
Chapter 2 Lexical Analysis

Nai-Wei Lin

共勉

子曰：「學而時習之，不亦說乎？」

2

Lexical Analysis

 Lexical analysis recognizes the vocabulary of

the programming language and transforms a

string of characters into a string of words or

tokens

 Lexical analysis discards white spaces and

comments between the tokens

 Lexer is the program that performs lexical

analysis

3

Outline

 Lexers

 Tokens

 Regular expressions

 Finite automata

 Automatic conversion from regular expressions

to finite automata

 A lexer generator — ANTLR

4

Lexers

Lexer Parser

Symbol

Table

token

next token

characters

5

Tokens

 A token is a sequence of characters that can

be treated as a unit in the grammar of a

programming language

 A programming language classifies tokens into

a finite set of token types

Type Examples

ID foo i n

NUM 73 13

IF if

COMMA ,6

Semantic Values of Tokens

 Semantic values are used to distinguish

different tokens in a token type

– < ID, foo>, < ID, i >, < ID, n >

– < NUM, 73>, < NUM, 13 >

– < IF, >

– < COMMA, >

 Token types affect syntax analysis and

semantic values affect semantic analysis

7

Lexer Generators

Lexer

Generator

Lexer

definition in

matalanguage
Lexer

Lexer
Program in

programming

language

Token types &

semantic values

8

Languages

 A language is a set of strings

 A string is a finite sequence of symbols taken

from a finite alphabet

– The C language is the (infinite) set of all strings that

constitute legal C programs

– The language of C reserved words is the (finite) set

of all alphabetic strings that cannot be used as

identifiers in the C programs

– Each token type is a language
9

Regular Expressions (RE)

 A language allows us to use a finite description

to specify a (possibly infinite) set

 RE is the metalanguage used to define the

token types of a programming language

10

Regular Expressions

 is a RE denoting L = {}

 If a alphabet, then a is a RE denoting L = {a}

 Suppose r and s are RE denoting L(r) and L(s)

 alternation: (r) | (s) is a RE denoting L(r) L(s)

 concatenation: (r) • (s) is a RE denoting L(r)L(s)

 repetition: (r)* is a RE denoting (L(r))*

 (r) is a RE denoting L(r)

11

Examples

 a | b {a, b}

 (a | b)(a | b) {aa, ab, ba, bb}

 a* {, a, aa, aaa, ...}

 (a | b)* the set of all strings of a’s and b’s

 a | a*b the set containing the string a and

all strings consisting of zero or more

a’s followed by a b

12

Regular Definitions

 Names for regular expressions

d1 r1

d2 r2

...

dn rn

where ri over alphabet {d1, d2, ..., di-1}

 Examples:

letter A | B | ... | Z | a | b | ... | z

digit 0 | 1 | ... | 9

identifier letter (letter | digit)*13

Notational Abbreviations

 One or more instances

(r)+ denoting (L(r))+

r* = r+ | r+ = r r*

 Zero or one instance
r? = r |

 Character classes

[abc] = a | b | c [a-z] = a | b | ... | z

[^abc] = any character except a | b | c

 Any character except newline
.

14

Examples

 if {return IF;}

 [a-z][a-z0-9]* {return ID;}

 [0-9]+ {return NUM;}

 ([0-9]+“.”[0-9]*)|([0-9]*“.”[0-9]+) {return REAL;}

 (“--”[a-z]*“\n”)|(“ ” | “\n” | “\t”)+

{/*do nothing for white spaces and comments*/}

 . { error(); }
15

Completeness of REs

 A lexical specification should be complete;

namely, it always matches some initial substring

of the input

…

. /* match any */

16

Disambiguity of REs (1)

 Longest match disambiguation rules: the

longest initial substring of the input that can

match any regular expression is taken as the

next token

([0-9]+“.”[0-9]*)|([0-9]*“.”[0-9]+) /* REAL */

0.9

17

Disambiguity of REs (2)

 Rule priority disambiguation rules: for a
particular longest initial substring, the first
regular expression that can match determines
its token type

if /* IF */
[a-z][a-z0-9]* /* ID */

if

18

Finite Automata

 A finite automaton is a finite-state transition

diagram that can be used to model the

recognition of a token type specified by a

regular expression

 A finite automaton can be a nondeterministic

finite automaton or a deterministic finite

automaton

19

Nondeterministic Finite Automata (NFA)

