Chapter 2 Lexical Analysis

Nai-Wel Lin

Lexical Analysis
-

e Lexical analysis recognizes the vocabulary of
the programming language and transforms a
string of characters into a string of words or
tokens

e Lexical analysis discards white spaces and
comments between the tokens

e Lexer is the program that performs lexical
analysis

Outline
«_ 7

e Lexers

e Tokens

e Regular expressions
e Finite automata

e Automatic conversion from regular expressions
to finite automata

e A lexer generator — ANTLR

L exers

token
characters L exer Parser
next token

Tokens
« /00007

e A token is a sequence of characters that can
be treated as a unit in the grammar of a
programming language

e A programming language classifies tokens into
a finite set of token types

ID foo 1 n
NUM 73 13
= If

COMMA |

Semantic Values of Tokens
«_ 7

e Semantic values are used to distinguish
different tokens in a token type
- <ID, foo>, <ID,i>,<ID, n>
~ <NUM, 73>, <NUM, 13 >
- <IF, >

- <COMMA, >

e Token types affect syntax analysis and
semantic values affect semantic analysis

Lexer Generators
-

Lexer

definition in — Lexer — Lexer
Generator
matalanguage
Program in
. Token types &
programming — Lexer — 1OXenyp
semantic values
language

Languages
o]

e A language Is a set of strings

e A string Is a finite sequence of symbols taken
from a finite alphabet

- The C language Iis the (infinite) set of all strings that
constitute legal C programs

- The language of C reserved words is the (finite) set
of all alphabetic strings that cannot be used as
identifiers in the C programs

- Each token type is a language

Regular Expressions (RE)
-

e A language allows us to use a finite description
to specify a (possibly infinite) set

e RE Is the metalanguage used to define the
token types of a programming language

Regular Expressions
-

e ¢ is a RE denoting L = {¢}

e If a € alphabet, then a Is a RE denoting L = {a}

e Suppose r and s are RE denoting L(r) and L(s)
— alternation: (r) | (s) Is a RE denoting L(r) u L(S)
— concatenation: (r) (s) is a RE denoting L(r)L(s)
- repetition: (r)" is a RE denoting (L(r))
- (r) iIs a RE denoting L(r)

Examples
-

alb

18, b}

(a|b)(a|b) {aa, ab, ba, bb}

*

a
(@l by
alab

{e, a, aa, aaa, ...}
the set of all strings of a’s and b’s

the set containing the string a and
all strings consisting of zero or more
a’s followed by a b

Regular Definitions
S

e Names for regular expressions
d —»>
d, —> 1,
d, — r,
where r; over alphabet U {d,, d,, ..., d. ;}
e Examples:
letter > A|B|..|Z|a]|b]..]|z
digt - 0|1]...]19
identifier — letter (letter | digit)"

Notational Abbreviations
«_ 7

e One or more instances
(r)* denoting (L(r))*
'=rt|e r=rr
e Zero or one instance
?”=r|e¢
e Character classes
[abc]=a|b]|c [a-zl=al|b|..|z
["abc| = any character excepta|b|c
e Any character except newline

Examples
-

o |f {return IF;}
e [a-z][a-z0-9]* {return ID;}
o [0-9]+ {return NUM;}

e ([0-9]+“.”[0-9]M)|([0-9]*“.”[0-9]+) {return REAL;}
® (cc__”[a_z]*cc\n”)l(cc %9 | cc\n” | cc\t”)_l_
{/*do nothing for white spaces and comments*/}

° . { error(); }

Completeness of REs
-

e A lexical specification should be complete;
namely, it always matches some initial substring
of the input

[* match any */

Disambiguity of REs (1)
-

e Longest match disambiguation rules: the
longest initial substring of the input that can
match any regular expression is taken as the
next token

