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Abstract. Context switching of hardware in an FPGA custom computer
is evaluated using a signal processing application targeted at the
SPACE2 architecture. It is found that both the throughput and
area*time metrics of the implementaion can be dynamically varied. In
an algorithm where the context switching is driven by the data input
stream a form of hardware thrashing is possible. The results of the
paper also show how the restriction of throughput of a CPU due to
excessive interupt frequency can be removed by transferreing
computing load to reconfigurable hardware.

1  Introduction

Context switching of hardware (also called run time reconfiguration [Luk et al, 1996]
dynamic reconfiguration [Singh et al,1996] and swappable logic [Brebner,1997]) can
be viewed as taking its inspiration from the paging mechanism in operating systems
but extending the concept to hardware logic circuits. There are some important
distinctions and qualifications that need to be made in extending the paging concept
to hardware. These will be raised in the next section of this paper. However the
reasons for introducing context switching with hardware units are most likely similar
to the motivations for having paging. These are to allow expensive and therefore
limited reconfigurable hardware resources (mostly routing resources) to be fully
utilised for productive work, to allow logic circuits larger than available
reconfigurable FPGA capacity to be implemented and to a make virtual context for
the input and output connections to the circuit. In a custom computer the
reconfigurable logic can be viewed as completely replacing the conventional CPU.
However it seems unlikely that the mass produced processor will be made obsolete
by reconfigurable logic. Rather the reconfigurable logic in some way will extend the
resources available to a conventional processor to allow it to perform some types of
operations faster just as hardware is now used today as a coprocessor for floating



point. A more telling reason to use hardware is to avoid software operations that
severely impair  performance of a standard von Neuman processors by placing them
in hardware. The application discussed in this paper is targeted at architectures that
use the reconfigurable logic as an adjunct to a standard processor and in which the
hardware is primarily used to avoid operations which are inherently inefficient when
executed on the standard processor.

It is not clear at present just which applications will benefit from the custom
computing approach. The research discussed in this paper is intended to expose issues
that might impinge on the right choice of applications by exploring the design space
of custom computing using a signal processing application called peak detection. The
study began by exploring various static choices as to which parts of the algorithm are
best placed in hardware and which in software. This has given us some idea of the
tradeoffs involved in the implementation of the algorithm including a range of actual
measurements of the throughput and area (code size) associated with different static
hardware/software partitions. The next step in the research was to introduce a context
switched version of the implementation and explore the impact that context switching
overhead might have on the speed and area of the design as compared with a static
hardware software partition. We also have tried to evaluate how the performance of
the partitions used in a context switching environment might be different to those
associated with the static software/hardware  case. Also explored briefly are the
utility of the additional design options provided by hardware context switching in an
application domain. In particular the application has highlighted the use of hardware
context switching to provide for a graceful degradation of performance of the
application when the processing requirements exceed the available capacity of the
software based implementation.

The paper is organised as follows. In the first section we make some general
comments on the differences between hardware context switching (which we also call
hardware “paging”) and conventional software paging. We then introduce the peak
detection algorithm and review some existing results of static hardware software
partitions of the algorithm. Following this we examine the opportunities for the use of
hardware context switching in the algorithm. The context switching performance of
the SPACE2 platform is then evaluated and the likely impact on the algorithm’s
performance of context switching overheads are evaluated. Context switching allows
a wider range of tradeoffs between hardware and software and these are explore
using data obtained from the context switching case. Finally we discuss the general
implications that can be drawn for this research for the future design of custom
computing hardware.



2 Hardware Context switches and Hardware Paging–How is it
different from Software Paging

The fundamental difference between hardware context switching and paging arises
from the nature of the objects being switched. In this section we want to point out this
leads to some of the major differences between conventional software paging and
hardware context switches not all of which seem yet to have been examined in the
literature. One major issue about hardware context switching which has already been
noted  is that hardware resources are two dimensional as compared with RAM pages
which are one dimensional. This means that we must decide in a hardware context
switch whether we will deal with regular shaped circuits (say with square bounding
boxes) or whether we will deal with irregular shapes and face the difficulty of
mapping these into irregular  spaces on the FPGA. It is interesting to note that the OS
community has opted for fixed sized pages to reduce the overhead of a context switch
and the possible extra management overhead that arises when memory fragmentation
is possible. It seems very unlikely that the custom computing community will be able
to afford irregular and different shaped hardware logic blocks when the time cost of a
custom place and route calculation which is needed to connect irregular hardware
blocks is vastly greater than the cost of managing a fragmented RAM which uses
different sized pages.

