
Automatic Synthesis and Verification of
Real-Time Embedded Software

Pao-Ann Hsiung and Shang-Wei Lin

Department of Computer Science and Information Engineering
National Chung-Cheng University, Chiayi, Taiwan, R.O.C.

hpa@computer.org

Abstract. Currently available application frameworks that target
at the automatic design of real-time embedded software are poor in
integrating functional and non-functional requirements. In this work,
we reveal the internal architecture and design flow of a newly proposed
framework called Verifiable Embedded Real-Time Application Frame-
work (VERTAF)1, which integrates software component-based reuse,
formal synthesis, and formal verification. Component reuse is based
on a formal UML real-time embedded object model. Formal synthesis
employs quasi-static and quasi-dynamic scheduling with multi-layer
portable efficient code generation, which can output either RTOS-
specific application code or automatically-generated real-time executive
with application code. Formal verification integrates a model checker
kernel from SGM, by adapting it for embedded software. Application
examples developed using VERTAF demonstrate significantly reduced
design efforts as compared to that without VERTAF, which shows how
high-level reuse of software components with automatic synthesis and
verification increase design productivity.

Keywords: Application framework, code generation, real-time embed-
ded software, scheduling, formal verification, software components, UML
modeling

1 Introduction

With the proliferation of embedded systems in all aspects of human life, we are
making greater demands on these systems, including more complex function-
alities such as pervasive computing, mobile computing, embedded computing,
and real-time computing. Currently, the design of real-time embedded software
is supported partially by modelers, code generators, analyzers, schedulers, and
frameworks [4], [7]-[11], [13], [16]–[18], [20]. Nevertheless, the technology for a
completely integrated design and verification environment is still relatively im-
mature. This work demonstrates how the integration of software engineering
1 This project was supported by a research project grant NSC92-2213-E-194-003 from

the National Science Council, Taiwan

L.T. Yang et al. (Eds.): EUC 2004, LNCS 3207, pp. 12–21, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



Automatic Synthesis and Verification of Real-Time Embedded Software 13

techniques such as software component reuse, formal software synthesis tech-
niques such as scheduling and code generation, and formal verification tech-
nique such as model checking can be realized in the form of an integrated design
environment targeted at the acceleration of real-time embedded software con-
struction.

Several issues are encountered in the development of an integrated design
environment. First, we need to decide upon an architecture for the environment.
Since our goal is to integrate reuse, synthesis, and verification, we need to have
greater control on how the final generated application will be structured, thus
we have chosen to implement the environment as an object-oriented applica-
tion framework [5], which is a “semi-complete” application, where users fill in
application specific objects and functionalities. A major feature is “inversion of
control”, that is the framework decides on the control flow of the generated ap-
plication, rather than the designer. Other issues encountered in architecting an
application framework for real-time embedded software are as follows.

1. To allow software component reuse, how do we define the syntax and seman-
tics of a reusable component?

2. What is the control-data flow of the automatic design and verification pro-
cess? When do we verify and when do we schedule?

3. What kinds of model can be used for each design phase, such as scheduling
and verification?

4. What methods are to be used for scheduling and for verification? How do we
automate the process? What kinds of abstraction are to be employed when
system complexity is beyond our handling capabilities?

5. How do we generate portable code that not only crosses real-time operating
systems (RTOS) but also hardware platforms.

Briefly, our solutions to the above issues can be summarized as follows.

1. Software Component Reuse and Integration: A subset of the Unified Mod-
eling Language (UML) [15] is used with minimal restrictions for automatic
design and analysis. Precise syntax and formal semantics are associated with
each kind of UML diagram. Guidelines are provided so that requirement
specifications are more error-free and synthesizable.

2. Control Flow: A specific control flow is embedded within the framework,
where scheduling is first performed and then verification because the com-
plexity of verification can be greatly reduced after scheduling [8].

3. System Models: For scheduling, we use variants of Petri Nets (PN) [10], [11]
and for verification, we use Extended Timed Automata (ETA) [1], [11], both
of which are automatically generated from user-specified UML models that
follow our restrictions and guidelines.