([0-9]+.”[0-9]%)|([0-9]**.”[0-9]+) /* REAL */

0.9

Disambiguity of REs (2)
-

e Rule priority disambiguation rules: for a
particular longest initial substring, the first
regular expression that can match determines
Its token type

if [IF ¥/
[a-z][a-z0-9]* [1D */

If

Finite Automata
« /7

e A finite automaton is a finite-state transition
diagram that can be used to model the
recognition of a token type specified by a
regular expression

e A finite automaton can be a nondeterministic
finite automaton or a deterministic finite
automaton

Nondeterministic Finite Automata (NFA)
S

e An NFA consists of
— A finite set of states
- A finite set of input symbols

- A transition function that maps (state, symbol)
pairs to sets of states

— A state distinguished as start state
— A set of states distinguished as final states

An Example

e RE: (a|b)abb
e States: {1, 2, 3, 4}
e Input symbols: {a, b}

e Transition function:
(1,2) ={1,2}, (1,b)={1}
(2,b) ={3}, (3,b) ={4}

e Start state: 1

e Final state: {4}

Acceptance of NFA
-

e An NFA accepts an input string s iff there Is
some path in the finite-state transition diagram
from the start state to some final state such
that the edge labels along this path spell out s

e The language recognized by an NFA Is the set
of strings It accepts

An Example

(a| b)abb aabb
a
b

{1} 2 {1,2} > {1,2} b {1,3} ~ {1,4}

An Example

(a| b)abb aaba
a
b

{1} 2 {1,2} 2 {1,2} B {1,3} 2 {1, 2}

Another Example
-

e RE: aa’ | bb’

e States: {1, 2, 3, 4, 5}

e Input symbols: {a, b}

e Transition function:
(1, e)={2, 4}, (2,a)=1{3}, (3, a) =13},
(4, b) ={3}, (5, b)={5}

e Start state: 1

e Final states: {3, 5}

Finite-State Transition Diagram

aaa b

{1} 2 {1,2,4} 2 {3} 2 {3} 2 {3}

Operations on NFA states
]

e c-closure(s): set of states reachable from a state s
on e-transitions alone

e c-closure(S): set of states reachable from some
state s in S on &-transitions alone

® move(s, c): set of states to which there is a
transition on input symbol ¢ from a state s

e move(S, c). set of states to which there is a
transition on input symbol ¢ from some state sin S

An Example

aa" | bb’ (Ja s,=(
S, = eclosure({1}) = {1,2,4}
S, =move({1,2,4},a) = {3}
S; = e-closure({3}) = {3}
S, = move({3},a) = {3}
Sc = e-closure({3}) = {3}
Sg = move({3},a) = {3}
S, = e-closure({3}) = {3}
3isin {3, 5} = accept
{1} > {1,2,4} - {3} > {3} > {3} —» {3} > {3} — {3}

& a g a g a &

aaa b

Simulating an NFA
-

Input: An input string ended with eof and an NFA with
start state s, and final states F.
Output: The answer “yes” if accepts, “no” otherwise.

begin
S ;= &closure({sy}); ¢ :=nextchar;
while ¢ <> eof do begin
S := eclosure(move(S, c)); c :=nextchar
end;
If SN F<> Jthen return "yes” else return “no”
end.

Computation of &-closure

(a | b)"abb

e-closure({1}) = {1,2,3,5,8}
e-closure({4}) = {2,3,4,5,7,8}

Computation of &-closure
-

Input: An NFA and a set of NFA states S.
Output: T = eclosure(S).
begin
push all states in S onto stack; T :=S;
while stack is not empty do begin
pop t, the top element, off of stack;
for each state u with an edge from t to u labeled edo
If uis notin T then begin
adduto T; push u onto stack
end
end;
return T
end.

