How to present your Experimental Results?

Pao-Ann Hsiung
Embedded System Laboratory, National Chung Cheng University, TAIWAN
Contents

- How to do experiments?
- How to analyze your results?
- How to present your results?
- Conclusions
How to do experiments?

- Implementation Platform
- Implementation Details
- Examples
Implementation Platform

- **Fix** one platform for implementation
 - All experiments should be performed in the SAME platform
 - Otherwise, you need to explicitly mention which were performed in which platform and **WHY??**

- **Describe your platform in your Thesis**
 - Machine: OS, CPU, RAM, …
 - Language: C/C++/Java/VHDL/Verilog/SystemC (versions)
 - Tools: Compiler, Synthesizer, Profiler, Linter, …
 - Libraries: Graphics, GUI, …
Implementation Details

- Use only **standard** language versions: ISO C/C++, etc.
- Use the **latest** up-to-date functions
 - Don’t use obsolete functions: gets(), …
- Ensure **compatibility** across machines
 - Windows, Linux, FreeBSD, …
- **Measure** the following
 - CPU Time Usages, Memory Usages (getresources)
- **Parameterize** everything!!!
 - Don’t use “constants” in your program statements! Use #define or variables.
Implementation Details

- Perform **error checking!!**
 - Input files, wrong data input, enough memory, buffer overflow, …

- Variable **naming**
 - Variable names should be **consistent** with that in your Thesis!!

- **Last but not the least:** /* COMMENTS */
 - Add comments to your code wherever possible, especially in all the **data structure definitions** in header files
 - Use **English**, (preferably no Chinese!)

- One more please!!!
 - **Makefile:** that would save a lot of efforts!!!
Examples

- **Toy Example**
 - To illustrate the important **steps/concepts** in your method, algorithm, architecture, design, implementation
 - Run it both manually and using your programs!

- **Large Real-World Examples**
 - To illustrate how your method, algorithm, architecture, design **scales** to complex and large examples in the real-world

- **Random Examples**
 - To illustrate how your method, algorithm, architecture, design handles **future** systems
 - To show the **statistics**!!!
How to analyze your results?

- **Goals**
 - **To show the advantages** of your method
 - Novelty, time/space efficiency, scalability, simplicity, robustness, adaptivity, …
 - **To discover the limitations** in your method
 - Functional: Cannot do something …
 - Non-functional: Poor in doing something …
 - **To compare** your method with other existing methods
 - A naïve method
 - The most similar method(s)
 - Other methods
How to analyze your results?

- **The Expected**
 - Do you see what you *expected*?
 - Yes: Congratulations! You got what you wanted.
 - No: Find the cause!
 - Found: Congratulations! You got what you wanted.
 - Not found: Well, …
 - Was your expectation correct?
 - Was your design and implementation correct?

- **The Unexpected**
 - Do you see something *unexpected*?
 - No: Mmmm….
 - Yes: Explore further, may be you found something worth investigating!
How to analyze your results?

- Try to be as thorough as possible!
 - Don’t leave out any cases!!! (How many cases are there?)
 - Example: 6 features ➔ at least 6 different sets of experiments!
 - Don’t take the results for granted!!! (Think! Think! Think!)
- Be in the shoes of the authors with whom you are comparing!
 - Would you like to be criticized or deemed inferior without solid evidences? No!!!
How to present your results?

- **Use different formats**
 - **Tables**
 - For toy example and illustration
 - **Graphs**
 - For statistics and scalability
- **Use tools such as spreadsheets and graph plotters**
 - **MS Excel** (to collect your results)
 - **Matlab** (to co-relate your results)
 - **Gnuplot** (to plot your results)
Conclusions

- The way you do and the way you present your experimental results have a great impact on what the readers conclude about your work
- Be confident about your advantages
- Be humble about your limitations
- Be sure about your future work