4. Design Automation: For synthesis, we employ quasi-static and quasi-
dynamic scheduling methods [10], [11] that generate program schedules for
a single processor. For verification, we employ symbolic model checking [2],
[3], [14] that generates a counterexample in the original user-specified UML



14 P.-A. Hsiung and S.-W. Lin

models whenever verification fails for a system under design. The whole de-
sign process is automated through the automatic generation of respective
input models, invocation of appropriate scheduling and verification kernels,
and generating reports or useful diagnostics. For handling complexity, we
apply model-based, architecture-based, and function-based abstractions.

5. Portable Efficient Multi-Layered Code: For portability, a multi-layered ap-
proach is adopted in code generation. To account for performance degrada-
tion due to multiple layers, system-specific optimization and flattening are
then applied to the portable code. System dependent and independent parts
of the code are distinctly segregated for this purpose.

In summary, this work illustrates how an application framework may inte-
grate all the above proposed design and verification solutions. Our implementa-
tion has resulted in a Verifiable Embedded Real-Time Application Framework
(VERTAF) whose features include formal modeling of real-time embedded sys-
tems through well-defined UML semantics, formal synthesis that guarantees sat-
isfaction of temporal as well as spatial constraints, formal verification that checks
if a system satisfies user-given properties or system-defined generic properties,
and code generation that produces efficient portable code.

The article is organized as follows. Section 2 describes the design and verifi-
cation flow in VERTAF along with an illustration example. Section 3 presents
the experimental results of an application example. Section 4 gives the final
conclusions with some future work.

2 Design and Verification Flow in VERTAF

In Figure 1, the control and data flows of VERTAF are represented by solid and
dotted arrows, respectively. Software synthesis is defined as a two-phase process:
a machine-independent software construction phase and a machine-dependent
software implementation phase. This separation helps us to plug-in different tar-
get languages, middleware, real-time operating systems, and hardware device
configurations. We call the two phases as front-end and back-end phases. The
front-end phase is further divided into three sub-phases, namely UML model-
ing phase, real-time embedded software scheduling phase, and formal verification
phase. There are two sub-phases in the back-end phase, namely component map-
ping phase and code generation phase. We will now present the details of each
phase in the rest of this section illustrated by a running example called Entrance
Guard System (EGS). EGS is an embedded system that controls the entrance to
a building by identifying valid users through a voice recognition IC and control
software that runs on a StrongARM 1100 microprocessor.

2.1 UML Modeling

After scrutiny of all diagrams in UML [4], [15], we have chosen three diagrams for
a user to input as system specification models, namely class diagram, sequence



Automatic Synthesis and Verification of Real-Time Embedded Software 15

UML Model

Extended Timed 
Automata 

Generation

Real-Time 
Petri-net Generation

Schedulable

Scheduler
Generation

Yes

No

No

Class Diagram 
with 

Deployments

Timed 
Statecharts

Extended 
Sequence 
Diagrams

Display un-
schedulability 
information

Display counter-
example in UML 

model

Front End

Back End

Yes

Model Check

Specification 
satisfied

Schedule

Component 
Mapping

Code Generation

Embedded 
Real-Time 
Software

Fig. 1. Design and Verification Flow of VERTAF

diagram, and statechart. These diagrams were chosen such that information re-
dundancy in user specifications is minimized and at the same time adequate
expressiveness in user specifications is preserved. In VERTAF, the three UML
diagrams are both restricted as well as enhanced along with guidelines for de-
signers to follow in specifying synthesizable and verifiable system models.

The three UML diagrams extended for real-time embedded software specifi-
cation are as follows.

– Class Diagrams with Deployment: A deployment relation is used for specify-
ing a hardware object on which a software object is deployed. There are two
types of methods, namely event-triggered and time-triggered that are used
to model real-time behavior.

– Timed Statecharts: UML statecharts are extended with real-time clocks that
can be reset and values checked as state transition triggers.

– Extended Sequence Diagrams: UML sequence diagrams are extended with
control structures such as concurrency, conflict, and composition, which aid
in formalizing their semantics and in mapping them to formal Petri net
models that are used for scheduling.

For our running EGS example, some of the above diagrams are shown in
Figures 2 and 3.



16 P.-A. Hsiung and S.-W. Lin

Fig. 2. Class Diagram with Deployment for Entrance Guard System

Fig. 3. Timed Statecharts for Controller in Entrance Guard System

UML is well-known for its informal and general-purpose semantics. Design
guidelines are provided in VERTAF to a user such that the goal of correct-by-
construction can be achieved as follows.