 An NFA consists of

– A finite set of states

– A finite set of input symbols

– A transition function that maps (state, symbol)

pairs to sets of states

– A state distinguished as start state

– A set of states distinguished as final states

20

An Example

 RE: (a | b)*abb

 States: {1, 2, 3, 4}

 Input symbols: {a, b}

 Transition function:

(1,a) = {1,2}, (1,b) = {1}

(2,b) = {3}, (3,b) = {4}

 Start state: 1

 Final state: {4}

1

2

3

4

a

b

b

a,b

start

21

Acceptance of NFA

 An NFA accepts an input string s iff there is

some path in the finite-state transition diagram

from the start state to some final state such

that the edge labels along this path spell out s

 The language recognized by an NFA is the set

of strings it accepts

22

An Example

1 42 3
a b b

a

b

start

(a | b)*abb aabb

{1} {1,2} {1,2} {1,3} {1,4}
a a b b

23

aaba

An Example

1 42 3
a b b

a

b

start

(a | b)*abb

{1} {1,2} {1,2} {1,3} {1, 2}
a a b a

24

Another Example

 RE: aa* | bb*

 States: {1, 2, 3, 4, 5}

 Input symbols: {a, b}

 Transition function:

(1,) = {2, 4}, (2, a) = {3}, (3, a) = {3},

(4, b) = {5}, (5, b) = {5}

 Start state: 1

 Final states: {3, 5}

25

Finite-State Transition Diagram

start

aa* | bb*

1

4

2 3
a

b

a

b

5

aaa

{1} {1,2,4} {3} {3} {3}
a a a

26

Operations on NFA states

 -closure(s): set of states reachable from a state s

on -transitions alone

 -closure(S): set of states reachable from some

state s in S on -transitions alone

 move(s, c): set of states to which there is a

transition on input symbol c from a state s

 move(S, c): set of states to which there is a

transition on input symbol c from some state s in S

27

An Example

start

aa* | bb*

1

4

2 3
a

b

a

b

5

aaa

{1} {1,2,4} {3} {3} {3} {3} {3} {3}
a a a

S0 = {1}

S1 = -closure({1}) = {1,2,4}

S2 = move({1,2,4},a) = {3}

S3 = -closure({3}) = {3}

S4 = move({3},a) = {3}

S5 = -closure({3}) = {3}

S6 = move({3},a) = {3}

S7 = -closure({3}) = {3}

3 is in {3, 5} accept

 28

Simulating an NFA

Input: An input string ended with eof and an NFA with

start state s0 and final states F.

Output: The answer “yes” if accepts, “no” otherwise.

begin

S := -closure({s0}); c := nextchar;

while c <> eof do begin

S := -closure(move(S, c)); c := nextchar

end;

if S F <> then return “yes” else return “no”

end.
29

Computation of -closure

(a | b)*abb

start
1

4

2

3
a

b

a b

5

b

8 9 10 11

6

7

-closure({1}) = {1,2,3,5,8}

-closure({4}) = {2,3,4,5,7,8}

30

Computation of -closure

Input: An NFA and a set of NFA states S.

Output: T = -closure(S).

begin

push all states in S onto stack; T := S;

while stack is not empty do begin

pop t, the top element, off of stack;

for each state u with an edge from t to u labeled do

if u is not in T then begin

add u to T; push u onto stack

end

end;

return T

end.31

Deterministic Finite Automata (DFA)

 A DFA is a special case of an NFA in which

 no state has an -transition

 for each state s and input symbol a, there is at

most one edge labeled a leaving s

32

An Example

 RE: (a | b)*abb

 States: {1, 2, 3, 4}

 Input symbols: {a, b}

 Transition function:

