9),
verifying under system concurrency (rows 2±5 of
Table 9) results in a much smaller state-space and
in a higher veri®cation scalability. It can also be
observed that a process-oriented model for veri®-
cation under system concurrency has a smaller
state-space compared to that of a processor-
oriented model (rows 3 and 4 of Table 9).

6.2.2. Signal polling system
This example is a 4-process SPS, which was

introduced in Section 6.1.2. Three di�erent system
con®gurations are considered: one processor, two
processors, and four processors. The 4-process
software system was executed on all the three
system con®gurations and the state-space sizes
recorded as shown in Table 10.

Table 9

System versus process concurrency: Fischer's mutual exclusion protocol

n m Schedule Approach Model #Modes #Trans Memory (MB) Time (s)

4 4 No VSM N/A 467 1532 2.28 7.31

4 4 Yes SVM Process 82 115 1.81 3.65

4 2 Yes SVM Processor 92 152 0.86 0.16

4 2 Yes SVM Process 8 8 0.79 0.16

4 1 Yes SVM Process 4 4 0.79 0.16

Table 8

SVM versus VSM: signal polling system

n Schedule Approach #Modes #Trans Memory (MB) Time (s)

4 No VSM 78,347 205,578 178.12 9608.36

4 Post-signal SVM 1018 1255 6.57 34.20

4 Pre-signal SVM 29 41 10.69 82.19

4 Post/pre-signal SVM 22 26 5.48 27.06

1448 P.-A. Hsiung / Journal of Systems Architecture 46 (2000) 1435±1450

Similar to the previous example, it can be ob-
served that compared to verifying under process
concurrency (row 1 of Table 10), verifying under
system concurrency (rows 2±5 of Table 10) results
in a much smaller state-space and in a higher
veri®cation scalability. It can also be observed that
a process-oriented model for veri®cation under
system concurrency has a smaller state-space
compared to that of a processor-oriented model
(rows 3 and 4 of Table 10).

7. Conclusion

A veri®cation method for CERTS was pro-
posed. The method covered three important veri-
®cation issues: when, where, and how should
CERTS veri®cation be performed. In answer to
the when issue, a SVM strategy was proposed. It
was both analytically and experimentally validated
how SVM supercedes conventional VSM and
SMV approaches. In answer to the where issue,
instead of the conventional veri®cation under
process concurrency, veri®cation under system
concurrency was proposed. The advantage of ver-
ifying under system concurrency was also illus-
trated through application examples. In answer to
the how issue, a complete symbolic model checking
procedure was presented within two di�erent ver-
i®cation approaches: processor-oriented and pro-
cess-oriented. Application examples show how the
proposed answers to each of the three issues aid in
CERTS veri®cation.

References

[1] M. Abadi, L. Lamport, An old-fashioned recipe for real

time, in: REX Workshop, Real-Time Theory in Practice,

Lecture Notes in Computer Science, vol. 600, June 1991,

pp. 1±27.

[2] K. Altisen, G. Gobler, A. Pneuli, J. Sifakis, S. Tripakis,

S. Yovine, A framework for scheduler synthesis, in: Real-

Time System Symposium (RTSS'99), IEEE Computer

Society Press, 1999.

[3] R. Alur, C. Courcoubetis, D. Dill, N. Halbwachs,

H. Wong-Toi, An implementation of three algorithms for

timing veri®cation based on automata emptiness, in:

Proceedings of IEEE International Conference on Real-

Time Systems Symposium (RTSS'92), 1992.

[4] R. Alur, C. Courcoubetis, N. Halbwachs, D. Dill, Model

checking for real-time systems, in: Proceedings of IEEE

Logics in Computer Science, 1990.

[5] R. Alur, C. Courcoubetis, N. Halbwachs, T. Henzinger,

P.-H. Ho, X. Nicollin, A. Olivero, J. Sifakis, S. Yovine,

The algorithmic analysis of hybrid systems, Theoretical

Computer Science 138 (1995) 3±34.

