Chapter 3 Syntax Analysis

Nai-Wei Lin

Syntax Analysis

- Syntax analysis recognizes the syntactic structure of the programming language and transforms a string of tokens into a tree of tokens and syntactic categories
- Parser is the program that performs syntax analysis

Outline

- Introduction to parsers
- Syntax trees
- Context-free grammars
- Push-down automata
- Top-down parsing
- A parser generator
- Bottom-up parsing

Introduction to Parsers

Syntax Trees

- A syntax tree represents the syntactic structure of tokens in a program defined by the grammar of the programming language

Context-Free Grammars (CFG)

- A set of terminals: basic symbols (token types) from which strings are formed
- A set of nonterminals: syntactic categories each of which denotes a set of strings
- A set of productions: rules specifying how the terminals and nonterminals can be combined to form strings
- The start symbol: a distinguished nonterminal that denotes the whole language

An Example: Arithmetic Expressions

- Terminals: id, '+', ‘-’, ‘*, '/’, '(', ')’
- Nonterminals: expr, op
- Productions:

$$
\begin{aligned}
& \text { expr } \rightarrow \text { expr op expr } \\
& \text { expr } \rightarrow \text { '(' expr ')' } \\
& \text { expr } \rightarrow \text { '-' expr } \\
& \text { expr } \rightarrow \text { id } \\
& \text { op } \rightarrow \text { '+' |'-' |'*' |'/' }
\end{aligned}
$$

- Start symbol: expr

An Example: Arithmetic Expressions

$$
\begin{aligned}
& \text { id } \Rightarrow \text { \{ id }\} \text {, } \\
& { }^{\prime}+\prime \Rightarrow\{+\} \text {, } \\
& \text { '-' } \Rightarrow\{-\} \text {, } \\
& \text { ‘*' } \Rightarrow\left\{{ }^{*}\right\} \text {, } \\
& ' / \prime \Rightarrow\{/\} \text {, } \\
& { }^{\prime}(' \Rightarrow\{(\}, \\
& \left.{ }^{\prime}\right) \text { ' } \Rightarrow\{\text {) }\} \text {, } \\
& o p \Rightarrow\left\{+,-,{ }^{*}, /\right\} \text {, } \\
& \text { expr } \Rightarrow\{i d,-i d,(i d), \text { id }+\mathbf{i d}, \mathbf{i d}-\mathbf{i d}, \ldots\} \text {. }
\end{aligned}
$$

Derivations

- A derivation step is an application of a production as a rewriting rule, namely, replacing a nonterminal in the string by one of its right-hand sides, $\mathrm{N} \rightarrow \alpha$
$\ldots \mathrm{N} \ldots \Rightarrow \ldots \alpha \ldots$
- Starting with the start symbol, a sequence of derivation steps is called a derivation

$$
S \Rightarrow \ldots \Rightarrow \alpha
$$

or $S \Rightarrow{ }^{*} \alpha$

An Example

Grammar:

1. expr \rightarrow expr op expr
2. expr \rightarrow '(' expr ')'
3. expr \rightarrow '-' expr
4. expr \rightarrow id
5. op \rightarrow '+'
6. op \rightarrow '-'
7. op \rightarrow ‘*,
8. $o p \rightarrow ' / ’$

Derivation:
expr
\Rightarrow - expr
$\Rightarrow-$ (expr)
\Rightarrow - (expr op expr)
\Rightarrow - (id op expr)
$\Rightarrow-($ id $+\underline{\text { expr }})$
$\Rightarrow-(i d+i d)$

Left- \& Right-Most Derivations

- If there are more than one nonterminal in the string, many choices are possible
- A leftmost derivation always chooses the leftmost nonterminal to rewrite
- A rightmost derivation always chooses the rightmost nonterminal to rewrite

An Example

Leftmost derivation:

$$
\begin{aligned}
& \frac{\text { expr }}{} \\
\Rightarrow & - \text { expr } \\
\Rightarrow & -(\underline{\text { expr }}) \\
\Rightarrow & -(\underline{\text { expr }} \text { op expr }) \\
\Rightarrow & -(\text { (id op expr }) \\
\Rightarrow & -(\text { id }+\underline{\text { expr }}) \\
\Rightarrow & -(\text { id }+\mathbf{i d})
\end{aligned}
$$

Rightmost derivation:
expr
\Rightarrow - expr
\Rightarrow - (expr)
\Rightarrow - (expr op expr)
$\Rightarrow-($ expr op id)
$\Rightarrow-($ expr $+i d)$
$\Rightarrow-(i d+i d)$

