
Dynamically Swappable Hardware Design in
Partially Reconfigurable Systems

Chun-Hsian Huang, Kai-Jung Shih, Chao-Sheng Lin, Shih-Shiue Chang, and Pao-Ann Hsiung†
Department of Computer Science and Information Engineering
National Chung Cheng University, Chiayi, Taiwan−621, ROC

†E-mail: hpa@computer.org

Abstract— In this work, we propose two wrapper designs for
arbitrary digital hardware circuit designs such that they can be
enhanced with the capability for dynamic swapping controlled
by software. A hardware design with either of the proposed
wrappers can thus be swapped out of the partially reconfigurable
logic at runtime in some intermediate state of computation and
then swapped in when required to continue from that state. The
context data is saved to a buffer in the wrapper at interruptible
states, and then the wrapper takes care of saving the hardware
context to communication memory through a peripheral bus,
and later restoring the hardware context after the design is
swapped in. The overheads of the hardware standardization
and the wrapper in terms of additional reconfigurable logic
resources and the time for context switching are small and
generally acceptable. With the capability for dynamic swapping,
high priority hardware tasks can interrupt low priority tasks in
real-time embedded systems so that the utilization of hardware
space per unit time is increased.

I. INTRODUCTION

Owing to rapid technology breakthroughs, FPGAs such as
Xilinx Virtex II and 4 can now be partially reconfigured at run-
time, which means a hardware circuit can be changed while
some other hardware circuits are still functioning. Partially
reconfigurable systems enable more applications to be accel-
erated in hardware, and thus reduces overall system execution
time [7]. This technology can now be used in real-time
embedded systems for switching from a low priority hardware
task to a high priority hardware task. However, hardware
circuits are generally not designed to be switched or swapped
in and out, as a result of which partial reconfigurability either
becomes useless or incur significant time overhead. In this
work, we try to bridge this gap by proposing two kinds
of generic wrapper designs for hardware IPs such that they
can be enhanced with the capability for dynamic swapping.
The dynamically swappable design must solve several issues
related to switching hardware IPs, including (1) when must
a hardware design be interrupted for switching? (2) how and
where must we save the context of a hardware design? (3)
how must we restore the context of a hardware design? (4)
how to make the wrapper design small, efficient, and generic?
(5) how must a hardware IP be modified so that it can interact
with the wrapper.

For ease of explanation, henceforth we call a running hard-
ware circuit as a hardware task. To swap out a hardware task so
that it can be swapped in later, one needs to save its execution
context so that it can be restored in the future. However, unlike

software processes, hardware tasks cannot be interrupted in
each and every state of computation. Hence, a hardware task
should be allowed to run until the next interruptible state,
which is function-specific. The context of a hardware task is
also function-specific. Nevertheless, we can use the memento
design pattern [1] from software engineering, which states that
the context of a task can be stored outside in a memento and
then restored when the task is reloaded. To restore a saved
context, the context data needs to be preloaded into the wrap-
per, which then loads the data to the registers in the hardware
task. The wrapper architectures are generic so that any digital
hardware IP that has been automatically standardized, can be
interfaced with it for dynamic swapping. The wrappers receive
the software request signals through a task interface and then
drive the appropriate signals to prepare the hardware task for
swapping. However, the original hardware IP also needs to be
enhanced so that it can interface with the wrapper, which we
call standardization. The detailed descriptions of the wrappers
and the hardware task modification are given in Section III.

This work contributes to the state-of-the-art in the following
ways.

1) Generic Wrapper Designs: These proposed generic
wrapper designs can be used to interface with any
standardized hardware IP, thus they are reusable and
reduce IP development effort significantly. We propose
two different wrapper designs to get higher performance
and using lesser resources under different conditions.

2) Swappable Hardware IP: A hardware IP needs only to
be enhanced slightly and interfaced with the wrappers
for dynamic swapping.

3) Better Real-Time Response: Compared to state-of-the-
art methods, our method saves hundreds of microsec-
onds, which give better real-time response during the
hardware-software scheduling in an operating system for
reconfigurable systems.