In the next few sections we examine some of the implications that the
differences between software page objects and hardware page objects will have on
the design of a custom computer.

2.1 Hardware “pages” can be multi threaded

In paging the code being swapped between RAM and disk usually represents a single
thread of control. In the hardware context the logic can be concurrent. This means
that the replacement of a hardware “page” must take into account the concurrently
operating threads of control in the “page”. For example it may not be possible to
replace a hardware “ page” until all the threads of control have completed within it
and it may not be necessary to bring into memory a new hardware “page” (i.e. a
hardware “page fault”) until both threads feeding the new “page” are ready to supply
data to the new “page” (new “page” has a join hardware synchronisation function)

2.2 Hardware “pages” begin computation immediately they are loaded into the
FPGA

In software paging placing the code into RAM does not necessarily imply immediate
execution whilst hardware will potentially run immediately if it is loaded into the
FPGA. Thus a hardware context switch which brings in a new hardware “page” onto
the FPGA must be sure that its inputs are stable before it begins its computation.
There seem to be two ways to do this. First the input data could be brought in with



the hardware “page” as the contents of a register. In this case the page carries its own
context and the transfer of data between hardware “pages” could be done in a similar
way as a RAM transfer (maybe using software). The second way to synchronise the
hardware context switches with cycles of the other hardware on the FPGA. For
example all hardware “pages” might be designed to complete in n clock cycles and
then any hardware “page” swaps could be restricted to the nth clock cycle.

2.3 Hardware “pages” do not need an external context.

Paged software is assigned and needs additional states or context (registers, stack
pointer) when it begins to execute on the processor whilst the hardware page does not
necessarily need this additional context to perform useful computation. This is
another possible variation on the case above. Imagine a hardware block that is
iterative and is swapped out in the middle of the iteration. If the iteration is supplied
with data that is already loaded into registers inside the “page” the iteration can
proceed immediately without any external context. The hardware paging interface
could poll the independent hardware page for completion and then read the results
and swap it out. Of course the detection of completions implies some output
synchronisation between the “page” and the page swapping hardware/software.

2.4 Hardware “page” swaps can be implemented in reconfigurable logic

Just as in the management of paging in a normal OS the page tables that control
virtual memory can themselves can be stored in virtual memory there seems no
reason why the swapping of hardware “pages” should not itself be implemented in
reconfigurable logic which is itself partly swapped in and out of the FPGA.

2.5 Is there a case for a “cache like hierarchy” for reconfigurable logic

There is obviously a penalty to pay in the implementation of an FPGA with a
capacity for fast reconfiguration. Is there a case for a custom computer with two
different types of reconfigurable logic one of small capacity with a fast
reconfiguration rate and the other large capacity with a slower rate. It is clearly not
necessarily meaningful to propose a “cache like” hierarchy of FPGA resources based
just on reconfiguration rate. The reconfigurable logic cache also is likely to be
influenced by the inverse relationship between execution speed and reconfiguration
speed. Fast reconfiguration may slow down the processing rate of the hardware
loaded into the FPGA because of tradeoffs related to interconnect. Thus we can view
the “reconfigurable logic cache hierarchy” as the fastest logic and the slowest
reconfiguration rate at the top (like registers) whilst the fastest reconfiguration rates
and thus the slowest speed at the bottom (like dynamic RAM). We could image a
cache management policy involving a sequence of data moves between these levels



maybe having the identical copies of a particular  logic function existing on each
level even. We could also have a sequence of hardware logic moves between these
levels based on the needs and locality of the current application with the most often
used logic moved into the fastest FPGA with the slowest reconfiguration rate.  Into
this already wide choice of options must be placed the existing memory products.
Another option is to combine RAM cache with reconfigurable logic. This raises
questions such as the following: When is it appropriate to transfer the configuration
of the FPGA to static RAM as opposed to dynamic RAM or just directly between a
slow reconfiguration rate FPGA and a fast one? Is there a benefit for a RAM cache
for the configuration data on the FPGA chip itself to overcome the bottle neck
observed and discussed later in this paper when data is transferred between the FPGA
and off chip static RAM?

