
Integration Testing

Integration Testing

 Integration testing is a logical extension of

unit testing.

 In its simplest form, two units that have

already been tested are combined into a

component and the interface between them is

tested.

 A component, in this sense, refers to an

integrated aggregate of more than one unit.

Integration Testing and Unit Testing

 Integration testing identifies problems that

occur when units are combined.

 By using a test plan that requires you to test

each unit and ensure the viability of each

before combining units, you know that any

errors discovered when combining units are

likely related to the interface between units.

 This method reduces the number of

possibilities to a far simpler level of analysis.

Interaction Errors

 Interface Misuse - A calling unit calls another

unit and makes an error in its use of interface,

probably by calling/passing parameters in the

wrong sequence.

 Interface Misunderstanding - A calling unit

makes some assumption about the other

units behavior which are incorrect.

Strategies in Integration Testing

 The top-down approach to integration testing

requires the highest-level modules be tested

and integrated first.

 The bottom-up approach requires the lowest-

level units be tested and integrated first.

 The sandwich approach combines the top-

down approach and the bottom-up approach.

Stubs

 A stub is a piece of

code that simulates

the activity of a

unavailable lower

level unit.

 Stubs are needed in

top-down approach.

Drivers

 A driver is a piece of

code that passes a

test case to an

available lower level

unit.

 Drivers are needed

in bottom-up

approach.

Top-Down Approach

 This allows high-level logic and data flow to

be tested early in the process and it tends to

minimize the need for drivers.

 However, the need for stubs complicates test

management and low-level utilities are tested

relatively late in the development cycle.

 Another disadvantage of top-down integration

testing is its poor support for early release of

limited functionality.

An Example

Top-Down Approach

 Top down testing can proceed in a depth-first
or a breadth-first manner.

 For depth-first integration each module is
tested in increasing detail, replacing more
and more levels of detail with actual code
rather than stubs.

 Alternatively breadth-first would proceed by
refining all the modules at the same level of
control throughout the application.

 In practice a combination of the two
techniques would be used.

Bottom-Up Approach

 These units are frequently referred to as utility
modules.

 By using this approach, utility modules are
tested early in the development process and
the need for stubs is minimized.

 The downside, however, is that the need for
drivers complicates test management and
high-level logic and data flow are tested late.

 Like the top-down approach, the bottom-up
approach also provides poor support for early
release of limited functionality.

Bottom-Up Approach

Sandwich Approach

 It focuses mainly upon testing the modules

that contain high degree of user interaction.

 The input modules are integrated in the

bottom-up pattern, and the output modules

are integrated in the top-down manner.

 This approach is beneficial in the sense that

it enables early release of a GUI-based

application that enhances its functionality.

 This approach is less systematic than the

other two approaches.

Integration Testing Techniques

 Coupling-based integration testing ─ a

structural testing technique.

 Interaction-based integration testing ─ a

functional testing technique.

Coupling-Based Integration Testing

 Coupling between two units measures the

dependency relations between two units by

reflecting the interconnections between units.

 Integration faults are found exactly where

couplings typically occur.

 Coupling between two units increases the

interconnections between the two units and

increases the likelihood that a fault in one unit

may affect the other.

Coupling Types

 Call coupling: a unit A calls another unit B,

but there are no parameters, common

variable references, or common references to

external media.

 Parameter coupling: a unit A calls another

unit B, and a variable in A is passed to B and

is used in B.

Coupling Types

 Shared data coupling: a unit A calls another

unit B, and both A and B refer to the same

non-local or global variable.

 External device coupling: a unit A calls

another unit B, and both A and B access the

same external medium.

A Call Graph Example

P1

P2

P3

P5

P4

f

gg
x

y

Basic Definitions

 If a unit A calls another unit B, A is called the

caller and B is called the callee.

 If A calls B, actual parameters of A are passed

and assigned to formal parameters of B.

 The interface between A and B is the mapping

of actual to formal parameters.

Basic Definitions

 Assume that the control flow graph for each

unit is present.

 def(P, V) is the set of nodes in P that contain

a definition of a variable V.

 use(P, V) is the set of nodes in P that contain

a use of a variable V.