– Hardware deployments are desirable as they reflect the system architecture
in which the generated real-time embedded software will execute and thus
generated code will adhere to designer intent more precisely.

– If the behavior of an object cannot be represented by a simple statechart
that has no more than four levels of hierarchy, then decompose the object.



Automatic Synthesis and Verification of Real-Time Embedded Software 17

– Overlapping behavior among scenarios often results in significant redun-
dancy in sequence diagrams, hence either control structures may be used in
a sequence diagram or a set of non-overlapping sequence diagrams may be
inter-related with precedence constraints.

– Ensure the logical correctness of the relationships between class diagram and
statecharts and between statecharts and sequence diagrams. The former re-
lationship is represented by actions and events in statecharts that correspond
to object methods in class diagram. The latter relationship is represented by
state-markers in sequence diagrams that correspond to statechart states.

2.2 Real-Time Embedded Software Scheduling

There are two issues in real-time embedded software scheduling, namely how
are memory constraints satisfied and how are temporal specifications such as
deadlines satisfied. Based on whether the system under design has an RTOS
specified or not, two different scheduling algorithms are applied to solve the
above two issues.

– Without RTOS: Quasi-dynamic scheduling (QDS) [10], [11] is applied, which
requires Real-Time Petri Nets (RTPN) as system specification models. QDS
prepares the system to be generated as a single real-time executive kernel
with a scheduler.

– With RTOS: Extended quasi-static scheduling (EQSS) [19] with real-time
scheduling [12] is applied, which requires Complex Choice Petri Nets (CCPN)
and set of independent real-time tasks as system specification models, re-
spectively. EQSS prepares the system to be generated as a set of multiple
threads that can be scheduled and dispatched by a supported RTOS such as
MicroC/OS II or ARM Linux.

In order to apply the above scheduling algorithms, we need to map the user-
specified UML models into Petri nets, RTPN or CCPN, as follows.

1. A message in a sequence diagram is mapped to a set of Petri net nodes,
including an incoming arc, a transition, an outgoing arc, and a place. If it is
an initial message, no incoming arc is generated. If a message has a guard,
the guard is associated to the incoming arc.

2. For each set of concurrent messages in a sequence diagram, a fork transition
is first generated, which is then connected to a set of places that lead to a
set of message mappings as described in Step (1) above.

3. If messages are sent in a loop, the Petri-nets corresponding to the messages
in the loop are generated as described in Step (1) and connected in the given
sequential order of the messages.

4. Different sequence diagrams are translated to different Petri-nets. If a Petri
net has an ending transition which is the same as the initial transition of
another Petri net, they are concatenated by merging the common transition.



18 P.-A. Hsiung and S.-W. Lin

5. Sequence diagrams that are inter-related by precedence constraints are first
translated individually into independent Petri nets, which are then com-
bined with a connecting place, that may act as a branch place when several
sequence diagrams have a similar precedent.

6. An ending transition is appended to each Petri-net because otherwise there
will be tokens that are never consumed resulting in infeasible scheduling.

For our running EGS example, a single Petri net is generated from the user-
specified set of statecharts, which is then scheduled using QDS. In this example,
scheduling is required only for the timers associated with the actuator, the con-
troller, and the input object. After QDS, we found that EGS is schedulable.

2.3 Formal Verification

VERTAF employs the popular model checking paradigm for formal verification
of real-time embedded software. In VERTAF, formal ETA models are generated
automatically from user-specified UML models by a flattening scheme that trans-
forms each statechart into a set of one or more ETA, which are merged, along
with the scheduler ETA generated in the scheduling phase, into a state-graph.
The verification kernel used in VERTAF is adapted from State Graph Manipu-
lators (SGM) [20], which is a high-level model checker for real-time systems that
operate on state-graph representations of system behavior through manipula-
tors, including a state-graph merger, several state-space reduction techniques, a
dead state checker, and a TCTL model checker. There are two classes of sys-
tem properties that can be verified in VERTAF: (1) system-defined properties
including dead states, deadlocks, livelocks, and syntactical errors, and (2) user-
defined properties specified in the Object Constraint Language (OCL) as defined
by OMG in its UML specifications. All of these properties are automatically
translated into TCTL specifications for verification by SGM.

