
Chapter 3 Syntax Analysis

Nai-Wei Lin

Syntax Analysis

 Syntax analysis recognizes the syntactic

structure of the programming language and

transforms a string of tokens into a tree of

tokens and syntactic categories

 Parser is the program that performs syntax

analysis

Outline

 Introduction to parsers

 Syntax trees

 Context-free grammars

 Push-down automata

 Top-down parsing

 A parser generator

 Bottom-up parsing

Introduction to Parsers

Scanner Parser

Symbol

Table

token

next token

source Semantic

Analyzer

syntax

treecode

Syntax Trees

 A syntax tree represents the syntactic structure

of tokens in a program defined by the grammar

of the programming language

:=

id1
+

id2 *
id3 60

Context-Free Grammars (CFG)

 A set of terminals: basic symbols (token types)

from which strings are formed

 A set of nonterminals: syntactic categories

each of which denotes a set of strings

 A set of productions: rules specifying how the

terminals and nonterminals can be combined

to form strings

 The start symbol: a distinguished nonterminal

that denotes the whole language

An Example: Arithmetic Expressions

 Terminals: id, ‘+’, ‘-’, ‘*’, ‘/’, ‘(’, ‘)’

 Nonterminals: expr, op

 Productions:

expr expr op expr

expr ‘(’ expr ‘)’

expr ‘-’ expr

expr id

op ‘+’ | ‘-’ | ‘*’ | ‘/’

 Start symbol: expr

An Example: Arithmetic Expressions

id { id },

‘+’ { + },

‘-’ { - },

‘*’ { * },

‘/’ { / },

‘(’ { (},

‘)’ {) },

op { +, -, *, / },

expr { id, - id, (id), id + id, id - id, … }.

Derivations

 A derivation step is an application of a

production as a rewriting rule, namely,

replacing a nonterminal in the string by one of

its right-hand sides, N

… N … … …

 Starting with the start symbol, a sequence of

derivation steps is called a derivation

S …

or S *

An Example

Derivation:

expr

 - expr

 - (expr)

 - (expr op expr)

 - (id op expr)

 - (id + expr)

 - (id + id)

Grammar:

1. expr expr op expr

2. expr ‘(’ expr ‘)’

3. expr ‘-’ expr

4. expr id

5. op ‘+’

6. op ‘-’

7. op ‘*’

8. op ‘/’

Left- & Right-Most Derivations

 If there are more than one nonterminal in the

string, many choices are possible

 A leftmost derivation always chooses the

leftmost nonterminal to rewrite

 A rightmost derivation always chooses the

rightmost nonterminal to rewrite

An Example

Leftmost derivation:

expr

 - expr

 - (expr)

 - (expr op expr)

 - (id op expr)

 - (id + expr)

 - (id + id)

Rightmost derivation:

expr

 - expr

 - (expr)

 - (expr op expr)

 - (expr op id)

 - (expr + id)

 - (id + id)

Parse Trees

 A parse tree is a graphical representation for a

derivation that filters out the order of choosing

nonterminals for rewriting

 Many derivations may correspond to the same

parse tree, but every parse tree has associated

with it a unique leftmost and a unique rightmost

derivation

An Example

Leftmost derivation:

expr

 - expr

 - (expr)

 - (expr op expr)

 - (id op expr)

 - (id + expr)

 - (id + id)

Rightmost derivation:

expr

 - expr

 - (expr)

 - (expr op expr)

 - (expr op id)

 - (expr + id)

 - (id + id)

expr

-

()

+id id

expr

expr expr

expr

op

Ambiguous Grammars

 A grammar is ambiguous if it can derive a

string with two different parse trees

 If we use the syntactic structure of a parse tree

to interpret the meaning of the string, the two

parse trees have different meanings

 Since compilers do use parse trees to derive

meaning, we would prefer to have

unambiguous grammars

An Example

expr

+expr expr

id

id

*expr expr

id

expr

*expr expr

id

id

+expr expr

id

id + id * id

Transform Ambiguous Grammars

Ambiguous grammar:

expr expr op expr

expr ‘(’ expr ‘)’

expr ‘-’ expr

expr id

op ‘+’ | ‘-’ | ‘*’ | ‘/’

Unambiguous grammar:

expr expr ‘+’ term

expr expr ‘-’ term

expr term

term term ‘*’ factor

term term ‘/’ factor

term factor

factor ‘(’ expr ‘)’

factor ‘-’ expr

factor id

Not every ambiguous

grammar can be

transformed to an

unambiguous one!

