
Code Generation

Code Generation

2

 The target machine

 Basic blocks and control flow graphs

 Instruction selector generator

 Register allocation

 Peephole optimization

The Target Machine

3

 A byte addressable machine with four bytes to a

word and n general purpose registers

 Two address instructions

 op source, destination

 Six addressing modes

 absolute M M 1

 register R R 0

 indexed c(R) c+content(R) 1

 ind register *R content(R) 0

 ind indexed *c(R) content(c+content(R)) 1

 literal #c c 1

Examples

4

MOV R0, M

MOV 4 (R0), M

MOV *R0, M

MOV *4 (R0), M

MOV #1, R0

Instruction Costs

5

 Cost of an instruction = 1 + costs of source and

destination addressing modes

 This cost corresponds to the length (in words) of the

instruction

 Minimize instruction length also tend to minimize the

instruction execution time

Examples

6

MOV R0, R1 1

MOV R0, M 2

MOV #1, R0 2

MOV 4 (R0), *12 (R1) 3

An Example

7

Consider a := b + c

1. MOV b, R0 2. MOV b, a

ADD c, R0 ADD c, a

MOV R0, a

3. R0, R1, R2 contains 4. R1, R2 contains

the addresses of a, b, c the values of b, c

MOV *R1, *R0 ADD R2, R1

ADD *R2, *R0 MOV R1, a

Instruction Selection

8

 Code skeleton
x := y + z a := b + c d := a + e

MOV y, R0 MOV b, R0 MOV a, R0

ADD z, R0 ADD c, R0 ADD e, R0

MOV R0, x MOV R0, a MOV R0, d

 Multiple choices
a := a + 1 MOV a, R0 INC a

ADD #1, R0

MOV R0, a

Register Allocation

9

 Register allocation: select the set of variables

that will reside in registers

 Register assignment: pick the specific

register that a variable will reside in

 The problem is NP-complete

An Example

10

t := a + b t := a + b

t := t * c t := t + c

t := t / d t := t / d

MOV a, R1 MOV a, R0

ADD b, R1 ADD b, R0

MUL c, R0 ADD c, R0

DIV d, R0 SRDA R0, 32

MOV R1, t DIV d, R0

MOV R1, t

Basic Blocks

11

 A basic block is a sequence of consecutive statements

in which control enters at the beginning and leaves at

the end without halt or possibility of branching

except at the end

An Example

12

(1) prod := 0

(2) i := 1

(3) t1 := 4 * i

(4) t2 := a[t1]

(5) t3 := 4 * i

(6) t4 := b[t3]

(7) t5 := t2 * t4

(8) t6 := prod + t5

(9) prod := t6

(10) t7 := i + 1

(11) i := t7

(12) if i <= 20 goto (3)

Control Flow Graphs

13

 A (control) flow graph is a directed graph

 The nodes in the graph are basic blocks

 There is an edge from B1 to B2 iff B2 immediately

follows B1 in some execution sequence

 there is a jump from B1 to B2

 B2 immediately follows B1 in program text

 B1 is a predecessor of B2, B2 is a successor of B1

An Example

14

(1) prod := 0

(2) i := 1

(3) t1 := 4 * i

(4) t2 := a[t1]

(5) t3 := 4 * i

(6) t4 := b[t3]

(7) t5 := t2 * t4

(8) t6 := prod + t5

(9) prod := t6

(10) t7 := i + 1

(11) i := t7

(12) if i <= 20 goto (3)

B0

B1

Construction of Basic Blocks

15

 Determine the set of leaders

 the first statement is a leader

 the target of a jump is a leader

 any statement immediately following a jump is a

leader

 For each leader, its basic block consists of the

leader and all statements up to but not including

the next leader or the end of the program

Representation of Basic Blocks

16

 Each basic block is represented by a record consisting

of

 a count of the number of statements

 a pointer to the leader

 a list of predecessors

 a list of successors

Code Generator Generators

17

 A tool to automatically construct the instruction

selection phrase of a code generator

 Such tools may use tree grammars or context free

grammars to describe the target machines

 Instruction selector assumes that there are infinite

symbolic registers

 Register allocation will be implemented as a separate

mechanism to map symbolic registers to physical

registers

Tree Rewriting

18

:=

ind +

memb const1+

+

+

ind

consti

consta regsp

regsp

a[i] := b + 1

Tree Rewriting

19

 The code is generated by reducing the input tree

into a single node using a sequence of tree-rewriting

rules

 Each tree rewriting rule is of the form

replacement  template { action }

 replacement is a single node

 template is a tree

 action is a code fragment

 A set of tree-rewriting rules is called a tree-

translation scheme

An Example

20

regi


+

regi regj

{ ADD Rj, Ri }

Each tree template represents a computation performed

by the sequence of machines instructions emitted by the

associated action

Tree Rewriting Rules

21

(1) regi  constc { MOV #c, Ri }

(2) regi  mema { MOV a, Ri }

(3)
:=

mema regi

mem  { MOV Ri, a }

(4)
:=

ind regj

mem 

regi

{ MOV Rj, *Ri }

+

constc regj

regi 

ind

(5)
{ MOV c(Rj), Ri }

Tree Rewriting Rules

22

(6) regi  { ADD c(Rj), Ri }

+

const1

regi (8)
{ INC Ri }

regi

+

regj

regi (7)
{ ADD Rj, Ri }

regi

+

ind

regj

regi

+

constc

An Example

23

:=

ind +

memb const1+

+

+

ind

consti

consta regsp

regsp(1)