This paper is organized as follows: Section II discusses
related research work and compares them with our architec-
ture. The details of the dynamically swappable architecture
are given in III. We use some applications to demonstrate
the validity and genericity of the architecture in IV. Finally,
conclusions and future work are described in V.

27421-4244-0921-7/07 $25.00 © 2007 IEEE.

II. RELATED WORK

Dynamic switching or relocation of hardware designs in
reconfigurable logic has been investigated in several previous
work, which can be categorized into two classes, namely
reconfiguration-based [2], [4] and design-based [3], [6]. The
reconfiguration-based method requires readback support from
the reconfigurable logic and deep knowledge of the recon-
figuration process for tasks such as state extraction from
the readback stream and manipulation of the bitstreams for
context restoring. As a result, this method becomes technology
dependent and thus non-portable. Another drawback is the
poor data efficiency because only a maximum of about 8%
of the readback data actually contains state information but
all data must be readback to extract the state [2]. The design-
based method is self-sufficient because all context switching
tasks are taken care of by the hardware design itself through a
switching circuitry and registers can be read out or preloaded
by the switching circuitry.

Our proposed method for dynamic hardware switching falls
into the design-based category, however, we try to eliminate
some of the deficiencies of this method, while retaining the
advantages. Our method proposes two generic configurable
wrappers with a standard interface such that any digital
hardware design following the standard can be transformed
automatically into dynamically switchable by interfacing with
one of the proposed wrappers. Using our proposed method, we
have thus not only retained the advantages of data efficiency
and technology independence of design-based methods, but
also acquired the advantage of reconfiguration-based methods,
that is, minimal user design effort for making a hardware IP
dynamically reconfigurable. Abstraction of tasks from its hard-
ware or software implementation requires an operating system
that can manage both software and hardware tasks. Such an
Operating System for Reconfigurable Systems (OS4RS) [5]
supports the dynamic switching of hardware tasks.

III. DYNAMICALLY SWAPPABLE DESIGN

A dynamically reconfigurable system consists of a micro-
processor attached to a system bus with a communication
memory, and a dynamically reconfigurable logic component
such as FPGA, within which hardware tasks can be configured
and attached to a peripheral bus which in turn is connected
through a bridge with the system bus. Each hardware task
consists of a hardware IP, a wrapper, and a task interface. The
hardware IP is an application-specific function such as a DCT
or an H.264 video decoder. In this work, two wrappers are
proposed for dynamically swappable design. They control the
whole swap-out and swap-in processes of the hardware task.
The task interface is an interface to a peripheral bus for data
transfers in a hardware task. The task interface acts as a bus
interface of the hardware task and is responsible for normal
data transfer operations through the control, read, and write
interfaces and for swapping and reconfiguration operations
through the swap interface.

Interrupt

In_context

Out_context

Wout_cdata

Win_cdata

Wout_Stat

Win_State

W_D_i

W_D_o

W_rst

W_Go

swap

W_interrupt

W_clkclk

Task Interface Wrapper

Swap_fin

D_o

D_i

Go_i

rst

P
er

ip
he

ra
l B

us

HW
IP

Context
Buffer

Swap
Controller

Swap_in

Swap_out

DataPath

R
ea

d
In

te
rf

ac
e

W
ri

te
 I

nt
er

fa
ce

C

on
tr

ol
 I

nt
er

fa
ce

Sw

ap
 I

nt
er

fa
ce

B
us

 C
on

tr
ol

 I
nt

er
fa

ce

DTC

Interrupt
Controller

Fig. 1. Wrapper architecture and interfaces

A. Generic Wrapper Designs

Two generic wrapper architectures are proposed for control-
ling the swapping of a hardware circuit into and out from a re-
configurable logic such that all swap circuitry is implemented
within the wrappers with minimal changes to the hardware IP
itself. As shown in Figure 1, the wrapper architectures consist
of a context buffer (CB) to store context data, a data path for
data transfer, a swap controller (SC) to manage the swap-out
and swap-in activities, and some optional data transformation
components (DTCs) for (un)packing data types. A generic
wrapper architecture interfaces with a hardware IP and a
standard task interface that connects with a peripheral bus.
The difference between the two wrappers lies in the swap-out
mechanism and the hardware state in which the IP is swapped
out. The Last Interruptible State Swap (LISS) wrapper stores
the IP context at each interruptible state, thus the IP can be
swapped out from the last interruptible state whenever there
is a swap request. The Next Interruptible State Swap (NISS)
wrapper requires the IP to execute until the next interruptible
state, store the context, and then swap out. In Figure 1,
the LISS wrapper does not include the W interrupt and
Swap fin signals, while the NISS wrapper does (signals
are highlighted using dotted arrows). The different swap-out
processes and the same swap-in process are described as
follows.