Push-Down Automata

Finite Automata

Input

OutputStack

$

$

End-Of-File and Bottom-of-Stack
Markers

 Parsers must read not only terminal symbols

but also the end-of-file marker and the bottom-

of-stack maker

 We will use $ to represent the end of file

marker

 We will also use $ to represent the bottom-of-

stack maker

An Example

S a S b

S

2 3 4
start (a, $)

a

(b, a)

a

($, $)

(a, a)

a

(b, a)

a

1

($, $)

1 2 2 3 3 4

$

a

$

a

a

$

a

$ $

a a b b $

CFG versus RE

 Every language defined by a RE can also be

defined by a CFG

 Why use REs for lexical syntax?

– Do not need a notation as powerful as CFGs

– Are more concise and easier to understand than

CFGs

– More efficient lexical analyzers can be constructed

from REs than from CFGs

– Provide a way for modularizing the front end into

two manageable-sized components

Nonregular Languages

 REs can denote only a fixed number of

repetitions or an unspecified number of

repetitions of one given construct

an, a*

 A nonregular language: L = {anbn | n 0}

S a S b

S

Top-Down Parsing

 Construct a parse tree from the root to the

leaves using the leftmost derivation
S c A B

A a b input: cad

A a

B d

S

c A B

S

c A B

a b

S

c A B

a

S

c A B

a d

Predictive Parsing

 Predictive parsing is a top-down parsing

without backtracking

 Namely, according to the next token, there is

only one production to choose at each

derivation step

stmt if expr then stmt else stmt

| while expr do stmt

| begin stmt_list end

LL(k) Parsing

 Predictive parsing is also called LL(k) parsing

 The first L stands for scanning the input from

left to right

 The second L stands for producing a leftmost

derivation

 The k stands for using k lookahead input

symbol to choose alternative productions at

each derivation step

LL(1) Parsing

 We will only describe LL(1) parsing from now

on, namely, parsing using only one lookahead

input symbol

 Recursive-descent parsing – hand written or

tool (e.g. ANTLR and CoCo/R) generated

 Table-driven predictive parsing – tool (e.g.

LISA and LLGEN) generated

Recursive Descent Parsing

 A procedure is associated with each
nonterminal of the grammar

 An alternative case in the procedure is
associated with each production of that
nonterminal

 A match of a token is associated with each
terminal in the right hand side of the production

 A procedure call is associated with each
nonterminal in the right hand side of the
production

Recursive Descent Parsing

S if E then S else S

| begin L end

| print E

L S ; L

|

E num = num

S

begin L end

S ; L

print E

num = num

begin print num = num ; end

Choosing the Alternative Case

S if E then S else S

| begin L end

| print E

L S ; L

|

E num = num

FIRST(S ; L) = {if, begin, print}

FOLLOW(L) = {end}

FIRST(if E then …) = {if}

FIRST(begin L end) = {begin}

FIRST(print E) = {print}

FIRST(num = num) = {num}

An Example

const int

IF = 1, THEN = 2, ELSE = 3, BEGIN = 4,

END =5, PRINT = 6, SEMI = 7, NUM = 8,

EQ = 9;

int token = lexer();

void match(int t)

{

if (token == t) token = lexer(); else error();

}

An Example

void S() {

switch (token) {

case IF: match(IF); E(); match(THEN); S();

match(ELSE); S(); break;

case BEGIN: match(BEGIN); L();

match(END); break;

case PRINT: match(PRINT); E(); break;

default: error();

}

}

An Example

void L() {

switch (token) {

case IF:

case BEGIN:

case PRINT:

S(); match(SEMI); L(); break;

case END: break;

default: error();

}

}

An Example

void E() {

switch (token) {

case NUM:

match(NUM); match(EQ); match(NUM);

break;

default: error();

}

}

First and Follow Sets

 The first set of a string , FIRST(), is the set

of terminals that can begin the strings derived

from . If * , then is also in FIRST()

 The follow set of a nonterminal X, FOLLOW(X),

is the set of terminals that can immediately

follow X

Computing First Sets

 If X is terminal, then FIRST(X) is {X}

 If X is nonterminal and X is a production,

then add to FIRST(X)

 If X is nonterminal and X Y1 Y2 ... Yk is a

production, then add a to FIRST(X) if

for some i, a is in FIRST(Yi) and is in all of

FIRST(Y1), ..., FIRST(Yi-1). If is in FIRST(Yj)

for all j, then add to FIRST(X)

An Example

FIRST(E) = { num }

FIRST(L) = { if, begin, print , }

FIRST(S) = { if, begin, print }

S if E then S else S

| begin L end

| print E

L S ; L |

E num = num

Computing Follow Sets

 Place $ in FOLLOW(S), where S is the start

symbol and $ is the end-of-file marker

 If there is a production A B , then

everything in FIRST() except for is placed in

FOLLOW(B)

 If there is a production A B or A B

where FIRST() contains , then everything in

FOLLOW(A) is in FOLLOW(B)

An Example

FOLLOW(S) = { $, else, ; }

FOLLOW(L) = { end }

FOLLOW(E) = { then, $, else, ; }

S if E then S else S

| begin L end

| print E

L S ; L |

E num = num

Table-Driven Predictive Parsing

Input. Grammar G. Output. Parsing Table M.

