
Integration Testing



Integration Testing

 Integration testing is a logical extension of 

unit testing. 

 In its simplest form, two units that have 

already been tested are combined into a 

component and the interface between them is 

tested. 

 A component, in this sense, refers to an 

integrated aggregate of more than one unit.



Integration Testing and Unit Testing

 Integration testing identifies problems that 

occur when units are combined. 

 By using a test plan that requires you to test 

each unit and ensure the viability of each 

before combining units, you know that any 

errors discovered when combining units are 

likely related to the interface between units. 

 This method reduces the number of 

possibilities to a far simpler level of analysis.



Interaction Errors

 Interface Misuse - A calling unit calls another 

unit and makes an error in its use of interface, 

probably by calling/passing parameters in the 

wrong sequence. 

 Interface Misunderstanding - A calling unit 

makes some assumption about the other 

units behavior which are incorrect. 



Strategies in Integration Testing

 The top-down approach to integration testing 

requires the highest-level modules be tested 

and integrated first.

 The bottom-up approach requires the lowest-

level units be tested and integrated first.

 The sandwich approach combines the top-

down approach and the bottom-up approach.



Stubs

 A stub is a piece of 

code that simulates 

the activity of a 

unavailable lower 

level unit.

 Stubs are needed in 

top-down approach. 



Drivers

 A driver is a piece of 

code that passes a 

test case to an 

available lower level 

unit.

 Drivers are needed 

in bottom-up 

approach.



Top-Down Approach

 This allows high-level logic and data flow to 

be tested early in the process and it tends to 

minimize the need for drivers. 

 However, the need for stubs complicates test 

management and low-level utilities are tested 

relatively late in the development cycle. 

 Another disadvantage of top-down integration 

testing is its poor support for early release of 

limited functionality. 



An Example



Top-Down Approach

 Top down testing can proceed in a depth-first
or a breadth-first manner. 

 For depth-first integration each module is 
tested in increasing detail, replacing more 
and more levels of detail with actual code 
rather than stubs. 

 Alternatively breadth-first would proceed by 
refining all the modules at the same level of 
control throughout the application. 

 In practice a combination of the two 
techniques would be used. 



Bottom-Up Approach

 These units are frequently referred to as utility 
modules. 

 By using this approach, utility modules are 
tested early in the development process and 
the need for stubs is minimized. 

 The downside, however, is that the need for 
drivers complicates test management and 
high-level logic and data flow are tested late. 

 Like the top-down approach, the bottom-up 
approach also provides poor support for early 
release of limited functionality. 



Bottom-Up Approach



Sandwich Approach

 It focuses mainly upon testing the modules 

that contain high degree of user interaction. 

 The input modules are integrated in the 

bottom-up pattern, and the output modules

are integrated in the top-down manner. 

 This approach is beneficial in the sense that 

it enables early release of a GUI-based 

application that enhances its functionality. 

 This approach is less systematic than the 

other two approaches.



Integration Testing Techniques

 Coupling-based integration testing ─ a 

structural testing technique.

 Interaction-based integration testing ─ a 

functional testing technique.



Coupling-Based Integration Testing

 Coupling between two units measures the 

dependency relations between two units by 

reflecting the interconnections between units.

 Integration faults are found exactly where 

couplings typically occur.

 Coupling between two units increases the 

interconnections between the two units and 

increases the likelihood that a fault in one unit 

may affect the other.



Coupling Types

 Call coupling: a unit A calls another unit B, 

but there are no parameters, common 

variable references, or common references to 

external media.

 Parameter coupling: a unit A calls another 

unit B, and a variable in A is passed to B and 

is used in B.



Coupling Types

 Shared data coupling: a unit A calls another 

unit B, and both A and B refer to the same 

non-local or global variable.

 External device coupling: a unit A calls 

another unit B, and both A and B access the 

same external medium.



A Call Graph Example

P1

P2

P3

P5

P4

f

gg
x

y



Basic Definitions

 If a unit A calls another unit B, A is called the 

caller and B is called the callee.

