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共勉

子曰：「學而時習之，不亦說乎？」
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Lexical Analysis

 Lexical analysis recognizes the vocabulary of 

the programming language and transforms a 

string of characters into a string of words or 

tokens

 Lexical analysis discards white spaces and 

comments between the tokens

 Lexer is the program that performs lexical 

analysis
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Outline

 Lexers

 Tokens

 Regular expressions

 Finite automata

 Automatic conversion from regular expressions 

to finite automata

 A lexer generator — ANTLR
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Lexers

Lexer Parser

Symbol

Table

token

next token

characters
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Tokens

 A token is a sequence of characters that can 

be treated as a unit in the grammar of a 

programming language

 A programming language classifies tokens into 

a finite set of token types

Type Examples

ID foo  i  n

NUM 73  13

IF if

COMMA ,6



Semantic Values of Tokens

 Semantic values are used to distinguish 

different tokens in a token type

– < ID, foo>, < ID, i >, < ID, n >

– < NUM, 73>, < NUM, 13 >

– < IF,  >

– < COMMA,  >

 Token types affect syntax analysis and 

semantic values affect semantic analysis
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Lexer Generators

Lexer

Generator

Lexer

definition in

matalanguage
Lexer

Lexer
Program in

programming

language

Token types &

semantic values
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Languages

 A language is a set of strings

 A string is a finite sequence of symbols taken 

from a finite alphabet

– The C language is the (infinite) set of all strings that 

constitute legal C programs

– The language of C reserved words is the (finite) set 

of all alphabetic strings that cannot be used as 

identifiers in the C programs

– Each token type is a language
9



Regular Expressions (RE)

 A language allows us to use a finite description 

to specify a (possibly infinite) set

 RE is the metalanguage used to define the 

token types of a programming language
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Regular Expressions

  is a RE denoting L = {}

 If a  alphabet, then a is a RE denoting L = {a}

 Suppose r and s are RE denoting L(r) and L(s)

 alternation: (r) | (s) is a RE denoting L(r)  L(s)

 concatenation: (r) • (s) is a RE denoting L(r)L(s)

 repetition: (r)* is a RE denoting (L(r))*

 (r) is a RE denoting L(r)
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Examples

 a | b {a, b}

 (a | b)(a | b) {aa, ab, ba, bb}

 a* {, a, aa, aaa, ...}

 (a | b)* the set of all strings of a’s and b’s

 a | a*b the set containing the string a and 

all strings consisting of zero or more 

a’s followed by a b
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Regular Definitions

 Names for regular expressions

d1  r1

d2  r2

...

dn  rn

where ri over alphabet  {d1, d2, ..., di-1}

 Examples:

letter  A | B | ... | Z | a | b | ... | z

digit   0 | 1 | ... | 9

identifier   letter ( letter | digit )*13



Notational Abbreviations

 One or more instances

(r)+ denoting (L(r))+

r* = r+ |  r+ = r r*

 Zero or one instance
r? = r | 

 Character classes

[abc] = a | b | c [a-z] = a | b | ... | z 

[^abc] = any character except a | b | c 

 Any character except newline
.
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Examples

 if {return IF;}

 [a-z][a-z0-9]* {return ID;}

 [0-9]+ {return NUM;}

 ([0-9]+“.”[0-9]*)|([0-9]*“.”[0-9]+) {return REAL;}

 (“--”[a-z]*“\n”)|(“ ” | “\n” | “\t”)+

{/*do nothing for white spaces and comments*/}

 . { error(); }
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Completeness of REs

 A lexical specification should be complete; 

namely, it always matches some initial substring 

of the input

…

. /* match any */
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Disambiguity of REs (1)

 Longest match disambiguation rules: the 

longest initial substring of the input that can 

match any regular expression is taken as the 

next token 

([0-9]+“.”[0-9]*)|([0-9]*“.”[0-9]+)      /* REAL */

0.9
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Disambiguity of REs (2)

 Rule priority disambiguation rules: for a 
particular longest initial substring, the first 
regular expression that can match determines 
its token type

if /* IF */
[a-z][a-z0-9]* /* ID */

if
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Finite Automata

 A finite automaton is a finite-state transition 

diagram that can be used to model the 

recognition of a token type specified by a 

regular expression

 A finite automaton can be a nondeterministic

finite automaton or a deterministic finite 

automaton
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Nondeterministic Finite Automata (NFA)