1) LISS Wrapper Swap-out: At every interruptible state,
the context of hardware IP is stored in a Context Buffer
using the Wout State and Wout cdata signals. When
there is a Swap out request from the OS4RS for some
hardware task, the wrapper sends an Interrupt signal to
the microprocessor to notify the OS4RS that (1) the context

2743

data stored in the context buffer can be read and saved into
the communication memory, and (2) the resources (columns)
can be deallocated and reused (reconfigured). The swap-out
process is thus completed. This wrapper can be used for
hardware circuits whose context data size is less than that
of the context buffer, as a result of which all context data can
be stored in the context buffer using a single data transfer.

2) NISS Wrapper Swap-out: When there is a Swap out
request from the OS4RS for some hardware task, the Swap
Controller in the wrapper sends a swap signal (asserted high),
to the hardware IP, which starts the whole swap out process.
However, the hardware IP might be in an unswappable state,
thus execution is allowed to continue until the next swappable
state is reached. At a swappable state, the context of hardware
IP, including current state information and selected register
data, is stored in a Context Buffer in the wrapper using the
Wout State and Wout cdata signals. The hardware IP
then sends an acknowledgment W interrupt to the wrapper
that the swap-out process can continue. The wrapper sends an
Interrupt signal to the microprocessor to notify the OS4RS
that the context data stored in the context buffer can be read
and saved into the communication memory. This wrapper can
be used when the context data size is larger than that of the
context buffer by repeating the process of storing into buffer,
interrupting microprocessor, and reading into memory. Finally
when all context data have been stored into the communication
memory, the wrapper sends a Swap fin signal to the task in-
terface, thus notifying the OS4RS that the resources occupied
by the IP can be deallocated and reused. The swap-out process
is thus completed.

3) Swap-in: When a hardware task is scheduled to execute,
the OS4RS configures the corresponding hardware IP with
wrapper and task interface into the reconfigurable logic using
the Internal Configuration Access Port (ICAP), reloads the
context data from the communication memory to the context
buffer in the wrapper, and sends a Swap in request to the
swap controller, which then starts to copy the context data
from the buffer to the corresponding registers in the IP using
Win State and Win cdata. After all context data are
restored, the swap controller sends a swap signal (asserted
low) to the hardware IP, which then continues from the state
in which it was swapped out.

It must be noted here that context data might be of different
sizes for different hardware IPs, so data packing and unpacking
are performed using the Data Transformation Component
(DTC) within the wrapper. For the standardized GCD IP
example given in Figure 2, there are two 8-bit X Wout cdata
and Y Wout cdata signals from the IP, which are packed by
the DTC in the wrapper into a 32-bit Out context signal
for storing into communication memory through the peripheral
bus. The other signals in Figure 1 are used for normal IP
execution.

B. Standardizing Hardware IP

A sequential circuit is controlled by a finite state machine
(FSM) through the present and next state registers. Generally,