Deterministic Finite Automata (DFA)
S

e A DFA is a special case of an NFA in which
e No state has an e-transition

e for each state s and input symbol a, there is at
most one edge labeled a leaving s

An Example
-

e RE: (a|b)abb

e States: {1, 2, 3, 4}

e Input symbols: {a, b}

e Transition function:
(l,a)=2,(2,a)=2,(3,a)=2,(4,a)=2
(1,0)=1,(2,b)=3,(3,b)=4,(4,b)=1

e Start state: 1

e Final state: {4}

Finite-State Transition Diagram
-

(a | b)"abb

Acceptance of DFA
-

e A DFA accepts an input string s iff there is one
path in the finite-state transition diagram from
the start state to some final state such that the
edge labels along this path spell out s

e The language recognized by a DFA is the set
of strings it accepts

An Example
-

(a| b)abb aabb

An Example
-

(a| b)abb aaba

An Example
-

bbababb
(a | b)abb s=1
s = move(1l,
s = move(1l,
s = move(1,
S = move(2,
S = move(3,
S = move(2,
s=move(3,b) =4
4is in {4} = accept

o 9 T 9 T O
— N — N —
LI R A I
WNWN P -

Simulating a DFA
-

Input: An input string ended with eof and a DFA with start
state s, and final states F.
Output: The answer “yes” if accepts, “no” otherwise.

begin
S =S, C:=nextchar;
while ¢ <> eof do begin
S ;= move(s, C); C :=nextchar
end;
If sisin F then return “yes” else return “no”
end.

Combined Finite Automata

if Start () i (:) ‘IF
[a-z][a-z0-9]* =lal, @ﬁ“azo -9

([0-9]+.”[0-9]%)

|
([0-9]*.”[0-9]+)

Combined Finite Automata

Combined Finite Automata
_

ID IF

| a-z,0-9
I j-z " a-z,0-9
Start O 9
0 ‘ REAL
®
DFA 0 — @' 0-9

REAL

Recognizing the Longest Match
-

e The automaton must keep track of the longest
match seen so far and the position of that
match until a dead state Is reached

e Use two variables Last-Final (the state number
of the most recent final state encountered) and
Input-Position-at-Last-Final to remember the
last time the automaton was in a final state

An Example
_

ffail+ y @ @"

S C

| a-z,0-9 1
/@) Dazoo 2

I fo3

Start 09 f 4
‘ REAL o

© 4

| _ |4

DFA ﬂ 0-9 | * 7

AP DMADwDdNO|Ir
OOl ~NWNPEFE O|T

REAL

Automatic Conversion from RE to FA

From a RE to an NFA
«

e Thompson’s construction algorithm
- For ¢, construct

start <|> g

- For a in alphabet, construct

start <|> a

From a RE to an NFA
«

e Suppose N(s) and N(t) are NFA for RE sand t

— for s | t, construct
start @%/G; N ®\\i
") Ny ()7

— for s t, construct

start ,@ N(s) @ N(t)

From a RE to an NFA
G

- for s’, construct

&
start @ & f.s N(s) @ E’C|®>
&

_ for (s), use N(s)

An Example

(a | b)"abb

From an NFA to a DFA
«

Subset construction Algorithm.
Input: An NFA N.
Output: A DFA D with states Dstates and trasition table Dtran.
begin
add &-closure(s,) as an unmarked state to Dstates;
while there is an unmarked state T in Dstates do begin
mark T;
for each input symbol a do begin
U := e-closure(move(T, a));
If U is not in Dstates then
add U as an unmarked state to Dstates;
Dtran[T, a] := U
end
end.

An Example

An Example
-

e-closure({1}) ={1,2,3,5,8} = A

e-closure(move(A, a))=&-closure({4,9}) = {2,3,4,5,7,8,9} =B
g-closure(move(A, b))=&-closure({6}) = {2,3,5,6,7,8} = C
e-closure(move(B, a))=&-closure({4,9}) =B

e-closure(move(B, b))=&-closure({6,10}) = {2,3,5,6,7,8,10} = D
e-closure(move(C, a))=&-closure({4,9}) =B
e-closure(move(C, b))=e&-closure({6}) = C

e-closure(move(D, a))=&-closure({4,9}) =B
e-closure(move(D, b))=e&-closure({6,11}) = {2,3,5,6,7,8,11} = E
e-closure(move(E, a))=&-closure({4,9}) = B

e-closure(move(E, b))=&-closure({6}) = C

An Example
-

State Input Symbol
a b
A=1{1,2,3,5,8} B C
B={2,3,45,7,8,9} B D
C ={2,3,5,6,7,8} B C
D={2,35,6,7,810}| B E
E={235,6,78,11}| B C

An Example

A Lexer Generator — ANTLR
« _

e ANTLR (ANother Tool for Language
Recognition) is a powerful compiler generator
for reading, processing, executing, or
translating structured text or binary files.

e It's widely used to build languages, tools, and
frameworks.