 An NFA consists of

– A finite set of states

– A finite set of input symbols

– A transition function that maps (state, symbol)

pairs to sets of states

– A state distinguished as start state

– A set of states distinguished as final states
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An Example

 RE:  (a | b)*abb

 States: {1, 2, 3, 4}

 Input symbols: {a, b}

 Transition function:

(1,a) = {1,2}, (1,b) = {1}

(2,b) = {3},  (3,b) = {4}

 Start state: 1

 Final state: {4} 

1

2

3

4

a

b

b

a,b

start
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Acceptance of NFA

 An NFA accepts an input string s iff there is 

some path in the finite-state transition diagram 

from the start state to some final state such 

that the edge labels along this path spell out s

 The language recognized by an NFA is the set 

of strings it accepts
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An Example

1 42 3
a b b

a

b

start

(a | b)*abb aabb

{1}  {1,2}  {1,2}  {1,3}  {1,4}
a a b b
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aaba

An Example

1 42 3
a b b

a

b

start

(a | b)*abb

{1}  {1,2}  {1,2}  {1,3}  {1, 2}
a a b a
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Another Example

 RE:  aa* | bb*

 States: {1, 2, 3, 4, 5}

 Input symbols: {a, b}

 Transition function:

(1, ) = {2, 4}, (2, a) = {3},  (3, a) = {3},

(4, b) = {5},   (5, b) = {5}

 Start state: 1

 Final states: {3, 5}
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Finite-State Transition Diagram

start

aa* | bb*

1

4

2 3
a

b

a

b

5





aaa

{1}  {1,2,4}  {3}  {3}  {3}
a a a
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Operations on NFA states

 -closure(s): set of states reachable from a state s

on -transitions alone

 -closure(S): set of states reachable from some 

state s in S on -transitions alone

 move(s, c): set of states to which there is a 

transition on input symbol c from a state s

 move(S, c): set of states to which there is a 

transition on input symbol c from some state s in S
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An Example

start

aa* | bb*

1

4

2 3
a

b

a

b

5





aaa

{1}  {1,2,4}  {3}  {3}  {3}  {3}  {3}  {3}
a a a

S0 = {1}

S1 = -closure({1}) = {1,2,4}

S2 = move({1,2,4},a) = {3}

S3 = -closure({3}) = {3}

S4 = move({3},a) = {3}

S5 = -closure({3}) = {3}

S6 = move({3},a) = {3}

S7 = -closure({3}) = {3}

3 is in {3, 5}  accept

  28



Simulating an NFA

Input: An input string ended with eof and an NFA with 

start state s0 and final states F.

Output: The answer “yes” if accepts, “no” otherwise.

begin

S := -closure({s0});   c := nextchar;

while c <> eof do begin

S := -closure(move(S, c));   c := nextchar

end;

if S  F <>   then return “yes” else return “no”

end.
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Computation of -closure

(a | b)*abb

start
1

4

2

3
a

b

a b

5
















b

8 9 10 11

6

7

-closure({1}) = {1,2,3,5,8}

-closure({4}) = {2,3,4,5,7,8}
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Computation of -closure

Input: An NFA and a set of NFA states S.

Output: T = -closure(S).

begin

push all states in S onto stack;  T := S;

while stack is not empty do begin

pop t, the top element, off of stack;

for each state u with an edge from t to u labeled  do

if u is not in T then begin

add u to T;   push u onto stack

end

end;

return T

end.31



Deterministic Finite Automata (DFA)

 A DFA is a special case of an NFA in which

 no state has an -transition

 for each state s and input symbol a, there is at 

most one edge labeled a leaving s
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An Example

 RE:  (a | b)*abb

 States: {1, 2, 3, 4}

 Input symbols: {a, b}

 Transition function:

(1,a) = 2, (2,a) = 2, (3,a) = 2, (4,a) = 2

(1,b) = 1, (2,b) = 3, (3,b) = 4, (4,b) = 1

 Start state: 1

 Final state: {4}
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Finite-State Transition Diagram

(a | b)*abb

1 42 3
a

b b

a

b

start

a

b

a
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Acceptance of DFA

 A DFA accepts an input string s iff there is one

path in the finite-state transition diagram from 

the start state to some final state such that the 

edge labels along this path spell out s

 The language recognized by a DFA is the set 

of strings it accepts
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An Example