Y_ld

X_eq_Y

X_lt_Y

X_gt_Y

INIT

MUX for X MUX for Y

Register Register

Comparator

Subtractor

Out Register

Controller
DataPath

Y_sel

X_sel

GCD

RLD

EQ

NEG

CMP

POS

IDLE

enable

X_W_D_i

X_Wout_cdata

Y_Wout_cdata

Win_State

Wout_State

int_handle

Store_ok

rel_handle

Y_Win_cdata
W_G W_clk

X_Win_cdata Y_W_D_i

X_ld

swap

W_interrupt

W_rst

W_D_o

Fig. 2. Swappable GCD circuit architecture

a hardware IP has one or more data registers for storing
intermediate results of computation. The collection of the state
registers and data registers constitutes the task context. A state
is said to be interruptible if the hardware task can resume
execution from that state after restoring the task context, either
partially or fully. For the FSM of a GCD IP example given in
Figure 2, only the INIT, RLD, and CMP states are interruptible
because the comparator results are not saved and hence we
cannot resume from the NEG, EQ, and POS states. Making a
state interruptible brings no benefit to the task itself, however
it can shorten the overall system schedule. A hardware IP
is standardized automatically by making the context registers
accessible to the wrapper and by enhancing the FSM controller
such that the IP can be stalled or the context data can be saved
to the context buffer in the wrapper at each interruptible state.

IV. EXPERIMENTS

We performed all our experiments on the Xilinx Virtex
II Pro XC2VP20-FF896 FPGA chip that includes 18,560
LUTs and 18,560 Flip-Flops. The FPGA has a configuration
clock of 50 MHz and a full bitstream size of 1,026,820
bytes. All swappable hardware tasks are connected to a
32-bit CoreConnect OPB bus operating at 133 MHz. The
OS4RS running on the PowerPC was based on an in-house
extension of the Linux OS. We used the Synplify synthesis
tool and the ModelSim simulator to verify the correctness
of the wrappers and the modified hardware IP designs. We
compared the original hardware IP designs with the new
swappable ones for each of the six examples, including Traffic
Light Controller (TLC), Multiple Light Controller (MLC),
8-bit Greatest Common Divisor (GCD), 32-bit GCD, Data
Encryption Standard (DES) encrypter, and Discrete Cosine
Transform (DCT). We compared the two wrappers for the first
three examples because their context data size is less than the
context buffer size (32-bits). We made the last three example
IPs swappable using the NISS wrapper.

The resource overhead required for making a hardware IP
swappable includes the extra resources required to make the

2744

TABLE I

SYNTHESIS RESULTS AND RESOURCE OVERHEADS

HW Wrapper DC FF LUT
V FF LUT (bits) IP SIP +% IP SIP +%

L 3 1 3 6 10 66 24 39 62T
N 3 1 10 66 43 79
L 3 1 3 13 17 30 63 77 22M
N 3 1 17 30 77 22
L 3 1 19 23 23 0 80 114 42G8
N 2 1 27 17 122 52

G32 N 5 8 67 71 73 2 270 360 33
DES N 7 61 836 137 207 51 589 603 2
DCT N 8 73 1030 1573 2094 33 1339 1152 -13

V: Version, DC : Context data size, T : TLC, M : MLC, G8: 8-bit GCD,
G32: 32-bit GCD, L: LISS wrapper, N : NISS wrapper, IP: IP resource usage,
SIP: Swappable IP resource usage, +%: % of overheads in SIP compared to IP

context registers and the current state register visible and the
resources for the wrapper design. Our synthesis results and
comparisons are given in Table I. For task G8, the FF and
LUT overheads are 0% and 42% for LISS, and 17% and
52% for NISS, respectively. The negative LUT overhead of the
swappable DCT results from optimization of FPGA resource
usage. We can observe that the overheads in making the IPs
swappable for interfacing with the LISS wrapper are smaller
than that for interfacing with the NISS wrapper. This is due
to the lesser number of signals in LISS wrapper and the more
complex circuitry in NISS wrapper for transferring context
data of sizes greater than that of context buffer. The larger the
amount of context data, the more FPGA resources are needed
for the wrapper DTC, and the more I/O primitives to interact
with the swappable hardware IP.

As shown in Table II, the time overheads in swapping out
and swapping in for all the examples consume only a few
cycles and are in the order of nanoseconds. Given context
data of DC-bits, context buffer of DB-bits, data transformation
rate of RT bits/cycle, buffer data load rate of RB bits/cycle,
peripheral bus data transfer rate of RP bits/cycle, peripheral
bus access time of TA cycles, transition time of TI cycles to go
to an interruptible state (TI is 0 for LISS), and reconfiguration
time of TR cycles, the swap-out and swap-in processes require
time TSO and TSI , respectively, as shown in Equation (1).
However, all other times in Equation (1) are only a few cycles,
in the ns order of magnitude.

