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Code Generation
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 The target machine

 Basic blocks and control flow graphs

 Instruction selector generator

 Register allocation

 Peephole optimization



The Target Machine
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 A byte addressable machine with four bytes to a 

word and n general purpose registers

 Two address instructions

 op source,  destination

 Six addressing modes

 absolute M M 1

 register R R 0

 indexed c(R) c+content(R) 1

 ind register *R content(R) 0

 ind indexed *c(R) content(c+content(R)) 1

 literal #c c 1



Examples
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MOV R0,   M

MOV 4 (R0),  M

MOV *R0,  M

MOV *4 (R0),  M

MOV #1,  R0



Instruction Costs
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 Cost of an instruction = 1 + costs of source and 

destination addressing modes

 This cost corresponds to the length (in words) of the 

instruction

 Minimize instruction length also tend to minimize the 

instruction execution time



Examples
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MOV R0,   R1 1

MOV R0,  M 2

MOV #1,  R0 2

MOV 4 (R0),  *12 (R1) 3



An Example

7

Consider  a  :=  b  +  c

1.  MOV b,  R0 2.  MOV b,  a

ADD c,  R0 ADD c,  a

MOV R0,  a

3.  R0, R1, R2 contains 4.  R1, R2 contains

the addresses of a, b, c the values of b, c

MOV *R1,  *R0 ADD R2,  R1

ADD *R2,  *R0 MOV R1,  a



Instruction Selection

8

 Code skeleton
x  :=  y  +  z a  :=  b  +  c d  :=  a  +  e

MOV y, R0 MOV    b,  R0 MOV    a,  R0

ADD z,  R0 ADD     c,  R0 ADD     e,  R0

MOV R0,  x MOV    R0,  a MOV    R0,  d

 Multiple choices
a  :=  a  +  1 MOV    a,  R0 INC       a

ADD    #1, R0

MOV    R0,  a



Register Allocation
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 Register allocation: select the set of variables 

that will reside in registers

 Register assignment: pick the specific 

register that a variable will reside in

 The problem is NP-complete



An Example
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t  :=  a  +  b t  :=  a  +  b

t  :=  t  *  c t  :=  t  +  c

t  :=  t  /  d t  :=  t  /  d

MOV a,  R1 MOV a,  R0

ADD b,  R1 ADD b,  R0

MUL c,  R0 ADD c,  R0

DIV d,  R0 SRDA  R0,  32

MOV R1,  t DIV d,  R0

MOV R1,  t



Basic Blocks
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 A basic block is a sequence of consecutive statements 

in which control enters at the beginning and leaves at 

the end without halt or possibility of branching 

except at the end



An Example
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(1) prod  :=  0

(2) i  :=  1

(3) t1  :=  4  *  i

(4) t2  :=  a[t1]

(5) t3  :=  4  *  i

(6) t4  :=  b[t3]

(7) t5  :=  t2  *  t4

(8) t6  :=  prod  +  t5

(9) prod  :=  t6

(10) t7  :=  i  +  1

(11) i  :=  t7

(12) if  i  <=  20  goto  (3)



Control Flow Graphs
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 A (control) flow graph is a directed graph

 The nodes in the graph are basic blocks

 There is an edge from B1 to B2 iff B2 immediately 

follows B1 in some execution sequence

 there is a jump from B1 to B2

 B2 immediately follows B1 in program text

 B1 is a predecessor of B2, B2 is a successor of B1



An Example
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(1) prod  :=  0

(2) i  :=  1

(3) t1  :=  4  *  i

(4) t2  :=  a[t1]

(5) t3  :=  4  *  i

(6) t4  :=  b[t3]

(7) t5  :=  t2  *  t4

(8) t6  :=  prod  +  t5

(9) prod  :=  t6

(10) t7  :=  i  +  1

(11) i  :=  t7

(12) if  i  <=  20  goto  (3)

B0

B1



Construction of Basic Blocks
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 Determine the set of leaders

 the first statement is a leader

 the target of a jump is a leader

 any statement immediately following a jump is a 

leader

 For each leader, its basic block consists of the 

leader and all statements up to but not including 

the next leader or the end of the program



Representation of Basic Blocks
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 Each basic block is represented by a record consisting 

of

 a count of the number of statements

 a pointer to the leader

 a list of predecessors

 a list of successors



Code Generator Generators
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 A tool to automatically construct the instruction 

selection phrase of a code generator

 Such tools may use tree grammars or context free 

grammars to describe the target machines

 Instruction selector assumes that there are infinite 

symbolic registers

 Register allocation will be implemented as a separate 

mechanism to map symbolic registers to physical 

registers



Tree Rewriting
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:=

ind +

memb const1+

+

+

ind

consti

consta regsp

regsp

a[i] := b + 1



Tree Rewriting
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 The code is generated by reducing the input tree 

into a single node using a sequence of tree-rewriting 

rules

 Each tree rewriting rule is of the form

replacement  template { action }

 replacement is a single node

 template is a tree

 action is a code fragment

 A set of tree-rewriting rules is called a tree-

translation scheme



An Example
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regi


+

regi regj

{ ADD Rj, Ri }

Each tree template represents a computation performed

by the sequence of machines instructions emitted by the

associated action



Tree Rewriting Rules
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(1) regi  constc { MOV  #c,  Ri }