[6] R. Alur, C. Courcoubetis, T. Henzinger, P.-H. Ho, Hybrid

automata: an algorithmic approach to the speci®cation and

veri®cation of hybrid systems, in: R. Grossman, A.

Nerode, A. Raun, H. Rischel (Eds.), Hybrid Systems,

vol. 736, Lecture Notes in Computer Science, Springer,

Berlin, 1993, pp. 209±229.

[7] R. Alur, D. Dill, Automata for modeling real-time systems,

Theoretical Computer Science 126 (2) (1994) 183±236.

[8] E. Asarin, O. Maler, A. Pneuli. Symbolic controller

synthesis for discrete and timed systems, in: P. Antsaklis,

W. Kohn, A. Nerode, S. Sastry (Eds.), Hybrid Systems II,

vol. 999, Lecture Notes in Computer Science, Springer,

Berlin, 1995, pp. 1±20.

[9] E. Asarin, O. Maler, A. Pneuli, J. Sifakis, Controller

synthesis for timed automata, in: Proceedings of the

System Structure and Control, IFAC, Elsevier, July 1998.

[10] F. Balarin, M. Chiodo, Software synthesis for complex

reactive embedded systems, in: Proceedings of Internation-

al Conference on Computer Design (ICCD'99), IEEE CS

Press, October 1999, pp. 634±639.

[11] F. Balarin, et al., Hardware±software Co-design of Em-

bedded Systems: the POLIS approach, Kluwer Academic

Publishers, Dordrecht, 1997.

[12] R. Bryant, Graph-based algorithms for boolean function

manipulation, IEEE Transactions on Computers C-35 (8)

(1986).

[13] D. Dill, Timing assumptions and veri®cation of ®nite-state

concurrent systems, in: Proceedings of the International

Table 10

System versus process concurrency: signal polling system

n m Schedule Approach Model #Modes #Trans Memory (MB) Time (s)

4 4 No VSM N/A 78,347 205,578 178.12 9608.36

4 4 Yes SVM Process 1018 1255 6.57 34.20

4 2 Yes SVM Processor 1327 2727 2.92 7.36

4 2 Yes SVM Process 57 79 1.05 0.51

4 1 Yes SVM Process 29 41 0.98 0.30

P.-A. Hsiung / Journal of Systems Architecture 46 (2000) 1435±1450 1449

Conference on Computer-Aided Veri®cation, LNCS, vol.

407, Springer, Berlin, 1989.

[14] E. Emerson, Temporal and modal logic, Handbook of

Theoretical Computer Science, 1990.

[15] T. Henzinger, X. Nicollin, J. Sifakis, S. Yovine, Symbolic

model checking for real-time systems, in: Proceedings of

the IEEE Logics in Computer Science, 1992.

[16] P.-A. Hsiung, Timing coveri®cation of concurrent embed-

ded real-time systems, in: Proceedings of the Seventh

IEEE/ACM International Workshop on Hardware Soft-

ware Codesign (CODES'99), ACM Press, New York, May

1999, pp. 110±114.

[17] P.-A. Hsiung, F. Wang, A state-graph manipulator tool for

real-time system speci®cation and veri®cation, in: Proceed-

ings of the Fourth International Conference on Real-Time

Computing Systems and Applications (RTCSA'98), IEEE

Computer Society Press, October 1998, pp. 181±188.

[18] P.-A. Hsiung, F. Wang, User-friendly veri®cation, in:

International Conference on Formal Description Tech-

niques For Distributed Systems and Communication

Protocols & Protocol Speci®cation, Testing, and Veri®ca-

tion (FORTE/PSTV'99), October 1999.

[19] L. Lamport, A fast mutual exclusion algorithm, ACM

Transactions on Computer Systems 5 (1) (1987) 1±11.