Parse Trees

- A parse tree is a graphical representation for a derivation that filters out the order of choosing nonterminals for rewriting
- Many derivations may correspond to the same parse tree, but every parse tree has associated with it a unique leftmost and a unique rightmost derivation

An Example

Leftmost derivation:

```
# - expr
# - (expr)
# (expr op expr)
- (id op expr)
- ( id + expr )
# ( id + id )
```

Rightmost derivation:

$$
\begin{aligned}
& \frac{\text { expr }}{} \\
& \Rightarrow-\text { expr } \\
& \Rightarrow-(\text { expr }) \\
& \Rightarrow-(\text { expr op expr }) \\
& \Rightarrow-(\text { expr op id }) \\
& \Rightarrow-(\text { expr }+\mathbf{i d}) \\
& \Rightarrow-(\text { id }+ \text { id })
\end{aligned}
$$

expr op expr

Ambiguous Grammars

- A grammar is ambiguous if it can derive a string with two different parse trees
- If we use the syntactic structure of a parse tree to interpret the meaning of the string, the two parse trees have different meanings
- Since compilers do use parse trees to derive meaning, we would prefer to have unambiguous grammars

An Example

id + id *id

Transform Ambiguous Grammars

Ambiguous grammar: expr \rightarrow expr op expr expr \rightarrow '(' expr ')' expr \rightarrow '-' expr expr \rightarrow id op \rightarrow '+' |'-’|'*’ |'/’

Not every ambiguous grammar can be transformed to an unambiguous one!

Unambiguous grammar:
expr \rightarrow expr '+' term
expr \rightarrow expr '-' term
expr \rightarrow term
term \rightarrow term '*' factor
term \rightarrow term '/' factor term \rightarrow factor
factor \rightarrow '(' expr ')'
factor \rightarrow '-' expr factor \rightarrow id

Push-Down Automata

Input

End-Of-File and Bottom-of-Stack Markers

- Parsers must read not only terminal symbols but also the end-of-file marker and the bottom-of-stack maker
- We will use \$ to represent the end of file marker
- We will also use \$ to represent the bottom-ofstack maker

An Example

$$
\begin{aligned}
& S \rightarrow a S b \\
& S \rightarrow \varepsilon
\end{aligned}
$$

CFG versus RE

- Every language defined by a RE can also be defined by a CFG
- Why use REs for lexical syntax?
- Do not need a notation as powerful as CFGs
- Are more concise and easier to understand than CFGs
- More efficient lexical analyzers can be constructed from REs than from CFGs
- Provide a way for modularizing the front end into two manageable-sized components

Nonregular Languages

- REs can denote only a fixed number of repetitions or an unspecified number of repetitions of one given construct

$$
\mathrm{a}^{n}, \mathrm{a}^{*}
$$

- A nonregular language: $L=\left\{a^{n} b^{n} \mid n \geq 0\right\}$

$$
\begin{aligned}
& S \rightarrow \mathrm{a} S \mathrm{~b} \\
& S \rightarrow \varepsilon
\end{aligned}
$$

Top-Down Parsing

- Construct a parse tree from the root to the leaves using the leftmost derivation

$$
\begin{aligned}
& S \rightarrow c A B \\
& A \rightarrow a b \\
& A \rightarrow a \\
& B \rightarrow d
\end{aligned}
$$

Predictive Parsing

- Predictive parsing is a top-down parsing without backtracking
- Namely, according to the next token, there is only one production to choose at each derivation step
$s t m t \rightarrow$ if expr then stmt else stmt while expr do stmt
| begin stmt_list end

LL(k) Parsing

- Predictive parsing is also called $\operatorname{LL}(\mathrm{k})$ parsing
- The first L stands for scanning the input from left to right
- The second L stands for producing a leftmost derivation
- The k stands for using k lookahead input symbol to choose alternative productions at each derivation step

LL(1) Parsing

- We will only describe LL(1) parsing from now on, namely, parsing using only one lookahead input symbol
- Recursive-descent parsing - hand written or tool (e.g. ANTLR and CoCo/R) generated
- Table-driven predictive parsing - tool (e.g. LISA and LLGEN) generated

Recursive Descent Parsing

- A procedure is associated with each nonterminal of the grammar
- An alternative case in the procedure is associated with each production of that nonterminal
- A match of a token is associated with each terminal in the right hand side of the production
- A procedure call is associated with each nonterminal in the right hand side of the production

Recursive Descent Parsing

$S \rightarrow$ if E then S else S begin print num = num ; end | begin Lend | print E
$L \rightarrow S ; L$
| ε
$E \rightarrow$ num $=$ num