(a | b)*abb

1 42 3
a

b b

a

b

start

a

b

a

aabb

1  2  2  3  4
a a b b
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An Example

(a | b)*abb

1 42 3
a

b b

a

b

start

a

b

a

aaba

1  2  2  3  2
a a b a
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An Example

(a | b)*abb

1 42 3
a

b b

a

b

start

a

b

a

bbababb

s = 1

s = move(1, b) = 1

s = move(1, b) = 1

s = move(1, a) = 2

s = move(2, b) = 3

s = move(3, a) = 2

s = move(2, b) = 3

s = move(3, b) = 4

4 is in {4}  accept
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Simulating a DFA

Input: An input string ended with eof and a DFA with start

state s0 and final states F.

Output: The answer “yes” if accepts, “no” otherwise.

begin

s := s0;   c := nextchar;

while c <> eof do begin

s := move(s, c);   c := nextchar

end;

if s is in F then return “yes” else return “no”

end.
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Combined Finite Automata

1

32

4.

0-9

start
0-9

1 2
i fstart

3

1
a-zstart

2 a-z,0-9

5
0-9

.
0-9

0-9

[a-z][a-z0-9]*

([0-9]+“.”[0-9]*)

|

([0-9]*“.”[0-9]+)

if IF

ID

REAL

REAL40



Combined Finite Automata

7

98

10.

0-9

0-9

2 3
i f


4

5
a-z

 6 a-z,0-9

11
0-9

.
0-9

0-9

1
start

IF

ID

REAL

REAL
NFA
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Combined Finite Automata

65

7

.

0-9
0-9

2

i

f
3

j-z
4 a-z,0-9

8
0-9

.
0-9

0-9

1
start

IF

ID

REAL

REAL
DFA

a-z,0-9

a-h

a-e
g-z

ID
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Recognizing the Longest Match

 The automaton must keep track of the longest 

match seen so far and the position of that 

match until a dead state is reached

 Use two variables Last-Final (the state number 

of the most recent final state encountered) and 

Input-Position-at-Last-Final to remember the 

last time the automaton was in a final state

43



An Example

65

7

.

0-9
0-9

2

i

3

j-z
4 a-z,0-9

8
0-9

.
0-9

0-9

1
start

ID

REAL

REAL
DFA

a-z,0-9

a-h

a-e
g-z

ID

S   C    L    P

1     0    0

i 2     2    1

f 3     3    2

f 4     4    3

a 4     4    4

i 4     4    5

l 4     4    6

+ ?    

iffail+
IFf
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Automatic Conversion from RE to FA

RE

NFA

DFA
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From a RE to an NFA

 Thompson’s construction algorithm

– For  , construct

– For a in alphabet, construct

fi
start a

i f
start 
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From a RE to an NFA

 Suppose N(s) and N(t) are NFA for RE s and t

– for s | t, construct

– for s t, construct

start
i N(s) N(t) f

start
i

N(s)

N(t)


f

 

is

it

fs

ft

fs
it
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From a RE to an NFA

– for s*, construct

– for (s), use N(s)

i


N(s) f






start is fs
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An Example

(a | b)*abb
21

a

start
7







8

a
9

b
10

b
11

b
3 4

5









6
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From an NFA to a DFA

Subset construction Algorithm.

Input: An NFA N.

Output: A DFA D with states Dstates and trasition table Dtran.

begin

add -closure(s0) as an unmarked state to Dstates;

while there is an unmarked state T in Dstates do begin

mark T;

for each input symbol a do begin

U := -closure(move(T, a));

if U is not in Dstates then

add U as an unmarked state to Dstates;

Dtran[T, a] := U

end

end.50



An Example

(a | b)*abb

start
1

4

2

3
a

b

a b

5
















b

8 9 10 11

6

7
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An Example

-closure({1}) = {1,2,3,5,8} = A

-closure(move(A, a))=-closure({4,9}) = {2,3,4,5,7,8,9} = B

-closure(move(A, b))=-closure({6}) = {2,3,5,6,7,8} = C

-closure(move(B, a))=-closure({4,9}) = B

-closure(move(B, b))=-closure({6,10}) = {2,3,5,6,7,8,10} = D

-closure(move(C, a))=-closure({4,9}) = B

-closure(move(C, b))=-closure({6}) = C

-closure(move(D, a))=-closure({4,9}) = B

-closure(move(D, b))=-closure({6,11}) = {2,3,5,6,7,8,11} = E

-closure(move(E, a))=-closure({4,9}) = B

-closure(move(E, b))=-closure({6}) = C
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An Example