 Call_site is a node in the control flow graph of

a unit A from which another unit B is called.

Basic Definitions

 Call(P1, P2, call_site, x y): TRUE if unit P1

calls unit P2 at call_site and actual parameter

x is mapped to formal parameter y.

 Return(v): Nodes from which values for v are

returned.

 Start(P): The entry node of P.

An Example

procedure QUADRATIC is

begin

GET(Control_Flag);

if (Control_Flag = 1) then

GET(X);

GET(Y);

GET(Z);

else

X := 10.0;

Y := 0.0;

Z := 12.0;

end if;

OK := TRUE;

ROOT(X, Y, Z, R_1, R_2, OK);

An Example

ROOT(X, Y, Z, R_1, R_2, OK);

if (OK) then

PUT(R_1);

PUT(R_2);

else

PUT(“No solution”);

end if;

end QUADRATIC;

An Example

procedure ROOT(A, B, C: in FLOAT; ROOT_1, ROOT_2: out FLOAT;

Result: in out BOOLEAN) is

…

D: REAL;

…

begin

D := B ** 2 – 4.0 * A * C;

if (Result and D < 0.0) then

Result := FALSE;

return;

end if;

ROOT_1 := (-B+sqrt(D))/(2.0*A);

ROOT_2 := (-B-sqrt(D))/(2.0*A);

Result:= TRUE;

end ROOT;

Coupling-def

 A coupling-def is a node in a unit A that

contains a definition that can reach a use in

another unit B on at least one execution path.

 Last-def-before-call, lbc-def(P1, call_site, x):

The set of nodes that defines x and for which

there is a def-clear path from the node to the

call_site in P1.

An Example

procedure QUADRATIC is

begin

GET(Control_Flag);

if (Control_Flag = 1) then

GET(X); -- last-def-before-call(X)

GET(Y); -- last-def-before-call(Y)

GET(Z); -- last-def-before-call(Z)

else

X := 10.0; -- last-def-before-call(X)

Y := 0.0; -- last-def-before-call(Y)

Z := 12.0; -- last-def-before-call(Z)

end if;

OK := TRUE; -- last-def-before-call(OK)

ROOT(X, Y, Z, R_1, R_2, OK); -- call-site

Coupling-def

 Last-def-before-return, lbr-def(P2, y): The set

of nodes that defines the returned variable y

and for which there is a def-clear path from

the node to the return statement in P2.

 Shared-data-def, shared-last-def(P3, P4, g):

The set of nodes that defines a nonlocal or

global variable g in P3 that is used in P4, and

for which there is a def-clear path from the

def to the use.

An Example

procedure ROOT(A, B, C: in FLOAT; ROOT_1, ROOT_2: out FLOAT;

Result: in out BOOLEAN) is

…

D: REAL;

…

begin

D := B ** 2 – 4.0 * A * C;

if (Result and D < 0.0) then

Result := FALSE; -- last-def-before-return(Result)

return;

end if;

ROOT_1 := (-B+sqrt(D))/(2.0*A); -- last-def-before-return(ROOT_1)

ROOT_2 := (-B-sqrt(D))/(2.0*A); -- last-def-before-return(ROOT_2)

Result:= TRUE; -- last-def-before-return(Result)

end ROOT;

Coupling-use

 A coupling-use is a node in a unit B that

contains a use that can be reached by a

definition in another unit A on at least one

execution path.

 First-use-after-call, fac-use(P1, call_site, x):

For call-by-reference, the set of nodes in P1

that have uses of x and for which there is a

def-clear path with no other uses or defs

between the call_site for P1 and these nodes.

An Example

ROOT(X, Y, Z, R_1, R_2, OK); -- call-site

if (OK) then -- first-use-after-call(OK)

PUT(R_1); -- first-use-after-call(R_1)

PUT(R_2); -- first-use-after-call(R_2)

else

PUT(“No solution”);

end if;

end QUADRATIC;

Coupling-use

 First-use-in-callee, fic-use(P2, y): For call-by-
value, the set of nodes for which parameter y
in P2 has a use, and there is a def-clear path
with no other uses from the start statement to
this use.