(1,a) = 2, (2,a) = 2, (3,a) = 2, (4,a) = 2

(1,b) = 1, (2,b) = 3, (3,b) = 4, (4,b) = 1

 Start state: 1

 Final state: {4}

33

Finite-State Transition Diagram

(a | b)*abb

1 42 3
a

b b

a

b

start

a

b

a

34

Acceptance of DFA

 A DFA accepts an input string s iff there is one

path in the finite-state transition diagram from

the start state to some final state such that the

edge labels along this path spell out s

 The language recognized by a DFA is the set

of strings it accepts

35

An Example

(a | b)*abb

1 42 3
a

b b

a

b

start

a

b

a

aabb

1 2 2 3 4
a a b b

36

An Example

(a | b)*abb

1 42 3
a

b b

a

b

start

a

b

a

aaba

1 2 2 3 2
a a b a

37

An Example

(a | b)*abb

1 42 3
a

b b

a

b

start

a

b

a

bbababb

s = 1

s = move(1, b) = 1

s = move(1, b) = 1

s = move(1, a) = 2

s = move(2, b) = 3

s = move(3, a) = 2

s = move(2, b) = 3

s = move(3, b) = 4

4 is in {4} accept

38

Simulating a DFA

Input: An input string ended with eof and a DFA with start

state s0 and final states F.

Output: The answer “yes” if accepts, “no” otherwise.

begin

s := s0; c := nextchar;

while c <> eof do begin

s := move(s, c); c := nextchar

end;

if s is in F then return “yes” else return “no”

end.
39

Combined Finite Automata

1

32

4.

0-9

start
0-9

1 2
i fstart

3

1
a-zstart

2 a-z,0-9

5
0-9

.
0-9

0-9

[a-z][a-z0-9]*

([0-9]+“.”[0-9]*)

|

([0-9]*“.”[0-9]+)

if IF

ID

REAL

REAL40

Combined Finite Automata

7

98

10.

0-9

0-9

2 3
i f

4

5
a-z

 6 a-z,0-9

11
0-9

.
0-9

0-9

1
start

IF

ID

REAL

REAL
NFA

41

Combined Finite Automata

65

7

.

0-9
0-9

2

i

f
3

j-z
4 a-z,0-9

8
0-9

.
0-9

0-9

1
start

IF

ID

REAL

REAL
DFA

a-z,0-9

a-h

a-e
g-z

ID

42

Recognizing the Longest Match

 The automaton must keep track of the longest

match seen so far and the position of that

match until a dead state is reached

 Use two variables Last-Final (the state number

of the most recent final state encountered) and

Input-Position-at-Last-Final to remember the

last time the automaton was in a final state

43

An Example

65

7

.

0-9
0-9

2

i

3

j-z
4 a-z,0-9

8
0-9

.
0-9

0-9

1
start

ID

REAL

REAL
DFA

a-z,0-9

a-h

a-e
g-z

ID

S C L P

1 0 0

i 2 2 1

f 3 3 2

f 4 4 3

a 4 4 4

i 4 4 5

l 4 4 6

+ ?

iffail+
IFf

44

Automatic Conversion from RE to FA

RE

NFA

DFA

45

From a RE to an NFA

 Thompson’s construction algorithm

– For , construct

– For a in alphabet, construct

fi
start a

i f
start

46

From a RE to an NFA

 Suppose N(s) and N(t) are NFA for RE s and t

– for s | t, construct

– for s t, construct

start
i N(s) N(t) f

start
i

N(s)

N(t)

f

is

it

fs

ft

fs
it

47

From a RE to an NFA

– for s*, construct

– for (s), use N(s)

i

N(s) f

start is fs

48

An Example

(a | b)*abb
21

a

start
7

8

a
9

b
10

b
11

b
3 4

5

6

49

From an NFA to a DFA

Subset construction Algorithm.

Input: An NFA N.

Output: A DFA D with states Dstates and trasition table Dtran.

begin

add -closure(s0) as an unmarked state to Dstates;

while there is an unmarked state T in Dstates do begin

mark T;

for each input symbol a do begin

U := -closure(move(T, a));

if U is not in Dstates then

add U as an unmarked state to Dstates;