Choosing the Alternative Case

$S \rightarrow$ if E then S else $S \quad \operatorname{FIRST}($ if E then \ldots. $)=\{i f\}$
| begin Lend
| print E
$L \rightarrow S ; L$
$\mid \varepsilon$
$E \rightarrow$ num $=$ num

FIRST(begin L end) $=\{$ begin $\}$
FIRST(print $E)=\{$ print $\}$
$\operatorname{FIRST}(S ; L)=\{i f$, begin, print $\}$
$\operatorname{FOLLOW}(L)=\{e n d\}$
FIRST(num = num) $=\{$ num $\}$

An Example

const int
$\mathrm{IF}=1, \mathrm{THEN}=2, \mathrm{ELSE}=3, \mathrm{BEGIN}=4$,
END $=5, \mathrm{PRINT}=6, \mathrm{SEMI}=7, \mathrm{NUM}=8$,
$E Q=9 ;$
int token $=\operatorname{lexer}()$;
void match(int t)
\{
if (token $==\mathrm{t}$) token $=\operatorname{lexer}()$; else error();
\}

An Example

void S() \{
switch (token) \{
case IF: match(IF); E(); match(THEN); S(); match(ELSE); S(); break; case BEGIN: match(BEGIN); L(); match(END); break; case PRINT: match(PRINT); E(); break; default: error();

An Example

void L() \{
switch (token) \{
case IF:
case BEGIN:
case PRINT:
S(); match(SEMI); L(); break;
case END: break; default: error();

An Example

void E() \{

switch (token) \{
case NUM: match(NUM); match(EQ); match(NUM); break;
default: error();
\}
\}

First and Follow Sets

- The first set of a string $\alpha, \operatorname{FIRST}(\alpha)$, is the set of terminals that can begin the strings derived from α. If $\alpha \Rightarrow^{*} \varepsilon$, then ε is also in $\operatorname{FIRST}(\alpha)$
- The follow set of a nonterminal $X, \operatorname{FOLLOW}(X)$, is the set of terminals that can immediately follow X

Computing First Sets

- If X is terminal, then $\operatorname{FIRST}(X)$ is $\{X\}$
- If X is nonterminal and $X \rightarrow \varepsilon$ is a production, then add ε to FIRST (X)
- If X is nonterminal and $X \rightarrow Y_{1} Y_{2} \ldots Y_{k}$ is a production, then add a to $\operatorname{FIRST}(X)$ if for some i, a is in $\operatorname{FIRST}\left(Y_{i}\right)$ and ε is in all of $\operatorname{FIRST}\left(Y_{1}\right), \ldots, \operatorname{FIRST}\left(Y_{i-1}\right)$. If ε is in $\operatorname{FIRST}\left(Y_{j}\right)$ for all j, then add ε to $\operatorname{FIRST}(X)$

An Example

$S \rightarrow$ if E then S else S
| begin L end
| print E
$L \rightarrow S ; L \mid \varepsilon$
$E \rightarrow$ num $=$ num
$\operatorname{FIRST}(E)=\{$ num $\}$
$\operatorname{FIRST}(L)=\{$ if, begin, print,$\varepsilon\}$
$\operatorname{FIRST}(S)=\{$ if, begin, print $\}$

Computing Follow Sets

- Place $\$$ in $\operatorname{FOLLOW}(S)$, where S is the start symbol and $\$$ is the end-of-file marker
- If there is a production $A \rightarrow \alpha B \beta$, then everything in $\operatorname{FIRST}(\beta)$ except for ε is placed in FOLLOW(B)
- If there is a production $A \rightarrow \alpha B$ or $A \rightarrow \alpha B \beta$ where $\operatorname{FIRST}(\beta)$ contains ε, then everything in $\operatorname{FOLLOW}(A)$ is in FOLLOW (B)

An Example

$S \rightarrow$ if E then S else S
| begin Lend
| print E
$L \rightarrow S ; L \mid \varepsilon$
$E \rightarrow$ num = num
$\operatorname{FOLLOW}(S)=\{$ \$, else, ; $\}$
$\operatorname{FOLLOW}(L)=\{$ end $\}$
$\operatorname{FOLLOW}(E)=\{$ then, , else, ; $\}$

Table-Driven Predictive Parsing

Input. Grammar G. Output. Parsing Table M. Method.