 If A calls B, actual parameters of A are passed 

and assigned to formal parameters of B.

 The interface between A and B is the mapping 

of actual to formal parameters.



Basic Definitions

 Assume that the control flow graph for each 

unit is present.

 def(P, V) is the set of nodes in P that contain 

a definition of a variable V.

 use(P, V) is the set of nodes in P that contain 

a use of a variable V.

 Call_site is a node in the control flow graph of 

a unit A from which another unit B is called.



Basic Definitions

 Call(P1, P2, call_site, x  y): TRUE if unit P1

calls unit P2 at call_site and actual parameter 

x is mapped to formal parameter y.

 Return(v): Nodes from which values for v are 

returned.

 Start(P): The entry node of P.



An Example

procedure QUADRATIC is

begin

GET(Control_Flag);

if (Control_Flag = 1) then

GET(X);

GET(Y);     

GET(Z);     

else

X := 10.0;   

Y :=   0.0;   

Z := 12.0;   

end if;

OK := TRUE; 

ROOT(X, Y, Z, R_1, R_2, OK); 



An Example

ROOT(X, Y, Z, R_1, R_2, OK);     

if (OK) then

PUT(R_1);

PUT(R_2);   

else

PUT(“No solution”);

end if;

end QUADRATIC;



An Example

procedure ROOT(A, B, C: in FLOAT; ROOT_1, ROOT_2: out FLOAT;

Result: in out BOOLEAN) is

…

D: REAL;

…

begin

D := B ** 2 – 4.0 * A * C; 

if (Result and D < 0.0) then

Result := FALSE;

return;

end if;

ROOT_1 := (-B+sqrt(D))/(2.0*A);   

ROOT_2 := (-B-sqrt(D))/(2.0*A);    

Result:= TRUE;   

end ROOT;



Coupling-def

 A coupling-def is a node in a unit A that 

contains a definition that can reach a use in 

another unit B on at least one execution path.

 Last-def-before-call, lbc-def(P1, call_site, x):

The set of nodes that defines x and for which 

there is a def-clear path from the node to the 

call_site in P1.



An Example

procedure QUADRATIC is

begin

GET(Control_Flag);

if (Control_Flag = 1) then

GET(X); -- last-def-before-call(X)

GET(Y);             -- last-def-before-call(Y)

GET(Z);             -- last-def-before-call(Z)

else

X := 10.0;           -- last-def-before-call(X)

Y :=   0.0;           -- last-def-before-call(Y)

Z := 12.0;           -- last-def-before-call(Z)

end if;

OK := TRUE; -- last-def-before-call(OK)

ROOT(X, Y, Z, R_1, R_2, OK);     -- call-site



Coupling-def

 Last-def-before-return, lbr-def(P2, y): The set 

of nodes that defines the returned variable y

and for which there is a def-clear path from 

the node to the return statement in P2.

 Shared-data-def, shared-last-def(P3, P4, g):

The set of nodes that defines a nonlocal or 

global variable g in P3 that is used in P4, and 

for which there is a def-clear path from the 

def to the use.



An Example

procedure ROOT(A, B, C: in FLOAT; ROOT_1, ROOT_2: out FLOAT;

Result: in out BOOLEAN) is

…

D: REAL;

…

begin

D := B ** 2 – 4.0 * A * C; 

if (Result and D < 0.0) then

Result := FALSE; -- last-def-before-return(Result)

return;

end if;

ROOT_1 := (-B+sqrt(D))/(2.0*A);   -- last-def-before-return(ROOT_1)

ROOT_2 := (-B-sqrt(D))/(2.0*A);    -- last-def-before-return(ROOT_2)

Result:= TRUE;   -- last-def-before-return(Result)

end ROOT;



Coupling-use

 A coupling-use is a node in a unit B that 

contains a use that can be reached by a 

definition in another unit A on at least one 

execution path.