State
Input Symbol

a b

A = {1,2,3,5,8}

B = {2,3,4,5,7,8,9}

C = {2,3,5,6,7,8}

D = {2,3,5,6,7,8,10}

E = {2,3,5,6,7,8,11}

B

B

B

B

B C

E

C

D

C
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An Example

start
{1,2,3,5,8}

{2,3,4,5,

7,8,9}

{2,3,5,

6,7,8}

{2,3,5,6,

7,8,10}

{2,3,5,6,

7,8,11}a

ab

b

b

aa

b

a
b
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A Lexer Generator — ANTLR

 ANTLR (ANother Tool for Language 

Recognition) is a powerful compiler generator 

for reading, processing, executing, or 

translating structured text or binary files.

 It's widely used to build languages, tools, and 

frameworks.
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ANTLR Download

 The latest version of ANTLR is 4.5.2, released 

January 30, 2016. As of 4.5.2, we have a Java, 

C#, JavaScript, Python2, Python3 targets.

 ANTLR is really two things: a tool that 

translates your grammar to a parser/lexer in 

Java and the runtime needed by the generated 

parsers/lexers. 

 The file antlr-4.5.2-complete.jar contains the 

tool and the runtime for Java.
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ANTLR FreeBSD Installation

 1. Use PuTTY to login csie1.cs.ccu.edu.tw

 2. Download antlr-4.5.2-complete.jar 

 > mkdir 4005

 > cd 4005

 > fetch http://www.antlr.org/download/antlr-

4.5.2-complete.jar
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 2. Set environment variable CLASSPATH in 

.cshrc

 > cd ..

 > vi .cshrc

 setenv CLASSPATH .:$HOME/4005/antlr-4.5.2-

complete.jar:$CLASSPATH

ANTLR FreeBSD Installation
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ANTLR FreeBSD Installation

 3. Create command shortcut in .cshrc

 alias antlr4 'java -Xmx500M -cp 

“$HOME/4005/antlr-4.5.2-

complete.jar:$CLASSPATH" org.antlr.v4.Tool'

 alias grun 'java org.antlr.v4.gui.TestRig‘

59



Grammar Lexicon

 Comments

 Keywords

 Identifiers

 Literals

 Actions
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Comments

/** This grammar is an example illustrating
* the three kinds of comments.
*/

grammar T;
/* a multi-line

comment
*/
/** This rule matches a declarator */
decl : ID ; // match a variable name
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Keywords

 The reserved words in ANTLR:

 import, fragment, lexer, parser, grammar, 

returns, locals, throws, catch, finally, mode, 

options, tokens.

 Also, although it is not a keyword, do not use 

the word rule as a rule name.

 Further, do not use any keyword of the target 

language as a token, label, or rule name.
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Identifiers

 Token names or lexer rule names always start 

with a capital letter.

 Parser rule names always start with a 

lowercase letter.

 The initial character can be followed by 

uppercase and lowercase letters, digits, and 

underscores.
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Identifiers

/* token names or lexer rule names
ID, LPAREN, RIGHT_CURLY

// parser rule names
expr, simpleDeclarator, d2, header_file
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Literals

 ANTLR does not distinguish between character 

and string literals.

 All literal strings one or more characters in length 

are enclosed in single quotes such as ’;’, ’if’, ’>=’, 

and ’\’’.

 ANTLR understands the usual special escape 

sequences: ’\n’, ’\r’, ’\t’, ’\b’, and ’\f’.

 Literals can contain Unicode escape sequences of 

the form \uXXXX, where XXXX is the hexadecimal 

Unicode character value.
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Actions

 Actions are code blocks written in the target 

language.

 An action is arbitrary text surrounded by curly 

braces.
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Grammar Structure

grammar Name;

options {...}

import ... ;

tokens {...}

channels {...}

@actionName {...}

rules

67



Grammar Options

 ANTLR options may be set either within the 

grammar file using the options syntax or when 

invoking ANTLR on the command line, using 

the -D option.