ANTLR Download
« /]

e The latest version of ANTLR Is 4.5.2, released
January 30, 2016. As of 4.5.2, we have a Java,
C#, JavaScript, Python2, Python3 targets.

e ANTLR is really two things: a tool that
translates your grammar to a parser/lexer in
Java and the runtime needed by the generated
parsers/lexers.

e The file antlr-4.5.2-complete.jar contains the
tool and the runtime for Java.

ANTLR FreeBSD Installation
« /]

e 1. Use PuUTTY to login csiel.cs.ccu.edu.tw
e 2. Download antlr-4.5.2-complete.jar

e > mkdir 4005

e > cd 4005

e > fetch http://www.antlr.org/download/antlr-
4.5.2-complete.jar

ANTLR FreeBSD Installation
« /]

e 2. Set environment variable CLASSPATH In
.cshrc

e >cCd ..
e > V| .cshrc

e setenv CLASSPATH ..$HOME/4005/antlr-4.5.2-
complete.jar:$CLASSPATH

ANTLR FreeBSD Installation
« /]

e 3. Create command shortcut In .cshrc

e alias antlr4 'jJava -Xmx500M -cp
“$HOME/4005/antlr-4.5.2-
complete.jar:-$CLASSPATH" org.antlr.v4.Tool'

e alias grun ‘java org.antlr.v4.qui.TestRig’

Grammar Lexicon
«. 0000007

e Comments
e Keywords

e |dentifiers

o Literals

e Actions

Comments
< 1

/** This grammar 1is an example illustrating
* the three kinds of comments.
*/
grammar T;
/* a multi-line
comment
*/
/** This rule matches a declarator */
decl : ID ; // match a variable name

Keywords
-

e The reserved words in ANTLR:

e import, fragment, lexer, parser, grammar,
returns, locals, throws, catch, finally, mode,
options, tokens.

e Also, although it is not a keyword, do not use
the word rule as a rule name.

e Further, do not use any keyword of the target
language as a token, label, or rule name.

ldentifiers
« /7

e Token names or lexer rule names always start
with a capital letter.

e Parser rule names always start with a
lowercase letter.

e The initial character can be followed by

uppercase and lowercase letters, digits, and
underscores.

ldentifiers
« /7

/* token names or lexer rule names
ID, LPAREN, RIGHT_CURLY

// parser rule names
expr, simpleDeclarator, d2, header file

Literals
«_ 7

e ANTLR does not distinguish between character
and string literals.

e All literal strings one or more characters in length
are enclosed in single quotes such as ’;, 'if’, >=",
and '\".

e ANTLR understands the usual special escape
sequences: \n’, \r’, '\t’, \b’, and "\f.

e Literals can contain Unicode escape sequences of

the form \uXXXX, where XXXX is the hexadecimal
Unicode character value.

Actions
«_ 7

e Actions are code blocks written in the target
language.

e An action is arbitrary text surrounded by curly
braces.