In the next section we report on the initial phases of our research into the issues
listed above. The methodology has been to examine these options by extracting
performance data from DSP functions implemented as the case studies. In this paper
we present one of these studies involving a peak detector function.

3 Peak Detection - Non Context Switched Design

In this section we explain the implementation of a peak detector algorithm in a static
fashion - that is without context switching. We first describe how we have developed
the software hardware codesign and then discuss the functionality of the components.
We make some comments on the relative performance of various partitions of the
algorithm into hardware and software.

A peak detector takes as input a stream of samples from an analogue channel. A peak
is defined as a value in the stream greater than some threshold. The output of the
peak detector is the average number of peaks in a fixed interval of time. The peak
detector can be divided into components as shown in Figure 1. The peak detector
component is a comparator. The average peak count component stores the contents of
the counter component when a regular event is issued by the period timer component.



Fig. 1.  ‘Count the average number of peaks that exceed a preset threshold’ HCFSM
representation.

The peak detector signal processor application was implemented using a software
hardware co-design technique. This is necessary since it is not clear at the start of the
design just which parts of the algorithm will end up in hardware ad which in
software. In the context switching case the same component may be running in
software at one point and in hardware at another. Co-design techniques can be
categorised into two broad areas.  The first approach is the unified methodology
[Themes, 1993],[Ismail, et.al., 1994a],[Ismail, et.al., 1994b] in which is a single
language is used for top down design.  The second approach is called heterogeneous
[Kalavade A, 1994] where different design languages are used for each component.

This peak detector application described here was implemented using a unified
methodology called Hierarchical Concurrent Finite State Machines (HCFSM) [Kiefer
& Kearney, 1997. The first version of the implementation was targeted at a custom
computer designed and built by the authors at the University of South Australia
consisting of a XILINX 4000 FPGA and a DSP32c DSP chip.  The co-design method
consists of decomposing the specification into components and messages. The lowest
level of the decomposed peak detector design  is shown in Fig 1. All the components
except the comparator (peak detector) were mapped into both software or hardware.
The comparator was only implemented in hardware to ensure that the DSP interrupt
was only activated on the arrival of a peak and not on every sample of the analogue
signal.  A partition is defined as a particular division of the algorithm between
software and hardware. The “cost” of several implemented partitions was evaluated
in terms of area and speed. The full results are reported elsewhere [Kiefer & Kearney,
1997] but a summary of the salient points are summarised below.

The overall speed of any partition was found to be significantly affected by the
number of messages that were communicated between components across the
partition boundary between hardware and software because the message passing was
controlled using interrupts. As a result for some partitions the DSP processor spent
much of its time servicing these interrupts which degraded the speed of the software



implemented components.

Component Label Component Name Area (bytes of configurable logic)

A Peak detector (comparator) 30

B Period timer 11

C Peak Counter 24

D Averaging Logic 8

Table 1 FPGA area cost of peak detector components

The FPGA resources used by a single channel peak detector are given in Table 1.
The performance measured for the implementation in terms of throughput (peaks
detected per second) and area (configuration bytes of reconfigurable logic) for three
of the partitions studied are given in Table 2. The table also defines for each partition
just which components are implemented in software and which in hardware. Table 2
also give a area*time metric for the partitions assuming where the are is just the
FPGA resources and does not include the RAM resources consumed on the host by
the software implemented components. In the published study these RAM resources
are included . They have not been included in this study because the relative cost the
small amount of dynamic RAM used on the alpha host for the SPACE2 is considered
insignificant in comparison with the cost of FPGA area resources.