1. For each production $A \rightarrow \alpha$ of the grammar, do steps 2 and 3.
2. For each terminal a in $\operatorname{FIRST}(\alpha)$, add $A \rightarrow \alpha$ to $M[A, a]$.
3. If ε is in $\operatorname{FIRST}(\alpha)$, add $A \rightarrow \alpha$ to $M A, b]$ for each terminal b in $\operatorname{FOLLOW}(A)$. If ε is in $\operatorname{FIRST}(\alpha)$ and $\$$ is in
$\operatorname{FOLLOW}(A)$, add $A \rightarrow \alpha$ to $M A, \$]$.
4. Make each undefined entry of M be error.

An Example

	S	L	E
if	$S \rightarrow$ if E then S else S	$L \rightarrow S ; L$	
then			
else		$L \rightarrow S ; L$	
begin	$S \rightarrow$ begin L end	$L \rightarrow \varepsilon$	
end		$L \rightarrow S ; L$	
print	$S \rightarrow$ print E		$E \rightarrow$ num = num
num			
$;$			
$\$$			

An Example

Stack	Input
$\$ S$	begin print num $=$ num $;$ end $\$$
$\$$ end L begin	begin print num $=$ num $;$ end $\$$
$\$$ end L	print num $=$ num ; end $\$$
$\$$ end $L ; S$	print num $=$ num ; end $\$$
$\$$ end $L ; E$ print	print num $=$ num ; end $\$$
$\$$ end $L ; E$	num $=$ num $;$ end $\$$
$\$$ end $L ;$ num $=$ num	num $=$ num ; end $\$$
$\$$ end $L ;$;end $\$$
$\$$ end L	end $\$$
$\$$ end	end $\$$
$\$$	$\$$

LL(1) Grammars

- A grammar is $\mathrm{LL}(1)$ iff its predictive parsing table has no multiply-defined entries
- A grammar G is $\mathrm{LL}(1)$ iff whenever $A \rightarrow \alpha \mid \beta$ are two distinct productions of G , the following conditions hold:
(1) $\operatorname{FIRST}(\alpha) \cap \operatorname{FIRST}(\beta)=\varnothing$,
(2)If $\varepsilon \in \operatorname{FIRST}(\alpha), \operatorname{FOLLOW}(A) \cap \operatorname{FIRST}(\beta)=\varnothing$,
(3)If $\varepsilon \in \operatorname{FIRST}(\beta), \operatorname{FOLLOW}(A) \cap \operatorname{FIRST}(\alpha)=\varnothing$.

A Counter Example

$$
\begin{aligned}
& S \rightarrow \mathbf{i E t S} S^{\prime} \mid \mathbf{a} \\
& \mathrm{S}^{\prime} \rightarrow \mathbf{e S} \mid \varepsilon \\
& \mathrm{E} \rightarrow \mathbf{b}
\end{aligned}
$$

	\mathbf{a}	\mathbf{b}	\mathbf{e}	\mathbf{i}	\mathbf{t}
S	$\mathrm{S} \rightarrow \mathbf{a}$			$S \rightarrow \mathbf{i E t S S}$	
$\mathrm{~S}^{\prime}$		$\mathrm{S}^{\prime} \rightarrow \varepsilon$ $\mathrm{S}^{\prime} \rightarrow \mathbf{e} \mathrm{S}$		$S^{\prime} \rightarrow \varepsilon$	
E		$\mathrm{E} \rightarrow \mathbf{b}$			

$\varepsilon \in \operatorname{FIRST}(\varepsilon) \wedge \operatorname{FOLLOW}\left(S^{\prime}\right) \cap \operatorname{FIRST}(\mathrm{e} S)=\{\mathrm{e}\} \neq \varnothing$

Left Recursive Grammars

- A grammar is left recursive if it has a nonterminal A such that $A \Rightarrow{ }^{*} A \alpha$
- Left recursive grammars are not LL(1) because

$$
\begin{aligned}
& A \rightarrow A \alpha \\
& A \rightarrow \beta
\end{aligned}
$$

will cause $\operatorname{FIRST}(\mathrm{A} \alpha) \cap \operatorname{FIRST}(\beta) \neq \varnothing$

- We can transform them into LL(1) by eliminating left recursion

Eliminating Left Recursion

$$
A \rightarrow A \alpha \left\lvert\, \beta \Rightarrow \begin{aligned}
& \mathrm{A} \rightarrow \beta \mathrm{R} \\
& \mathrm{R} \rightarrow \alpha \mathrm{R} \mid \varepsilon
\end{aligned}\right.
$$