(2) regi  mema { MOV  a,  Ri }

(3)
:=

mema regi

mem    { MOV  Ri, a }

(4)
:=

ind regj

mem   

regi

{ MOV  Rj, *Ri }

+

constc regj

regi 

ind

(5)
{ MOV  c(Rj), Ri }



Tree Rewriting Rules
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(6) regi  { ADD  c(Rj), Ri }

+

const1

regi (8)
{ INC  Ri }

regi

+

regj

regi (7)
{ ADD  Rj, Ri }

regi

+

ind

regj

regi

+

constc



An Example
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:=

ind +

memb const1+

+

+

ind

consti

consta regsp

regsp(1)

{ MOV  #a, R0 }



An Example

24

:=

ind +

memb const1+

+

+

ind

consti

reg0 regsp

regsp
(7)

{ ADD  SP, R0 }



An Example
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:=

ind +

memb const1+

+

ind

consti

reg0

regsp

(5)

(6)

{ MOV  i (SP), R1 }

{ ADD  i (SP), R0 }



An Example
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:=

ind +

memb const1reg0

(2)

{ MOV  b, R1 }



An Example
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:=

ind +

reg1 const1reg0

(8)

{ INC   R1 }



An Example
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:=

ind reg1

reg0

(4)

{ MOV   R1, *R0 }



Tree Pattern Matching
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 The tree pattern matching algorithm can be 

implemented by extending the multiple-keyword pattern 

matching algorithm

 Each tree template is represented by a set of strings, 

each of which represents a path from the root to a 

leave

 Each rule is associated with cost information

 The dynamic programming algorithm can be used to 

select an optimal sequence of matches



Semantic Predicates
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regi


+

regi constc

{ if c = 1 then

INC  Ri

else

ADD #c, Ri }

The general use of semantic actions and predicates can 

provide greater flexibility and ease of description than

a purely grammatical specification



Graph Coloring
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 In the first pass, target machine instructions are 

selected as though there were an infinite number of 

symbolic registers

 In the second pass, physical registers are assigned 

to symbolic registers using graph coloring algorithms

 During the second pass, if a register is needed 

when all available registers are used, some of the 

used registers must be spilled



Interference Graph
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 For each procedure, a register-interference graph is 

constructed

 The nodes in the graph are symbolic registers

 An edge connects two nodes if the life ranges of 

the corresponding two symbolic registers intersect



An Example
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(1) MOV a, R0

(2) ADD b, R0

(3) MOV c, R1

(4) ADD d, R1

(5) MOV R0, t1

(6) MOV   e, R2

(7) SUB R1, R2

(8) MOV t1, R3

(9) SUB R2, R3

(10) MOV R3, t4



K-Colorable Graphs
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 A graph is said to be k-colorable if each node can be 

assigned one of the k colors such that no two 

adjacent nodes have the same color

 A color represents a register

 The problem of determining whether a graph is k-

colorable is NP-complete



A Graph Coloring Algorithm
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 Remove a node n and its edges if it has fewer than k

neighbors

 Repeat the removing step above until we end up with 

the empty graph or a graph in which each node has k

or more adjacent nodes

 In the latter case, a node is selected and spilled by 

deleting that node and its edges, and the removing 

step above continues

 Several strategies can be used to select the spilled 

register: least-used, latest-used, and so on



A Graph Coloring Algorithm

36

 The nodes in the graph can be colored in the reverse

order in which they are removed

 Each node can be assigned a color not assigned to any 

of its neighbors

 Spilled nodes can be assigned any color



An Example
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An Example
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Peephole Optimization
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 Improve the performance of the target program by 

examining and transforming a short sequence of 

target instructions

 May need repeated passes over the code

 Can also be applied directly after intermediate code 

generation



Examples
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 Redundant loads and stores

MOV R0, a

MOV a, Ro

 Algebraic Simplification

x  :=  x  +  0

x  :=  x  *  1

 Constant folding

x  :=  2 + 3 x  :=  5

y  :=  x  +  3 y  :=  8



Examples
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 Unreachable code

#define  debug  0

if  (debug)  (print  debugging  information)

if  0  <>  1  goto  L1

print  debugging  information

L1:

if  1  goto  L1

print  debugging  information

L1:



Examples
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 Flow-of-control optimization

goto  L1 goto  L2

… …

L1: goto  L2 L2: goto  L2

goto  L1 if  a < b  goto  L2

… goto  L3

L1: if  a < b  goto  L2 …

L3: L3:



Examples
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 Reduction in strength: replace expensive 

operations by cheaper ones

 x2  x * x

 fixed-point multiplication and division by a 

power of 2  shift

 floating-point division by a constant  floating-

point multiplication by a constant 



Examples
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 Use of machine Idioms: hardware instructions for 

certain specific operations

 auto-increment and auto-decrement addressing 

mode (push or pop stack in parameter passing)