Partition Label Components
in hardware
(FPGA)

FPGA area
(bytes of
configurable
logic)

Components
in software

Throughput of
the partition
(peaks detected
per second)

Area/
Through
-put

State 1
Hardware Only

A,B,C and D 71 None 1.92 MHz 36.9

State 2
Hardware /Software

A and B 41 D only 0.81 MHz 50.6

State 3
Mostly Software

A only 30 B,C and D 0.27 MHz 111.1

Table 2 Non context switched performance of partitions

4 Peak Detection–Context Switched Design

In this section we will describe how the peak detector application can be
implemented with context switching. We then evaluate the performance of the
algorithm under context switching on a typical custom computer.

The three possible partitions that take part in the context switching have been
described above . The events initiating the context switch are related to the frequency
of peaks occurring in the input stream. If the frequency of the peaks is high the
algorithm can only be implemented with all components in hardware. If the
frequency of the peaks is low all but the peak detector component (comparator) can



be placed in software. The third partition covers the intermediate case.

To assist in understanding the operation of context switching in the algorithm a state
diagram can be defined showing the three partitions as states (nodes) joined by edges
representing the events triggering context switches (dependant on the currently
measure frequency of peaks). For each transition there is a associated cost of the
context switch defined in terms of delay and for each state there is a given
performance level in terms of maximum peak detection rate and associated FPGA
area required to sustain this rate.. Given a particular input data pattern (which we call
a work load) it is possible to derive the points when context switching will take place
and hence the performance of the algorithm. We measure the performance in terms of
the number of peaks processed per second and the area of FPGA hardware used
weighted according to the time a particular partition using this area is loaded.  We
call the area measure a “rent” area by analogy with a rent paid for the use the FPGA
floor space.

4.1 Types of Context switching
The simplest context switch which can be investigated is to swap all the

components except the comparator between hardware and software. The criteria used
being based on when the peak rate exceeds a threshold. Based on the states defined in
Table 2, the fourth row of Table 3 shows this option together with the number of
bytes required to be moved from FPGA to RAM for the context switch. The columns
of Table 3 will be explained in due course.

Context
switch
state
n to m

Swapped
hardware
components

Area swapped (bytes
of reconfiguarbe
logic)

Byte
transfer
time μs

Byte transfer
time for 10
channels μs

Host
transfer
overhead
delay μs

Total
context
switch time
μs

1,2 2,1 C and D 30 3.6 36 10 46

2,3 3,2 B 11 1.32 13.2 10 23.2

1,3 3,1 B,C and D 43 5.16 51.6 10 61.6

Table 3 Context Switching times between states

The other rows of Table 3 shows the same information for the other possible
context switches from state 1 to 2 and from state 2 to 3.

4.2 Context switching time

The time required to perform a context switch (as given in Table 3) has been obtained
based on data from the SPACE2 [Gunther, 1997] custom computer. SPACE2 uses a
array of dynamically reconfigurable Xilinx XC6216 FPGA’s with closely coupled
RAM connected to host computer via a 33MHz 64bit PCI bus. SPACE2 has local



static RAM directly connected to the XC6216 FPGA’s as shown in Figure 2 which
can be used for context switching.

Custom Computing
Machine (CCM)

XC6216 x 8

RAM
For buffer and Context

Storage

Control Logic & PCI
Interface

DEC Alpha work station
Host Processor

Control Control

64bit PCI bus

Reconfig bus

Figure 2: SPACE2 context switching hardware block diagram

SPACE2 also allows FPGA contexts to be stored in the dynamic RAM of the host
with context switching via the PCI bus but this possibility is not considered in this
paper because it is slower than using the directly connected fast static RAM.

The factors which determine the context switch time are number of reconfigurable
logic configuration bytes to be transferred (approximately 120ns per byte) plus a
fixed overhead of about 10μs.