 First-use-after-call, fac-use(P1, call_site, x):

For call-by-reference, the set of nodes in P1

that have uses of x and for which there is a 

def-clear path with no other uses or defs 

between the call_site for P1 and these nodes.



An Example

ROOT(X, Y, Z, R_1, R_2, OK);     -- call-site

if (OK) then -- first-use-after-call(OK)

PUT(R_1); -- first-use-after-call(R_1)

PUT(R_2);   -- first-use-after-call(R_2)

else

PUT(“No solution”);

end if;

end QUADRATIC;



Coupling-use

 First-use-in-callee, fic-use(P2, y): For call-by-
value, the set of nodes for which parameter y
in P2 has a use, and there is a def-clear path 
with no other uses from the start statement to 
this use.

 Shared-data-use, shared-first-use(P4, g): The 
set of nodes that uses a nonlocal or global 
variable g, and there is a def-clear path with 
no other uses from the start statement to this 
use.



An Example

procedure ROOT(A, B, C: in FLOAT; ROOT_1, ROOT_2: out FLOAT;

Result: in out BOOLEAN) is

…

D: REAL;

…

begin

D := B ** 2 – 4.0 * A * C; -- first-use-in-callee(A, B, C)

if (Result and D < 0.0) then -- first-use-in-callee(Result)

Result := FALSE;

return;

end if;

ROOT_1 := (-B+sqrt(D))/(2.0*A);   

ROOT_2 := (-B-sqrt(D))/(2.0*A);    

Result:= TRUE;   

end ROOT;



External References

 external-ref(i, j): For external coupling, the 

pair of references (i, j) to the same external 

file or device is called an external-reference.

 In files and other external devices, 

considering definitions and uses does not 

make sense.



Coupling-Paths

 A coupling path is a path between two units 

from a definition to a use, or between two 

references, and that satisfies certain other 

requirements.

 The other requirements depend on the type 

of coupling between the two units.



Parameter Coupling Paths

 parameter-coupling(P1, P2, call_site, x, y):

For each actual parameter x in P1, and each 

last definition of x before a call_site, there is a 

parameter coupling path from the last 

definition, to the call_site, and to each first 

use of the formal parameter y in P2.



An Example
procedure QUADRATIC is

…

begin

GET(Control_Flag);

if (Control_Flag = 1) then

GET(X); -- last-def-before-call(X)
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X := 10.0;            -- last-def-before-call(X)

Y :=   0.0;            -- last-def-before-call(Y)

Z := 12.0;            -- last-def-before-call(Z)

end if;

OK := TRUE; -- last-def-before-call(OK)

ROOT(X, Y, Z, R_1, R_2, OK);     -- call-site



An Example

procedure ROOT(A, B, C: in FLOAT; ROOT_1, ROOT_2: out FLOAT;

Result: in out BOOLEAN) is

…

D: REAL;

…

begin

D := B ** 2 – 4.0 * A * C; -- first-use-in-callee(A, B, C)

if (Result and D < 0.0) then -- first-use-in-callee(Result)

Result := FALSE; -- last-def-before-return(Result)

return;

end if;

ROOT_1 := (-B+sqrt(D))/(2.0*A); -- last-def-before-return(ROOT_1)

ROOT_2 := (-B-sqrt(D))/(2.0*A);  -- last-def-before-return(ROOT_2)

Result:= TRUE;   -- last-def-before-return(Result)

end ROOT;



An Example
procedure QUADRATIC is

…

begin

GET(Control_Flag);

if (Control_Flag = 1) then

GET(X); -- last-def-before-call(X)

GET(Y);              -- last-def-before-call(Y)

GET(Z);               -- last-def-before-call(Z)

else

X := 10.0;            -- last-def-before-call(X)

Y :=   0.0;            -- last-def-before-call(Y)

Z := 12.0;            -- last-def-before-call(Z)

end if;

OK := TRUE; -- last-def-before-call(OK)

ROOT(X, Y, Z, R_1, R_2, OK);     -- call-site



An Example

procedure ROOT(A, B, C: in FLOAT; ROOT_1, ROOT_2: out FLOAT;