Direct Left Recursion

$$
\begin{aligned}
& \mathrm{A} \rightarrow \mathrm{~A} \alpha_{1}\left|\mathrm{~A} \alpha_{2}\right| \ldots\left|\mathrm{A} \alpha_{m}\right| \beta_{1}\left|\beta_{2}\right| \ldots \mid \beta_{\mathrm{n}} \\
& \sqrt{n} \\
& \mathrm{~A} \rightarrow \beta_{1} \mathrm{~A}^{\prime}\left|\beta_{2} \mathrm{~A}^{\prime}\right| \ldots \mid \beta_{n} \mathrm{~A}^{\prime} \\
& \mathrm{A}^{\prime} \rightarrow \alpha_{1} \mathrm{~A}^{\prime}\left|\alpha_{2} \mathrm{~A}^{\prime}\right| \ldots\left|\alpha_{m} \mathrm{~A}^{\prime}\right| \varepsilon
\end{aligned}
$$

An Example

$$
\begin{aligned}
& E \rightarrow E+T \mid T \\
& T \rightarrow T \text { * } \mathrm{F} \mid \mathrm{F} \\
& F \rightarrow(E) \mid \text { id } \\
& \sqrt{2} \\
& \mathrm{E} \rightarrow \mathrm{~T} \mathrm{E}^{\prime} \\
& \mathrm{E}^{\prime} \rightarrow+\text { T E' } \mid \varepsilon \\
& \mathrm{T} \rightarrow \mathrm{~F} \mathrm{~T}^{\prime} \\
& \mathrm{T}^{\prime} \rightarrow{ }^{*} \mathrm{~F} \text { T' | } \varepsilon \\
& F \rightarrow(E) \mid \text { id }
\end{aligned}
$$

Indirect Left Recursion

$$
\begin{aligned}
& S \rightarrow A a \mid b \\
& A \rightarrow A c|S d| \varepsilon \\
& S \Rightarrow A a \Rightarrow S d a \\
& A \rightarrow A c|A a d| b d \mid \varepsilon \\
& S \rightarrow A a \mid b \\
& A \rightarrow b d A^{\prime} \mid A^{\prime} \\
& A^{\prime} \rightarrow C A^{\prime}\left|a d A^{\prime}\right| \varepsilon
\end{aligned}
$$

Left factoring

- A grammar is not $\mathrm{LL}(1)$ if two productions of a nonterminal A have a nontrivial common prefix. For example, if $\alpha \neq \varepsilon$, and $A \rightarrow \alpha \beta_{1} \mid \alpha \beta_{2}$, then $\operatorname{FIRST}\left(\alpha \beta_{1}\right) \cap \operatorname{FIRST}\left(\alpha \beta_{2}\right) \neq \varnothing$
- We can transform them into LL(1) by performing left factoring

$$
\begin{aligned}
& \mathrm{A} \rightarrow \alpha \mathrm{~A}^{\prime} \\
& \mathrm{A}^{\prime} \rightarrow \beta_{1} \mid \beta_{2}
\end{aligned}
$$

An Example

$$
\begin{aligned}
& S \rightarrow i E t S|i E t S e S| a \\
& \mathrm{E} \rightarrow \mathrm{~b} \\
& \text { n } \\
& S \rightarrow \mathbf{i E t S} S^{\prime} \mid \mathbf{a} \\
& \mathrm{S}^{\prime} \rightarrow \mathbf{e} S \mid \varepsilon \\
& \mathrm{E} \rightarrow \mathrm{~b}
\end{aligned}
$$

Parser Rules

- Parser rule names must begin with a lowercase letter. parserRuleName : alternative1 | ... | alternativeN ;

Parser Rule Elements

- T: Match token T at the current input position.
- 'literal': Match the string literal at the current input position.
- r: Match rule r at current input position, which amounts to invoking the rule just like a function call.

An Example

program : MAIN '(' ')' ‘\{' declarations statements '\}' ; declarations: INT ID SEMI declarations
statements: statement statements

statement : READ ID SEMI RETURN SEMI

Parser Rule Elements

- \{«action»\}: Execute an action immediately after the preceding rule element and immediately before the following rule element.
- The action conforms to the syntax of the target language.
- ANTLR copies the action code to the generated class verbatim .

Bottom-Up Parsing

- Construct a parse tree from the leaves to the root using rightmost derivation in reverse

$$
\begin{aligned}
& S \rightarrow a A B e \\
& A \rightarrow A b c / b \\
& B \rightarrow d
\end{aligned}
$$

input: abbcde
$a b b c d e \quad a b b c d e$ abbcde \Leftarrow aAbcde $\Leftarrow a A d e \Leftarrow a A B e \Leftarrow S$

Hierarchy of Grammar Classes

Unambiguous Grammars Ambiguous Grammars