Dtran[T, a] := U

end

end.50

An Example

(a | b)*abb

start
1

4

2

3
a

b

a b

5

b

8 9 10 11

6

7

51

An Example

-closure({1}) = {1,2,3,5,8} = A

-closure(move(A, a))=-closure({4,9}) = {2,3,4,5,7,8,9} = B

-closure(move(A, b))=-closure({6}) = {2,3,5,6,7,8} = C

-closure(move(B, a))=-closure({4,9}) = B

-closure(move(B, b))=-closure({6,10}) = {2,3,5,6,7,8,10} = D

-closure(move(C, a))=-closure({4,9}) = B

-closure(move(C, b))=-closure({6}) = C

-closure(move(D, a))=-closure({4,9}) = B

-closure(move(D, b))=-closure({6,11}) = {2,3,5,6,7,8,11} = E

-closure(move(E, a))=-closure({4,9}) = B

-closure(move(E, b))=-closure({6}) = C
52

An Example

State
Input Symbol

a b

A = {1,2,3,5,8}

B = {2,3,4,5,7,8,9}

C = {2,3,5,6,7,8}

D = {2,3,5,6,7,8,10}

E = {2,3,5,6,7,8,11}

B

B

B

B

B C

E

C

D

C

53

An Example

start
{1,2,3,5,8}

{2,3,4,5,

7,8,9}

{2,3,5,

6,7,8}

{2,3,5,6,

7,8,10}

{2,3,5,6,

7,8,11}a

ab

b

b

aa

b

a
b

54

A Lexer Generator — ANTLR

 ANTLR (ANother Tool for Language

Recognition) is a powerful compiler generator

for reading, processing, executing, or

translating structured text or binary files.

 It's widely used to build languages, tools, and

frameworks.

55

ANTLR Download

 The latest version of ANTLR is 4.5.2, released

January 30, 2016. As of 4.5.2, we have a Java,

C#, JavaScript, Python2, Python3 targets.

 ANTLR is really two things: a tool that

translates your grammar to a parser/lexer in

Java and the runtime needed by the generated

parsers/lexers.

 The file antlr-4.5.2-complete.jar contains the

tool and the runtime for Java.
56

ANTLR FreeBSD Installation

 1. Use PuTTY to login csie1.cs.ccu.edu.tw

 2. Download antlr-4.5.2-complete.jar

 > mkdir 4005

 > cd 4005

 > fetch http://www.antlr.org/download/antlr-

4.5.2-complete.jar

57

 2. Set environment variable CLASSPATH in

.cshrc

 > cd ..

 > vi .cshrc

 setenv CLASSPATH .:$HOME/4005/antlr-4.5.2-

complete.jar:$CLASSPATH

ANTLR FreeBSD Installation

58

ANTLR FreeBSD Installation

 3. Create command shortcut in .cshrc

 alias antlr4 'java -Xmx500M -cp

“$HOME/4005/antlr-4.5.2-

complete.jar:$CLASSPATH" org.antlr.v4.Tool'

 alias grun 'java org.antlr.v4.gui.TestRig‘

59

Grammar Lexicon

 Comments

 Keywords

 Identifiers

 Literals

 Actions

60

Comments

/** This grammar is an example illustrating
* the three kinds of comments.
*/

grammar T;
/* a multi-line

comment
*/
/** This rule matches a declarator */
decl : ID ; // match a variable name

61

Keywords

 The reserved words in ANTLR:

 import, fragment, lexer, parser, grammar,

returns, locals, throws, catch, finally, mode,

options, tokens.

 Also, although it is not a keyword, do not use

the word rule as a rule name.

 Further, do not use any keyword of the target

language as a token, label, or rule name.

62

Identifiers

 Token names or lexer rule names always start

with a capital letter.

 Parser rule names always start with a

lowercase letter.

 The initial character can be followed by

uppercase and lowercase letters, digits, and

underscores.

63

Identifiers

/* token names or lexer rule names
ID, LPAREN, RIGHT_CURLY

// parser rule names
expr, simpleDeclarator, d2, header_file

64

Literals

 ANTLR does not distinguish between character

and string literals.

 All literal strings one or more characters in length

are enclosed in single quotes such as ’;’, ’if’, ’>=’,

and ’\’’.

 ANTLR understands the usual special escape

sequences: ’\n’, ’\r’, ’\t’, ’\b’, and ’\f’.

 Literals can contain Unicode escape sequences of

the form \uXXXX, where XXXX is the hexadecimal

Unicode character value.
65

Actions

 Actions are code blocks written in the target

language.

 An action is arbitrary text surrounded by curly

braces.

66

Grammar Structure

grammar Name;

options {...}

import ... ;

tokens {...}

channels {...}

@actionName {...}

rules

67

Grammar Options

 ANTLR options may be set either within the

grammar file using the options syntax or when

invoking ANTLR on the command line, using

the -D option.