Method.

1. For each production A of the grammar,

do steps 2 and 3.

2. For each terminal a in FIRST(), add A to M[A, a].

3. If is in FIRST(), add A to M[A, b] for each

terminal b in FOLLOW(A). If is in FIRST() and $ is in

FOLLOW(A), add A to M[A, $].

4. Make each undefined entry of M be error.

An Example

S L E

if S if E then S else S L S ; L

then

else

begin S begin L end L S ; L

end L

print S print E L S ; L

num E num = num

;

$

An Example

Stack Input

$ S begin print num = num ; end $

$ end L begin begin print num = num ; end $

$ end L print num = num ; end $

$ end L ; S print num = num ; end $

$ end L ; E print print num = num ; end $

$ end L ; E num = num ; end $

$ end L ; num = num num = num ; end $

$ end L ; ; end $

$ end L end $

$ end end $

$ $

LL(1) Grammars

 A grammar is LL(1) iff its predictive parsing table

has no multiply-defined entries

 A grammar G is LL(1) iff whenever A |

are two distinct productions of G, the following

conditions hold:

(1)FIRST() FIRST() = ,

(2)If FIRST(), FOLLOW(A) FIRST() = ,

(3)If FIRST(), FOLLOW(A) FIRST() = .

A Counter Example

S i E t S S' | a

S' e S |

E b

a b e i t $

S S a S i E t S S'

S' S' S'

S' e S

E E b

 FIRST() FOLLOW(S') FIRST(e S) = {e}

Left Recursive Grammars

 A grammar is left recursive if it has a

nonterminal A such that A * A

 Left recursive grammars are not LL(1) because

A A

A

will cause FIRST(A) FIRST()

 We can transform them into LL(1) by

eliminating left recursion

Eliminating Left Recursion

A A |
A R

R R |

A

A

A

A

A R

RRR

Direct Left Recursion

A A 1 | A 2 | ... | A m | 1 | 2 | ... | n

A 1 A' | 2 A' | ... | n A'

A' 1 A' | 2 A' | ... | m A' |

An Example

E E + T | T

T T * F | F

F (E) | id

E T E'

E' + T E' |

T F T'

T' * F T' |

F (E) | id

Indirect Left Recursion

S A a | b

A A c | S d |

S A a S d a

A A c | A a d | b d |

S A a | b

A b d A' | A'

A' c A' | a d A' |

Left factoring

 A grammar is not LL(1) if two productions of a

nonterminal A have a nontrivial common prefix.

For example, if , and A 1 | 2,

then FIRST(1) FIRST(2)

 We can transform them into LL(1) by

performing left factoring

A A'

A' 1 | 2

An Example

S i E t S | i E t S e S | a

E b

S i E t S S' | a

S' e S |

E b

Parser Rules

 Parser rule names must begin with a

lowercase letter.

parserRuleName :

alternative1 | ... | alternativeN ;

51

Parser Rule Elements

 T: Match token T at the current input position.

 ’literal’: Match the string literal at the current

input position.

 r: Match rule r at current input position, which

amounts to invoking the rule just like a

function call.

52

An Example

program : MAIN ‘(’ ‘)’ ‘{’ declarations statements ‘}’ ;

declarations : INT ID SEMI declarations

|

;

statements : statement statements

|

;

statement : READ ID SEMI

| RETURN SEMI

;

Parser Rule Elements

 {«action»}: Execute an action immediately after

the preceding rule element and immediately

before the following rule element.

 The action conforms to the syntax of the target

language.

 ANTLR copies the action code to the

generated class verbatim .

Bottom-Up Parsing

 Construct a parse tree from the leaves to the

root using rightmost derivation in reverse

S a A B e input: abbcde

A A b c | b

B d

ca d eb

A

b

A

ca d eb

A

b

BA

ca d eb

A

b

S

BA

ca d eb

A

bca d ebb

abbcde aAbcde aAde aABe S

Hierarchy of Grammar Classes

Unambiguous Grammars Ambiguous Grammars

LL(k) LR(k)

LR(1)

LL(1)