Automation in formal verification is achieved in VERTAF by the following
implementation mechanisms.

1. User-specified timed statecharts are automatically mapped to a set of ETA.
2. User-specified extended sequence diagrams are automatically mapped to a

set of Petri nets that are scheduled and then a scheduler ETA is automati-
cally generated.

3. Using the state-graph merge manipulator in SGM, all the ETA resulting
from the above two steps are merged into a single state-graph representing
the global system behavior.

4. User-specified OCL properties and system-defined properties are automati-
cally translated into TCTL specification formulas.

5. The system state-graph and the TCTL formulas obtained in the previous
two steps are then input to SGM for model checking.

6. When a property is not satisfied, SGM generates a counterexample, which
is then automatically translated into a UML sequence diagram representing
an erratic trace behavior of the system.



Automatic Synthesis and Verification of Real-Time Embedded Software 19

Fig. 4. AICC System Architecture

Fig. 5. AICC Call-Graph

Table 1. AICC Tasks

Index Task Description Object p e d

1 Traffic Light Info SRC 200 10 400
2 Speed Limit Info SRC 200 10 400
3 Proceeding Vehicle Estimator ICCReg 100 8 100
4 Speed Sensor ICCReg 100 5 100
5 Distance Control ICCReg 100 15 100
6 Green Wave Control ICCReg 100 15 100
7 Speed Limit Control ICCReg 100 15 100
8 Coordination & Final Control Final Control 50 20 50
9 Cruise Switches Supervisor 100 15 100
10 ICC Main Control Supervisor 100 20 100
11 Cruise Info Supervisor 100 20 100
12 Speed Actuator EST 50 5 50

SRC: Short Range Communication, ICCReg: ICC Regulator, EST: Electronic Servo Throttle,

p: period, e: execution time, d: deadline

3 AICC Cruiser Application

An application developed with VERTAF is AICC (Autonomous Intelligent
Cruise Controller) system application [6], which had been developed and in-



20 P.-A. Hsiung and S.-W. Lin

stalled in a Saab automobile by Hansson et al. The AICC system can receive
information from road signs and adapt the speed of the vehicle to automatically
follow speed limits. Also, with a vehicle in front cruising at lower speed the AICC
adapts the speed and maintains safe distance. The AICC can also receive infor-
mation from the roadside (e.g. from traffic lights) to calculate a speed profile
which will reduce emission by avoiding stop and go at traffic lights. The system
architecture consisting of both hardware (HW) and software (SW) is shown in
Figure 4.

As shown in Figure 5, there are five domain objects specified by the designer
of AICC for implementing a Basement system. As observed in Figure 5, each
object may correspond (map) to one or more tasks. The tasks and the Call-
Graph are as shown in Table 1 and Figure 5, respectively. There are totally
12 tasks performed by 5 application domain objects. There were 21 application
framework objects specified by the designer. Totally, 26 objects were in the
final program code generated. The average integration time per object was 0.5
day and the average learning time was amortized as 0.1 day for each designer
using the framework. Without using the framework, the average integration time
was 2 days for each object. This application took 5 days for 3 real-time system
designers using VERTAF. The same application took the same designers 20 days
to complete development a second time without VERTAF.

4 Conclusion

An object-oriented component-based application framework, called VERTAF,
was proposed for real-time embedded systems application development. It was
a result of the integration of software component reuse, formal synthesis, and
formal verification. Starting from user-specified UML models, automation was
provided in model transformations, scheduling, verification, and code generation.
Future extensions will include support for share-driven scheduling algorithms,
more advanced features of real-time applications, such as: network delay, net-
work protocols, and on-line task scheduling. Performance related features such
as context switch time and rate, external events handling, I/O timing, mode
changes, transient overloading, and setup time will also be incorporated into
VERTAF in the future.

References

1. R. Alur and D. Dill, “Automata for modeling real-time systems,” Theoretical Com-
puter Science, Vol. 126, No. 2, pp. 183-236, April 1994.

2. E. M. Clarke and E. A. Emerson, “Design and synthesis of synchronization skele-
tons using branching time temporal logic,” in Proceedings of the Logics of Pro-
grams Workshop, LNCS Vol. 131, pp. 52-71, Springer Verlag, 1981.