 E.g.,

options { language = java; }
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Grammar imports

 Grammar imports let you break up a 

grammar into logical and reusable chunks.

grammar X;

import Y;

expr : INT | ID;

INT : [0-9]+ ;

grammar Y;

ID : [a-z]+ ;

grammar X;

expr : INT | ID;

INT : [0-9]+ ;

ID : [a-z]+ ;
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Tokens Section

 The purpose of the tokens section is to define 

token types needed by a grammar for which 

there is no associated lexical rule.

 The basic syntax is:

tokens { Token1, ..., TokenN }

 E.g.

tokens { BEGIN, END, IF, THEN, WHILE }
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Lexer Rules

 Lexer rule names must begin with an 

uppercase letter.

TokenName : 

alternative1 | ... | alternativeN ;

 You can also define rules that are not tokens 

but rather aid in the recognition of tokens.

fragment HelperTokenRule : 

alternative1 | ... | alternativeN ;
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An Example

INT : DIGIT+ ;

fragment DIGIT : [0-9] ;
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Lexer Rule Elements

 ’literal’: Match that character or sequence of 

characters. E.g., ’while’ or ’=’.

 ’x’..’y’: Match any single character between 

range x and y, inclusively. E.g., ’a’..’z’.

 .: The dot is a single-character wildcard that 

matches any single character. E.g.,

ESC : '\\' . ;
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Lexer Rule Elements

 [char set]: Match one of the characters 

specified in the character set. Interpret x-y as 

set of characters between range x and y, 

inclusively. The following escaped characters 

are interpreted as single special characters: 

\n, \r, \b, \t, and \f. To get ], \, or - you must 

escape them with \. You can also use 

Unicode character specifications: \uXXXX.

 [a-z] is identical to ’a’..’z’.
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Lexer Rule Elements

 ~x: Match any single character not in the set 

described by x. Set x can be a single character 

literal, a range, or a subrule set like ~(’x’|’y’|’z’) 

or ~[xyz].

75



Lexer Rule Elements

 T: Invoke lexer rule T; recursion is allowed in 

general, but not left recursion. T can be a 

regular token or fragment rule.

 E.g.,

ID : LETTER ( LETTER | '0'..'9‘ )* ;

fragment LETTER : [a-zA-Z_] ;
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Lexer Rule Elements

 {«action»}: Lexer actions can appear anywhere 

in the rule, not just at the end of the outermost 

alternative. 

 The lexer executes the actions at the 

appropriate input position, according to the 

placement of the action within the rule.

 The action conforms to the syntax of the target 

language.

 ANTLR copies the action’s contents into the 

generated code verbatim.
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Lexer Commands

 To avoid tying a grammar to a particular target 

language, ANTLR supports lexer commands.

 Lexer commands appear at the end of the 

outermost alternative of a lexer rule definition.

 A lexer command consists of the -> operator 

followed by one or more command names that 

can optionally take parameters:

TokenName : «alternative» -> command-name

TokenName : «alternative» -> command-name 

(«identifier or integer»)
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Lexer Commands

 A 'skip' command tells the lexer to get another 

token and throw out the current text.

WS : [ \t]+ -> skip ;

 A ‘channel(x)’ command sends the token type 

to the x channel. HIDDEN channel is not 

connected to the parser.

WS : [ \t]+ -> channel(HIDDEN) ;
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Nongreedy Lexer Subrules

 Subrules like (...)?, (...)* and (...)+ are greedy—

They consume as much input as possible.

 Constructs like .* consume until the end of the 

input in the lexer.

 We can make any subrule that has a ?, *, or + 

suffix nongreedy by adding another ? suffix.

 E.g.,

COMMENT : '/*' .*? '*/' -> skip ;
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Parser Rules

 Parser rule names must begin with a 

lowercase letter.

parserRuleName : 

alternative1 | ... | alternativeN ;
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An Example

// File Rose.g4

grammar Rose;

token : (BEGIN | ELSE | … )* ;

BEGIN : ‘begin’ ;

ELSE : ‘else’ ;

…
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An Example

// edit Rose.g4

> antlr4 Rose.g4

// generate Rose.tokens Rose*.java

> javac Rose*.java

// generate Rose*.class

// edit input_file

> grun Rose token –tree < input_file

(token begin else … )
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