 Shared-data-use, shared-first-use(P4, g): The
set of nodes that uses a nonlocal or global
variable g, and there is a def-clear path with
no other uses from the start statement to this
use.

An Example

procedure ROOT(A, B, C: in FLOAT; ROOT_1, ROOT_2: out FLOAT;

Result: in out BOOLEAN) is

…

D: REAL;

…

begin

D := B ** 2 – 4.0 * A * C; -- first-use-in-callee(A, B, C)

if (Result and D < 0.0) then -- first-use-in-callee(Result)

Result := FALSE;

return;

end if;

ROOT_1 := (-B+sqrt(D))/(2.0*A);

ROOT_2 := (-B-sqrt(D))/(2.0*A);

Result:= TRUE;

end ROOT;

External References

 external-ref(i, j): For external coupling, the

pair of references (i, j) to the same external

file or device is called an external-reference.

 In files and other external devices,

considering definitions and uses does not

make sense.

Coupling-Paths

 A coupling path is a path between two units

from a definition to a use, or between two

references, and that satisfies certain other

requirements.

 The other requirements depend on the type

of coupling between the two units.

Parameter Coupling Paths

 parameter-coupling(P1, P2, call_site, x, y):

For each actual parameter x in P1, and each

last definition of x before a call_site, there is a

parameter coupling path from the last

definition, to the call_site, and to each first

use of the formal parameter y in P2.

An Example
procedure QUADRATIC is

…

begin

GET(Control_Flag);

if (Control_Flag = 1) then

GET(X); -- last-def-before-call(X)

GET(Y); -- last-def-before-call(Y)

GET(Z); -- last-def-before-call(Z)

else

X := 10.0; -- last-def-before-call(X)

Y := 0.0; -- last-def-before-call(Y)

Z := 12.0; -- last-def-before-call(Z)

end if;

OK := TRUE; -- last-def-before-call(OK)

ROOT(X, Y, Z, R_1, R_2, OK); -- call-site

An Example

procedure ROOT(A, B, C: in FLOAT; ROOT_1, ROOT_2: out FLOAT;

Result: in out BOOLEAN) is

…

D: REAL;

…

begin

D := B ** 2 – 4.0 * A * C; -- first-use-in-callee(A, B, C)

if (Result and D < 0.0) then -- first-use-in-callee(Result)

Result := FALSE; -- last-def-before-return(Result)

return;

end if;

ROOT_1 := (-B+sqrt(D))/(2.0*A); -- last-def-before-return(ROOT_1)

ROOT_2 := (-B-sqrt(D))/(2.0*A); -- last-def-before-return(ROOT_2)

Result:= TRUE; -- last-def-before-return(Result)

end ROOT;

An Example
procedure QUADRATIC is

…

begin

GET(Control_Flag);

if (Control_Flag = 1) then

GET(X); -- last-def-before-call(X)

GET(Y); -- last-def-before-call(Y)

GET(Z); -- last-def-before-call(Z)

else

X := 10.0; -- last-def-before-call(X)

Y := 0.0; -- last-def-before-call(Y)

Z := 12.0; -- last-def-before-call(Z)

end if;

OK := TRUE; -- last-def-before-call(OK)

ROOT(X, Y, Z, R_1, R_2, OK); -- call-site

An Example

procedure ROOT(A, B, C: in FLOAT; ROOT_1, ROOT_2: out FLOAT;

Result: in out BOOLEAN) is

…

D: REAL;

…

begin

D := B ** 2 – 4.0 * A * C; -- first-use-in-callee(A, B, C)

if (Result and D < 0.0) then -- first-use-in-callee(Result)

Result := FALSE; -- last-def-before-return(Result)

return;

end if;

ROOT_1 := (-B+sqrt(D))/(2.0*A); -- last-def-before-return(ROOT_1)

ROOT_2 := (-B-sqrt(D))/(2.0*A); -- last-def-before-return(ROOT_2)