{ MOV #a, R0 }

An Example

24

:=

ind +

memb const1+

+

+

ind

consti

reg0 regsp

regsp
(7)

{ ADD SP, R0 }

An Example

25

:=

ind +

memb const1+

+

ind

consti

reg0

regsp

(5)

(6)

{ MOV i (SP), R1 }

{ ADD i (SP), R0 }

An Example

26

:=

ind +

memb const1reg0

(2)

{ MOV b, R1 }

An Example

27

:=

ind +

reg1 const1reg0

(8)

{ INC R1 }

An Example

28

:=

ind reg1

reg0

(4)

{ MOV R1, *R0 }

Tree Pattern Matching

29

 The tree pattern matching algorithm can be

implemented by extending the multiple-keyword pattern

matching algorithm

 Each tree template is represented by a set of strings,

each of which represents a path from the root to a

leave

 Each rule is associated with cost information

 The dynamic programming algorithm can be used to

select an optimal sequence of matches

Semantic Predicates

30

regi


+

regi constc

{ if c = 1 then

INC Ri

else

ADD #c, Ri }

The general use of semantic actions and predicates can

provide greater flexibility and ease of description than

a purely grammatical specification

Graph Coloring

31

 In the first pass, target machine instructions are

selected as though there were an infinite number of

symbolic registers

 In the second pass, physical registers are assigned

to symbolic registers using graph coloring algorithms

 During the second pass, if a register is needed

when all available registers are used, some of the

used registers must be spilled

Interference Graph

32

 For each procedure, a register-interference graph is

constructed

 The nodes in the graph are symbolic registers

 An edge connects two nodes if the life ranges of

the corresponding two symbolic registers intersect

An Example

33

(1) MOV a, R0

(2) ADD b, R0

(3) MOV c, R1

(4) ADD d, R1

(5) MOV R0, t1

(6) MOV e, R2

(7) SUB R1, R2

(8) MOV t1, R3

(9) SUB R2, R3

(10) MOV R3, t4

K-Colorable Graphs

34

 A graph is said to be k-colorable if each node can be

assigned one of the k colors such that no two

adjacent nodes have the same color

 A color represents a register

 The problem of determining whether a graph is k-

colorable is NP-complete

A Graph Coloring Algorithm

35

 Remove a node n and its edges if it has fewer than k

neighbors

 Repeat the removing step above until we end up with

the empty graph or a graph in which each node has k

or more adjacent nodes

 In the latter case, a node is selected and spilled by

deleting that node and its edges, and the removing

step above continues

 Several strategies can be used to select the spilled

register: least-used, latest-used, and so on

A Graph Coloring Algorithm

36

 The nodes in the graph can be colored in the reverse

order in which they are removed

 Each node can be assigned a color not assigned to any

of its neighbors

 Spilled nodes can be assigned any color

An Example

37

1

3

4

2

5

3

4

2

5

3

4 5 4 5 5

An Example

38

G

B

G

R

R

B

G

R

R

B

G R G R R

Peephole Optimization

39

 Improve the performance of the target program by

examining and transforming a short sequence of

target instructions

 May need repeated passes over the code

 Can also be applied directly after intermediate code

generation

Examples

40

 Redundant loads and stores

MOV R0, a

MOV a, Ro

 Algebraic Simplification

x := x + 0

x := x * 1

 Constant folding

x := 2 + 3 x := 5

y := x + 3 y := 8

Examples

41

 Unreachable code

#define debug 0

if (debug) (print debugging information)

if 0 <> 1 goto L1

print debugging information

L1:

if 1 goto L1

print debugging information

L1:

Examples

42

 Flow-of-control optimization

goto L1 goto L2

… …

L1: goto L2 L2: goto L2

goto L1 if a < b goto L2

… goto L3

L1: if a < b goto L2 …

L3: L3:

Examples

43

 Reduction in strength: replace expensive

operations by cheaper ones

 x2  x * x

 fixed-point multiplication and division by a

power of 2  shift

 floating-point division by a constant  floating-

point multiplication by a constant

Examples

44

 Use of machine Idioms: hardware instructions for

certain specific operations

 auto-increment and auto-decrement addressing

mode (push or pop stack in parameter passing)