3. E. M. Clarke, O. Grumberg, and D. A. Peled, Model Checking, MIT Press, 1999.
4. B. P. Douglass, Doing Hard Time: Developing Real-Time Systems with UML,

Objects, Frameworks, and Patterns, Addison Wesley Longman, Inc., Reading, MA,
USA, November 1999.



Automatic Synthesis and Verification of Real-Time Embedded Software 21

5. M. Fayad and D. Schmidt, “Object-oriented application frameworks,” Communi-
cations of the ACM, Special Issue on Object-Oriented Application Frameworks,
Vol. 40, October 1997.

6. H. A. Hansson, H. W. Lawson, M. Stromberg, and S. Larsson, “BASEMENT: A
distributed real-time architecture for vehicle applications,” Real-Time Systems,
Vol. 11, No. 3, pp. 223-244, 1996.

7. P.-A. Hsiung, “RTFrame: An object-oriented application framework for real-time
applications,” in Proceedings of the 27th International Conference on Technol-
ogy of Object-Oriented Languages and Systems (TOOLS’98), pp. 138-147, IEEE
Computer Society Press, September 1998.

8. P.-A. Hsiung, “Embedded software verification in hardware-software codesign,”
Journal of Systems Architecture - the Euromicro Journal, Vol. 46, No. 15, pp.
1435-1450, Elsevier Science, November 2000.

9. P.-A. Hsiung and S.-Y. Cheng, “Automating formal modular verification of asyn-
chronous real-time embedded systems,” in Proceedings of the 16th International
Conference on VLSI Design, (VLSI’2003, New Delhi, India), pp. 249-254, IEEE CS
Press, January 2003.

10. P.-A. Hsiung and C.-Y. Lin, “Synthesis of real-time embedded software with
local and global deadlines,” in Proceedings of the 1st ACM/IEEE/IFIP In-
ternational Conference on Hardware-Software Codesign and System Synthesis
(CODES+ISSS’2003, Newport Beach, CA, USA), pp. 114-119, ACM Press, Oc-
tober 2003.

11. P.-A. Hsiung, C.-Y. Lin, and T.-Y. Lee, “Quasi-dynamic scheduling for the synthe-
sis of real-time embedded software with local and global deadlines,” in Proceedings
of the 9th International Conference on Real-Time and Embedded Computing Sys-
tems and Applications (RTCSA’2003, Tainan, Taiwan), February 2003.

12. C. Liu and J. Layland, “Scheduling algorithms for multiprogramming in a hard-
real time environment,” Journal of the Association for Computing Machinery, Vol.
20, pp. 46-61, January 1973.

13. D. de Niz and R. Rajkumar, “Time Weaver: A software-through-models framework
for embedded real-time systems,” in Proceedings of the International Workshop on
Languages, Compilers, and Tools for Embedded Systems, San-Diego, California,
USA, pp. 133-143, June 2003.

14. J.-P. Queille and J. Sifakis, “Specification and verification of concurrent systems in
CESAR,” in Proceedings of the International Symposium on Programming, LNCS
Vol. 137, pp. 337-351, Springer Verlag, 1982.

15. J. Rumbaugh, G. Booch, and I. Jacobson, The UML Reference Guide, Addison
Wesley Longman, 1999.

16. M. Samek, Practical Statecharts in C/C++ Quantum Programming for Embedded
Systems, CMP Books, 2002.

17. D. Schmidt, “Applying design patterns and frameworks to develop object-oriented
communication software,” Handbook of Programming Languages, Vol. I, 1997.

18. B. Selic, G. Gullekan, P. T. Ward, Real-time Object Oriented Modeling, John
Wiley and Sons, Inc., 1994.

19. F.-S. Su and P.-A. Hsiung, “Extended quasi-static scheduling for formal synthesis
and code generation of embedded software,” in Proceedings of the 10th IEEE/ACM
International Symposium on Hardware/Software Codesign (CODES’02, Colorado,
USA), pp. 211-216, ACM Press, May 2002.

20. F. Wang and P.-A. Hsiung, “Efficient and user-friendly verification,” IEEE Trans-
actions on Computers, Vol. 51, No. 1, pp. 61-83, January 2002.


	Introduction
	Design and Verification Flow in VERTAF
	UML Modeling
	Real-Time Embedded Software Scheduling
	Formal Verification

	AICC Cruiser Application
	Conclusion