Result:= TRUE; -- last-def-before-return(Result)

end ROOT;

An Example
procedure QUADRATIC is

…

begin

GET(Control_Flag);

if (Control_Flag = 1) then

GET(X); -- last-def-before-call(X)

GET(Y); -- last-def-before-call(Y)

GET(Z); -- last-def-before-call(Z)

else

X := 10.0; -- last-def-before-call(X)

Y := 0.0; -- last-def-before-call(Y)

Z := 12.0; -- last-def-before-call(Z)

end if;

OK := TRUE; -- last-def-before-call(OK)

ROOT(X, Y, Z, R_1, R_2, OK); -- call-site

An Example

procedure ROOT(A, B, C: in FLOAT; ROOT_1, ROOT_2: out FLOAT;

Result: in out BOOLEAN) is

…

D: REAL;

…

begin

D := B ** 2 – 4.0 * A * C; -- first-use-in-callee(A, B, C)

if (Result and D < 0.0) then -- first-use-in-callee(Result)

Result := FALSE; -- last-def-before-return(Result)

return;

end if;

ROOT_1 := (-B+sqrt(D))/(2.0*A); -- last-def-before-return(ROOT_1)

ROOT_2 := (-B-sqrt(D))/(2.0*A); -- last-def-before-return(ROOT_2)

Result:= TRUE; -- last-def-before-return(Result)

end ROOT;

Parameter Coupling Paths

 parameter-coupling(P1, P2, call_site, x, y): If a

parameter x is call-by-reference, then there is

also a parameter coupling path from each

last definition before return of the formal

parameter y in P2 to each first use after the

call of x in P1.

An Example

procedure ROOT(A, B, C: in FLOAT; ROOT_1, ROOT_2: out FLOAT;

Result: in out BOOLEAN) is

…

D: REAL;

…

begin

D := B ** 2 – 4.0 * A * C; -- first-use-in-callee(A, B, C)

if (Result and D < 0.0) then -- first-use-in-callee(Result)

Result := FALSE; -- last-def-before-return(Result)

return;

end if;

ROOT_1 := (-B+sqrt(D))/(2.0*A); -- last-def-before-return(ROOT_1)

ROOT_2 := (-B-sqrt(D))/(2.0*A); -- last-def-before-return(ROOT_2)

Result:= TRUE; -- last-def-before-return(Result)

end ROOT;

An Example

ROOT(X, Y, Z, R_1, R_2, OK); -- call-site

if (OK) then -- first-use-before-call(OK)

PUT(R_1); -- first-use-before-call(R_1)

PUT(R_2); -- first-use-before-call(R_2)

else

PUT(“No solution”);

end if;

end QUADRATIC;

An Example

procedure ROOT(A, B, C: in FLOAT; ROOT_1, ROOT_2: out FLOAT;

Result: in out BOOLEAN) is

…

D: REAL;

…

begin

D := B ** 2 – 4.0 * A * C; -- first-use-in-callee(A, B, C)

if (Result and D < 0.0) then -- first-use-in-callee(Result)

Result := FALSE; -- last-def-before-return(Result)

return;

end if;

ROOT_1 := (-B+sqrt(D))/(2.0*A); -- last-def-before-return(ROOT_1)

ROOT_2 := (-B-sqrt(D))/(2.0*A); -- last-def-before-return(ROOT_2)

Result:= TRUE; -- last-def-before-return(Result)

end ROOT;

An Example

ROOT(X, Y, Z, R_1, R_2, OK); -- call-site

if (OK) then -- first-use-before-call(OK)

PUT(R_1); -- first-use-before-call(R_1)

PUT(R_2); -- first-use-before-call(R_2)

else

PUT(“No solution”);

end if;

end QUADRATIC;

An Example

procedure ROOT(A, B, C: in FLOAT; ROOT_1, ROOT_2: out FLOAT;

Result: in out BOOLEAN) is

…

D: REAL;

…

begin

D := B ** 2 – 4.0 * A * C; -- first-use-in-callee(A, B, C)

if (Result and D < 0.0) then -- first-use-in-callee(Result)