Grammar Structure
< 1

grammar Name;
options {...}
import ... ;

tokens {...}
channels {...}
@actionName {...}
rules

Grammar Options
-

e ANTLR options may be set either within the
grammar file using the options syntax or when
iInvoking ANTLR on the command line, using
the -D option.

e £.0.,
options { language = java, }

Grammar imports
S

e Grammar imports let you break up a
grammar into logical and reusable chunks.

grammar X;
import Y;

. . rammar X;
expr : INT | ID; gxpr INT | 1D
INT - [0-91* =) |INT : [0-9]+;
grammar Y; D : [a-z]+ ;

ID : [a-z]+ ;

Tokens Section
«_ 7

e The purpose of the tokens section is to define
token types needed by a grammar for which
there Is no associated lexical rule.

e The basic syntax is:
tokens { Tokenl, ..., TokenN }
o E.0.
tokens { BEGIN, END, IF, THEN, WHILE }

L exer Rules
« 007

e Lexer rule names must begin with an
uppercase letter.
TokenName :
alternativel | ... | alternativeN ;

e You can also define rules that are not tokens
but rather aid in the recognition of tokens.
fragment HelperTokenRule :

alternativel | ... | alternativeN ;

An Example
-

INT : DIGIT+ ;
fragment DIGIT : [0-9] ;

Lexer Rule Elements
«_ 7

e ‘literal’: Match that character or sequence of
characters. E.g., 'while’ or '=".

I, ,? J

e X'..'y': Match any single character between
range x and vy, inclusively. E.g., 'a’..’z".

e .. The dot is a single-character wildcard that
matches any single character. E.g.,
ESC:'\\'.;

Lexer Rule Elements
«_ 7

e [char set]: Match one of the characters
specified in the character set. Interpret x-y as
set of characters between range x and vy,
Inclusively. The following escaped characters
are interpreted as single special characters:
\n, \r, \b, \t, and \f. To get], \, or - you must
escape them with \. You can also use
Unicode character specifications: \uXXXX.

e [a-z] Isidentical to 'a’..’z’

Lexer Rule Elements
«_ 7

e ~X: Match any single character not in the set
described by x. Set x can be a single character
literal, a range, or a subrule set like ~('X'['y'|'Z’)
or ~[xyz].

Lexer Rule Elements
«_ 7

e T: Invoke lexer rule T; recursion is allowed In
general, but not left recursion. T can be a
regular token or fragment rule.

e £.0.,
ID: LETTER (LETTER | '0"..'9°)*;
fragment LETTER : [a-zA-Z_] ;

Lexer Rule Elements
«_ 7

e {«action»}. Lexer actions can appear anywhere
In the rule, not just at the end of the outermost
alternative.

e The lexer executes the actions at the

appropriate input position, according to the

placement of the action within the rule.

e The action conforms to the syntax of the target
language.

e ANTLR copies the action’s contents into the
generated code verbatim.

Lexer Commands
« 007

e To avoid tying a grammar to a particular target
language, ANTLR supports lexer commands.

e Lexer commands appear at the end of the
outermost alternative of a lexer rule definition.

e A lexer command consists of the -> operator
followed by one or more command names that
can optionally take parameters:

TokenName : «alternative» -> command-name
TokenName : «alternative» -> command-name
(«identifier or integer»)

Lexer Commands
« 007

e A 'skip' command tells the lexer to get another
token and throw out the current text.
WS : [\t]+ -> skip ;

e A ‘channel(x) command sends the token type
to the x channel. HIDDEN channel is not
connected to the parser.

WS : [\t]+ -> channel(HIDDEN) ;

Nongreedy Lexer Subrules
-

e Subrules like (...)?, (...)* and (...)+ are greedy—
They consume as much input as possible.

e Constructs like .* consume until the end of the
Input in the lexer.

e \We can make any subrule that has a ?, *, or +
suffix nongreedy by adding another ? suffix.

e £.0.,
COMMENT :'/* *? ™' -> skip ;

Parser Rules
« 007

e Parser rule names must begin with a
owercase letter.
parserRuleName :

alternativel | ... | alternativeN ;

An Example
-

// Flle Rose.g4

grammar Rose;

token : (BEGIN | ELSE | ...)*;
BEGIN : ‘begin’;

ELSE : ‘else’;

An Example
-

/[edit Rose.g4

> antlr4 Rose.g4

/| generate Rose.tokens Rose*.java
> Javac Rose*.java

/[generate Rose*.class

/[edit input_file

> grun Rose token —tree < input_file
(token begin else ...)