Result: in out BOOLEAN) is

…

D: REAL;

…

begin

D := B ** 2 – 4.0 * A * C; -- first-use-in-callee(A, B, C)

if (Result and D < 0.0) then -- first-use-in-callee(Result)

Result := FALSE; -- last-def-before-return(Result)

return;

end if;

ROOT_1 := (-B+sqrt(D))/(2.0*A); -- last-def-before-return(ROOT_1)

ROOT_2 := (-B-sqrt(D))/(2.0*A);  -- last-def-before-return(ROOT_2)

Result:= TRUE;   -- last-def-before-return(Result)

end ROOT;



An Example
procedure QUADRATIC is

…

begin

GET(Control_Flag);

if (Control_Flag = 1) then

GET(X); -- last-def-before-call(X)

GET(Y);              -- last-def-before-call(Y)

GET(Z);               -- last-def-before-call(Z)

else

X := 10.0;            -- last-def-before-call(X)

Y :=   0.0;            -- last-def-before-call(Y)

Z := 12.0;            -- last-def-before-call(Z)

end if;

OK := TRUE; -- last-def-before-call(OK)

ROOT(X, Y, Z, R_1, R_2, OK);     -- call-site



An Example

procedure ROOT(A, B, C: in FLOAT; ROOT_1, ROOT_2: out FLOAT;
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Parameter Coupling Paths

 parameter-coupling(P1, P2, call_site, x, y): If a 

parameter x is call-by-reference, then there is 

also a parameter coupling path from each 

last definition before return of the formal 

parameter y in P2 to each first use after the 

call of x in P1.



An Example

procedure ROOT(A, B, C: in FLOAT; ROOT_1, ROOT_2: out FLOAT;

Result: in out BOOLEAN) is

…

D: REAL;

…

begin

D := B ** 2 – 4.0 * A * C; -- first-use-in-callee(A, B, C)

if (Result and D < 0.0) then -- first-use-in-callee(Result)

Result := FALSE; -- last-def-before-return(Result)

return;
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ROOT_1 := (-B+sqrt(D))/(2.0*A); -- last-def-before-return(ROOT_1)

ROOT_2 := (-B-sqrt(D))/(2.0*A);  -- last-def-before-return(ROOT_2)

Result:= TRUE;   -- last-def-before-return(Result)

end ROOT;



An Example

ROOT(X, Y, Z, R_1, R_2, OK);          -- call-site

if (OK) then -- first-use-before-call(OK)

PUT(R_1); -- first-use-before-call(R_1)

PUT(R_2);   -- first-use-before-call(R_2)

else

PUT(“No solution”);

end if;

end QUADRATIC;
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Shared Data Coupling Paths

 shared-data-coupling(P3, P4, g): For each 

nonlocal or global variable g that is defined in 

P3 and used in P4, and each definition of g in 

P3, there is a shared data coupling path that 

is def-clear with respect to g from the 

definition to each first use of g in P4. 



External Device Coupling Paths

 For each pair of references (i, j) to the same 

external device, an external device coupling 

path executes both i and j on the same 

execution path.

 In files and other external devices, 

considering definitions and uses does not 

make sense.



Testing Coverage Criteria

 Call coupling requires that the set of paths 

executed by the test set covers all call_sites 

in the program.

 All-coupling-defs requires that for each 

coupling-def of a variable x, the set of paths 

executed by the test set contains at least one 

coupling path to at least one reachable 

coupling-use.



Testing Coverage Criteria

 All-coupling-uses requires that for each 

coupling-def of a variable x, the set of paths 

executed by the test set contains at least one 

coupling path to each reachable coupling-use.

 All-coupling-paths requires that all coupling 

paths be executed.



Handling Loops

 A subpath set is the set of nodes on some 

subpath.

 There is a many-to-one mapping between 

subpaths and subpath sets.

 If there is a loop within the subpath, the 

associated subpath set is the same no matter 

how many iterations of the loop are taken.