Result := FALSE; -- last-def-before-return(Result)

return;

end if;

ROOT_1 := (-B+sqrt(D))/(2.0*A); -- last-def-before-return(ROOT_1)

ROOT_2 := (-B-sqrt(D))/(2.0*A); -- last-def-before-return(ROOT_2)

Result:= TRUE; -- last-def-before-return(Result)

end ROOT;

An Example

ROOT(X, Y, Z, R_1, R_2, OK); -- call-site

if (OK) then -- first-use-before-call(OK)

PUT(R_1); -- first-use-before-call(R_1)

PUT(R_2); -- first-use-before-call(R_2)

else

PUT(“No solution”);

end if;

end QUADRATIC;

Shared Data Coupling Paths

 shared-data-coupling(P3, P4, g): For each

nonlocal or global variable g that is defined in

P3 and used in P4, and each definition of g in

P3, there is a shared data coupling path that

is def-clear with respect to g from the

definition to each first use of g in P4.

External Device Coupling Paths

 For each pair of references (i, j) to the same

external device, an external device coupling

path executes both i and j on the same

execution path.

 In files and other external devices,

considering definitions and uses does not

make sense.

Testing Coverage Criteria

 Call coupling requires that the set of paths

executed by the test set covers all call_sites

in the program.

 All-coupling-defs requires that for each

coupling-def of a variable x, the set of paths

executed by the test set contains at least one

coupling path to at least one reachable

coupling-use.

Testing Coverage Criteria

 All-coupling-uses requires that for each

coupling-def of a variable x, the set of paths

executed by the test set contains at least one

coupling path to each reachable coupling-use.

 All-coupling-paths requires that all coupling

paths be executed.

Handling Loops

 A subpath set is the set of nodes on some

subpath.

 There is a many-to-one mapping between

subpaths and subpath sets.

 If there is a loop within the subpath, the

associated subpath set is the same no matter

how many iterations of the loop are taken.

 A coupling path set is the set of nodes on a

coupling path.

Handling Loops

 All-coupling-paths requires that for each

coupling-def of a variable x, the set of paths

executed by the test set contains all coupling

path sets from the coupling-def to all

reachable coupling-uses.

 If there is a loop, all-coupling-paths requires

two cases: the loop body is not executed at

all and the loop body is executed some

arbitrary number of times.

Testing Coverage Criteria Hierarchy

Call coupling

All-coupling-defs

All-coupling-uses

All-coupling-paths

Coupling Coverage Analysis

 Structural coverage analysis is needed to

determine whether all couplings have been

covered.

 This analysis can be done on coupling

graphs.

 A coupling graph is a directed graph C = (M,

E, F, A).

Coupling Graphs

 M is a finite set of nodes representing units in

the program. Each node is depicted by a

rectangle.

 F is a finite set of nodes representing external

files that a unit may write to or read from. It is

represented by a circle.

Coupling Graphs

 E is finite set of directed edges that connect

nodes in M and connect nodes in M to nodes

in F. Edges between nodes in M are referred

to as call edges. Edges between nodes in M

and nodes in F are referred to as shared

device edges.

 A is a set of annotations on nodes that

reference nonlocal or global data.

An Example

A

C

f

B D

FE

f

CB G

use(g)

use(g)

def(g)

def(g)

Coverage Measurement

 E: number of edges in coupling graph

E_covered / E

 CD = number of coupling defs

CD_covered / CD

 CU = number of coupling def-use pairs

CU_covered / CU

 CP = number of coupling path sets

CP_covered / CP

Sequence Diagrams

 An interaction is a set of messages that are

exchanged among several objects.

 A sequence diagram displays an interaction

as a two-dimensional chart.

 The vertical dimension is the time axis; time

proceeds down the page.

 The horizontal dimension shows the objects

in the interaction.

An Example

a:A b:B c:C d:D

m1

[c3]m6

m2 [c1]m3

m4

[c2]m5

[c1]m3

m4

[c2]m5

m2

Lifelines of Objects

 Each object is represented by a vertical

column containing a head symbol and a

vertical line─a lifeline.