Although the peak detector application was originally implemented on a 50MHz
DSP it was retargetted to SPACE2 with its 266MHz DEC alpha host. The data in this
paper refers to this retargetted design. A single channel of the peak detector occupies
a relatively small area of the FPGA and the time required to transfer the hardware for
10 channels of the application is shown also in Table 3. It is assumed in this case that
all channels will be transferred at the same time. It can be seen from Table 3 that the
smallest context switch is for changing from the partition of state 2 to state 3. It is
interesting to note that from Table 2 that a change from 3 to 2 will triple the
throughput of the application.

4.3 Performance results

The performance of the application was obtained by applying three different
workloads to it. Each work load consisted of a repetitive pattern of peaks with a
cyclic variation in the peak frequency. The patterns are summarised in Table 4.
Workloads 1. 2 and 3 from Table 4 were simply an alternating cycle of two different
peak frequencies which exercise two of the partitions whilst workload 4. was a cycle
of three peak frequencies that exercised all three of the hardware software partitions.



Work
load
label

Round robin
cycle transitions

“Rent”
Area
(bytes)

Throughput formula
MHz (ts is the time
slice in μs)

Maximum
Throughput
MHz

“Rent”
Area /
Maximum Through-put

1. 1,2 2,1 ... 56 2.74/(2+92/ts) 1.37 40.8

2. 2,3 3,2 ... 35.5 1.08/(2+46.4/ts) 0.54 65.7

3. 3,1 1,3 ... 50.5 2.19/(2+123.2/ts) 1.09 46.3

4. 1,2 2,3 3,1 ... 47.1 3.0/(3+130.8/ts) 1.00 47.1

Table 4 Throughput and “rent” area for context switched logic with different input workloads

The “rent” area column of Table 3 is a average of the areas used by the partitions
used in the cycle weighted by the time that each partition was active. The throughput
of a workload is dependant  on length of time each part of a cycle of different peak
frequencies is maintained which is the same as the time a partition remains active on
the FPGA between context switches. This is analogous to the time a particular job
remains executing on a time shared CPU so we have used a variable called a “time
slice” (ts) to represent this aspect of the workload. Of course if the input data induces
context switching too often we would expect the throughput of the application to be
damaged by the overhead of excessive context switching and as we will see this is in
fact the case. Included for reference in Table 3 are the maximum throughputs and
associated “rent” area*time metric (=“rent” area/throughput) that can be obtained for
each workload. These figures correspond to the case where the rate of context
switching is so low that the overhead associated with it is negligible.
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Figure 3 Throughput for context switched logic for different workloads and
timeslices.

The throughput of the 10 channel peak detector application is shown in Figure 3
as a function of the size of the timeslice and the type of work load. The results in
Figure 3 show the context switching overhead tends to make it unproductive to have
too numerous context switches and the large time slice performance of each of the
workloads approach the average of the performance over the partitions used. Figure 3
illustrates how context switching with a reasonable time slice can provide a method



of dynamically exchanging processing load between hardware and software
depending of the throughput requirements of the moment.
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Figure 4 Rent Area*Time for context switched logic for different workloads and
timeslices.

Figure 4 shows the “rent” area*time graphs for the various workloads and time slices
it shows how the introduction of context switching allows the design to choose to
operate the custom computer at an arbitrary area*time point by constraining the
partitions that can be used in context switching. By choosing a context switching
points for the peak detector  algorithm based on peak frequency the design can
dynamically vary the tradeoff between speed and area to suit the needs of the
moment.

Conclusion
In this paper we have reported on some initial explorations of the possibilities of

context switching in a signal processing application. The paper shows that custom
computing using run time reconfigurable logic opens up a range of new design
options for the implementation of signal processing algorithms as a combination of
software and hardware partitions. We have defined some of these options and
explored the quantitatively the implication of context switching hardware in a peak
detecting application. The results show how context switching of hardware means
that the designer can make trade offs between performance and logic area
dynamically. The study has shown how there is a need to develop new metrics for
assessing the implementations of signal processing algorithms when they are
implemented on custom computers because many of the current metrics based on
throughput and area time are dynamically selectable in a custom computer.
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