[20] K.G. Larsen, B. Ste�en, C. Weise, Fischer's protocol

revisited: a simple proof using modal constraints, in:

Hybrid System III, Lecture Notes in Computer Science,

vol. 1066, 1996, pp. 604±615.

[21] B. Lin, E�cient compilation of process-based concurrent

programs without run-time scheduling, in: Proceedings of

Design Automation and Test Europe (DATE'98), ACM

Press, New York, February 1998, pp. 211±217.

[22] B. Lin, Software synthesis of process-based concurrent

programs, in: Proceedings of Design Automation Confer-

ence (DAC'98), ACM Press, New York, June 1998,

pp. 502±505.

[23] O. Maler, A. Pnueli, J. Sifakis. On the synthesis of discrete

controllers for timed systems, in: E. Mayr, C. Puech (Eds.),

Proceedings of the 12th Annual Symposium on Theoretical

Aspects of Computer Science (STACS'95), vol. 900,

Lecture Notes in Computer Science, Springer, Berlin,

March 1995, pp. 229±242.

[24] P. Merlin, G. Bochman, On the construction of submodule

speci®cations and communication protocols, ACM Trans-

actions on Programming Languages and Systems 5 (1)

(1983) 1±25.

[25] M. Sgroi, L. Lavagno, Y. Watanabe, A. Sangiovanni-

Vincentelli, Synthesis of embedded software using free-

choice petri nets, in: Proceedings of the Design Automation

Conference (DAC'99). ACM Press, New York, June 1999.

[26] H. Wong-Toi, G. Ho�man, The control of dense real-time

discrete event systems. Technical report STAN-CS-92-

1411, Stanford University, 1992.

[27] X. Zhu, B. Lin, Compositional software synthesis of

communicating processes. in: Proceedings of International

Conference on Computer Design (ICCD'99), IEEE CS

Press, October 1999, pp. 646±651.

Dr. Pao-Ann Hsiung received the B.S.
degree in mathematics and the Ph.D.
degree in electrical engineering from
the National Taiwan University
(NTU), Taipei, Taiwan, ROC, in 1991
and 1996, respectively. From 1993 to
1996, he was a Teaching Assistant and
System Administrator in the Depart-
ment of Mathematics, NTU. From
1996 to 2001, he was a post-doctoral
research associate at the Institute of
Information Science, Academia Sinica,
Taipei, Taiwan, ROC. Starting from
2001, he joined the faculty of the De-

partment of Computer Science and Information Engineering,
National Chung-Cheng University, Chiayi, Taiwan, ROC. Dr.
Hsiung is a member of the IEEE and the IEEE Computer So-
ciety. He has been included in several professional listings such
as Marquis' Who's Who in the World (17th Millenium Edition,
2000), Outstanding People of the 20th Century (2nd Edition,
2000, Cambridge, England), Who's Who in Formal Methods,
ACM SIGDA's design automation professionals,. . . Dr.
Hsiung is on the program committee of the 1999 International
Conference on Parallel and Distributed Processing Techniques
and Applications (PDPTA'99), International Workshop on
Real-Time Constraints (RTC'99), International Workshop on
Distributed System Validation and Veri®cation (DSVV'2000),
and 2000 International Conference on Parallel and Distributed
Processing Techniques and Applications (PDPTA'2000). He
served as session organizer and chair for PDPTA'99, as work-
shop organizer and chair for RTC'99, and as workshop orga-
nizer and chair for DSVV'2000. He has published more than 40
papers in international journals and conferences. He has been
taking an active part in paper refereeing for international
journals and conferences. His main research interests include:
hardware±software codesign and coveri®cation, real-time sys-
tem speci®cation and veri®cation, system-level design automa-
tion of multiprocessor systems, parallel architecture design and
simulation, and object-oriented design techniques in system
syntheses.

1450 P.-A. Hsiung / Journal of Systems Architecture 46 (2000) 1435±1450