TSO = TI +
⌈

DC

DB

⌉
×

(
DB

RT
+ DB

RB
+ TA + DB

RP

)
+ TR

TSI = TR +
⌈

DC

DB

⌉
×

(
DB

RT
+ DB

RB
+ TA + DB

RP

) (1)

From Table II, we can observe that not only is swapping
faster with the LISS wrapper, but its simpler circuitry also
requires lesser reconfiguration time TR, compared to NISS.
However, as mentioned before LISS wrappers can only be
used when the IP context size is not greater than that of
the context buffer size. We can thus conclude that if the
IP context size is not greater than buffer context size then
LISS wrapper is recommended, while the NISS wrapper is
required otherwise. We assume typical OPB read and write

TABLE II

TIME OVERHEADS FOR SWAP-OUT AND SWAP-IN

HW W TE Swap-Out Swap-In TR

TB TP T ′
SO TB TP T ′

SI

L 17 2 3 39 2 3 39 42,025T
N 3 3 64 2 3 50 46,336
L 33 2 3 50 2 3 50 83,243M
N 3 3 64 2 3 50 83,243
L 511 2 3 38 2 3 38 122,844G8
N 4 3 46 2 3 38 131,465

G32 N 1671 11 9 157 5 9 108 387,931
DES N 1424 84 81 962 55 81 840 649,784
DCT N 71552 100 99 1600 66 99 1309 1,481,586

TE : execution time (in IP clock cycles),
TB =

DB
RT

+
DB
RB

(in IP clock cycles), TP = TA +
DB
RP

(in bus cycles)

T ′
SO = TSO − TR (in ns), T ′

SI = TSI − TR (in ns)

data transfers for swap-out and swap-in, respectively, hence
each of them needs 3 bus cycles for a single 32-bit data
transfer. In contrast, the reconfiguration-based methods [2],
not only require a reconfiguration time of 190 ∼ 6793µs, but
also a readback time of 33.6 ∼ 129.6µs, while we require only
a few tens or hundreds of nanoseconds. We are thus saving
tens or hundreds of microseconds, which is important for hard
real-time systems.

V. CONCLUSIONS

We have proposed a method for the automatic modification
and enhancement of a hardware IP such that it becomes
dynamically swappable under the control of an operating
system for reconfigurable systems. We have designed two
wrappers and analyzed the conditions for using the wrappers.
We have still proposed how the hardware IP can be minimally
changed by only making the state and context registers visible.
The proposed method and architectures were implemented
and verified. Our experiment results show that the resource
and time overheads of making an IP swappable are almost
negligible compared to the amount of reconfigurable resources
available and the configuration time of the IP, respectively.

REFERENCES

[1] R. Gamma, R. Helm, R. Johnson, and J. Vissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley Pro-
fessional Computing Series, 1994.

[2] H. Kalte and M. Porrmann. Context saving and restoring for multitasking
in reconfigurable systems. In Proc. of the International Conference
on Field Programmable Logic and Applications (FPL), pages 223–228,
August 2005.

[3] J.-Y. Mignolet, V. Nollet, P. Coene, D. Verkest, S. Vernalde, and R. Lauw-
ereins. Infrastructure for design and management of relocatable tasks in
a heterogeneous reconfigurable system-on-chip. In Proc. of the Design
Automation and Test in Europe (DATE), pages 986–991, March 2003.

[4] H. Simmler, L. Levinson, and R. Männer. Multitasking on FPGA
coprocessors. In Proc. of the 10th International Workshop on Field
Programmable Gate Arrays (FPL), pages 121–130, 2000.

[5] C. Steiger, H. Walderand, and M. Platzners. Operating systems for
reconfigurable embedded platforms: Online scheduling of real-time tasks.
IEEE Transactions on Computers, 53(11):1392–1407, November 2004.

[6] M. Ullmann, M. Hübner, B. Grimm, and J. Becker. An FPGA run-time
system for dynamical on-demand reconfiguration. In Proc. of the 11th
Reconfigurable Architectures Workshop (RAW), page 135, 2004.

[7] Xilinx. XAPP290 – two flows for partial reconfiguration module-based
or difference-based.

2745