 During the time an object exists, it is shown

by a dashed line.

 During the time a method of the object is

active, it is drawn as a double line.

Messages

 A message (or a call) is shown as an arrow,

with a filled triangle arrowhead, from the

lifeline of the calling object to the lifeline of

the called object.

 The return of a call is shown by a dashed

arrow with a stick arrowhead.

 A message may contain a guard. The

message is sent only when the condition in

the guard is true.

Interprocedural Restricted Control-Flow

Graph

 An Interprocedural Restricted Control Flow

Graph (IRCFG) contains a set of Restricted

Control Flow Graphs (RCFGs), together with

edges connecting these RCFGs.

 Each RCFG corresponding to a particular

method and is similar to the CFG for that

method, except that it is restricted to the flow

of control that is relevant to message sending.

An Example

start

m2

m6

end

m1
start

m4
m3

end

m2

m5

start

m2

endm6

start end m3

start end m4

start end m5

start

m4
m3

end

m2

m5

start end m3

start end m4

start end m5

Testing Coverage Criteria

 All-IRCFG-Paths Coverage: requires

coverage of the entire set of complete IRCGF

paths.

 Each complete path is a start-to-end traversal

of the IRCFG.

 An example,

(startm1,m2,startm2,m4,startm4,endm4,m5,

startm5,endm5,endm2,endm1).

 The number of paths for the example is 20.

Testing Coverage Criteria

 All-RCFG-Paths Coverage: requires

coverage of all complete RCGF paths.

 A complete IRCFG path may cover several

RCFG paths.

 (startm1,m2,startm2,m4,startm4,endm4,m5,

startm5,endm5,endm2,endm1) covers

(startm1,m2,endm1), (startm2,m4, m5,endm2),

(startm4,endm4), (startm5,endm5).

 The number of paths for the example is 5.

Testing Coverage Criteria

 All-RCFG-Branches Coverage: requires
coverage of all RCGF edges.

 (startm1,m2,startm2,m4,startm4,endm4,endm2,m6,
startm6,m2,startm2,m3,startm3,endm3,m4,startm4,
endm4,m5,startm5,endm5,endm2,endm6,endm1),
(startm1,m2,startm2,m4,startm4,endm4,endm2,m6,
startm6,m2,startm2,m4,startm4,endm4,endm2,
endm6,endm1),
(startm1,m2,startm2,m3,startm3,endm3,m4,
startm4,endm4,m5,startm5,endm5,endm2,endm1).

 The number of paths for the example is 3.

Testing Coverage Criteria

 All-Unique-Branches Coverage: requires

coverage of all RCGF edges regardless of the

calling context.

 (startm1,m2,startm2,m4,startm4,endm4,endm2,m6,

startm6,m2,startm2,m3,startm3,endm3,m4,startm4,

endm4,m5,startm5,endm5,endm2,endm6,endm1),

(startm1,m2,startm2,m4,startm4,endm4,endm2,

endm1).

 The number of paths for the example is 2.

Testing Coverage Criteria Hierarchy

All-IRCFG-Paths

All-RCFG-Paths

All-RCFG-Branches

All-Unique-Branches

Handling Loops

 A path that completely bypasses the loop.

 A path that iterates the loop some number of

times and normally exits the loop.

 A path that iterates the loop some number of

times and takes one of the early exits of the

loop.

Loop Transformation

 Assume that each loop contains an artificial

loophead node.

 Create a second loophead node for each

loop which is directed to the next node of the

loop.

 Each back edge is redirected to the new

loophead node.

 The subpaths through the early exits are

replicated.

An Example

start

lh

m1

end

m3 m4m2

m5

m6

start

lh

m1

end

m3 m4m2

m5

m6

lh’

m1

(start,lh,m1,m2,m5,

lh,m1,m3,m5,

lh,m1,m4,m6,end).

(start,lh,m1,m2,m5,lh’,m1,m4,m6,end),

(start,lh,m1,m3,m5,lh’,m1,m4,m6,end).