 E.g.,

options { language = java; }

68

Grammar imports

 Grammar imports let you break up a

grammar into logical and reusable chunks.

grammar X;

import Y;

expr : INT | ID;

INT : [0-9]+ ;

grammar Y;

ID : [a-z]+ ;

grammar X;

expr : INT | ID;

INT : [0-9]+ ;

ID : [a-z]+ ;

69

Tokens Section

 The purpose of the tokens section is to define

token types needed by a grammar for which

there is no associated lexical rule.

 The basic syntax is:

tokens { Token1, ..., TokenN }

 E.g.

tokens { BEGIN, END, IF, THEN, WHILE }

70

Lexer Rules

 Lexer rule names must begin with an

uppercase letter.

TokenName :

alternative1 | ... | alternativeN ;

 You can also define rules that are not tokens

but rather aid in the recognition of tokens.

fragment HelperTokenRule :

alternative1 | ... | alternativeN ;

71

An Example

INT : DIGIT+ ;

fragment DIGIT : [0-9] ;

72

Lexer Rule Elements

 ’literal’: Match that character or sequence of

characters. E.g., ’while’ or ’=’.

 ’x’..’y’: Match any single character between

range x and y, inclusively. E.g., ’a’..’z’.

 .: The dot is a single-character wildcard that

matches any single character. E.g.,

ESC : '\\' . ;

73

Lexer Rule Elements

 [char set]: Match one of the characters

specified in the character set. Interpret x-y as

set of characters between range x and y,

inclusively. The following escaped characters

are interpreted as single special characters:

\n, \r, \b, \t, and \f. To get], \, or - you must

escape them with \. You can also use

Unicode character specifications: \uXXXX.

 [a-z] is identical to ’a’..’z’.

74

Lexer Rule Elements

 ~x: Match any single character not in the set

described by x. Set x can be a single character

literal, a range, or a subrule set like ~(’x’|’y’|’z’)

or ~[xyz].

75

Lexer Rule Elements

 T: Invoke lexer rule T; recursion is allowed in

general, but not left recursion. T can be a

regular token or fragment rule.

 E.g.,

ID : LETTER (LETTER | '0'..'9‘)* ;

fragment LETTER : [a-zA-Z_] ;

76

Lexer Rule Elements

 {«action»}: Lexer actions can appear anywhere

in the rule, not just at the end of the outermost

alternative.

 The lexer executes the actions at the

appropriate input position, according to the

placement of the action within the rule.

 The action conforms to the syntax of the target

language.

 ANTLR copies the action’s contents into the

generated code verbatim.
77

Lexer Commands

 To avoid tying a grammar to a particular target

language, ANTLR supports lexer commands.

 Lexer commands appear at the end of the

outermost alternative of a lexer rule definition.

 A lexer command consists of the -> operator

followed by one or more command names that

can optionally take parameters:

TokenName : «alternative» -> command-name

TokenName : «alternative» -> command-name

(«identifier or integer»)
78

Lexer Commands

 A 'skip' command tells the lexer to get another

token and throw out the current text.

WS : [\t]+ -> skip ;

 A ‘channel(x)’ command sends the token type

to the x channel. HIDDEN channel is not

connected to the parser.

WS : [\t]+ -> channel(HIDDEN) ;

79

Nongreedy Lexer Subrules

 Subrules like (...)?, (...)* and (...)+ are greedy—

They consume as much input as possible.

 Constructs like .* consume until the end of the

input in the lexer.

 We can make any subrule that has a ?, *, or +

suffix nongreedy by adding another ? suffix.

 E.g.,

COMMENT : '/*' .*? '*/' -> skip ;

80

Parser Rules

 Parser rule names must begin with a

lowercase letter.

parserRuleName :

alternative1 | ... | alternativeN ;

81

An Example

// File Rose.g4

grammar Rose;

token : (BEGIN | ELSE | …)* ;

BEGIN : ‘begin’ ;

ELSE : ‘else’ ;

…

82

An Example

// edit Rose.g4

> antlr4 Rose.g4

// generate Rose.tokens Rose*.java

> javac Rose*.java

// generate Rose*.class

// edit input_file

> grun Rose token –tree < input_file

(token begin else …)

83