 A coupling path set is the set of nodes on a 

coupling path.



Handling Loops

 All-coupling-paths requires that for each 

coupling-def of a variable x, the set of paths 

executed by the test set contains all coupling 

path sets from the coupling-def to all 

reachable coupling-uses.

 If there is a loop, all-coupling-paths requires 

two cases: the loop body is not executed at 

all and the loop body is executed some 

arbitrary number of times.



Testing Coverage Criteria Hierarchy

Call coupling

All-coupling-defs

All-coupling-uses

All-coupling-paths



Coupling Coverage Analysis

 Structural coverage analysis is needed to 

determine whether all couplings have been 

covered.

 This analysis can be done on coupling 

graphs.

 A coupling graph is a directed graph C = (M, 

E, F, A).



Coupling Graphs

 M is a finite set of nodes representing units in 

the program. Each node is depicted by a 

rectangle.

 F is a finite set of nodes representing external 

files that a unit may write to or read from. It is 

represented by a circle.



Coupling Graphs

 E is finite set of directed edges that connect 

nodes in M and connect nodes in M to nodes 

in F. Edges between nodes in M are referred 

to as call edges. Edges between nodes in M 

and nodes in F are referred to as shared 

device edges.

 A is a set of annotations on nodes that 

reference nonlocal or global data. 
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Coverage Measurement

 E: number of edges in coupling graph

E_covered / E

 CD = number of coupling defs

CD_covered / CD

 CU = number of coupling def-use pairs

CU_covered / CU

 CP = number of coupling path sets

CP_covered / CP



Sequence Diagrams

 An interaction is a set of messages that are 

exchanged among several objects.

 A sequence diagram displays an interaction 

as a two-dimensional chart.

 The vertical dimension is the time axis; time 

proceeds down the page.

 The horizontal dimension shows the objects

in the interaction.



An Example
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Lifelines of Objects

 Each object is represented by a vertical 

column containing a head symbol and a 

vertical line─a lifeline.

 During the time an object exists, it is shown 

by a dashed line.

 During the time a method of the object is 

active, it is drawn as a double line.



Messages

 A message (or a call) is shown as an arrow, 

with a filled triangle arrowhead, from the 

lifeline of the calling object to the lifeline of 

the called object.

 The return of a call is shown by a dashed 

arrow with a stick arrowhead.

 A message may contain a guard. The 

message is sent only when the condition in 

the guard is true.



Interprocedural Restricted Control-Flow 

Graph

 An Interprocedural Restricted Control Flow 

Graph (IRCFG) contains a set of Restricted 

Control Flow Graphs (RCFGs), together with 

edges connecting these RCFGs.

 Each RCFG corresponding to a particular 

method and is similar to the CFG for that 

method, except that it is restricted to the flow 

of control that is relevant to message sending.



An Example

start

m2

m6

end

m1
start

m4
m3

end

m2

m5

start

m2

endm6

start end m3

start end m4

start end m5

start

m4
m3

end

m2

m5

start end m3

start end m4

start end m5



Testing Coverage Criteria

 All-IRCFG-Paths Coverage: requires 

coverage of the entire set of complete IRCGF 

paths.

 Each complete path is a start-to-end traversal 

of the IRCFG.

 An example,

(startm1,m2,startm2,m4,startm4,endm4,m5,

startm5,endm5,endm2,endm1).

 The number of paths for the example is 20.



Testing Coverage Criteria

 All-RCFG-Paths Coverage: requires 

coverage of all complete RCGF paths.

 A complete IRCFG path may cover several 

RCFG paths.

 (startm1,m2,startm2,m4,startm4,endm4,m5,

startm5,endm5,endm2,endm1) covers 

(startm1,m2,endm1), (startm2,m4, m5,endm2),

(startm4,endm4), (startm5,endm5). 

 The number of paths for the example is 5.



Testing Coverage Criteria

 All-RCFG-Branches Coverage: requires 
coverage of all RCGF edges.

 (startm1,m2,startm2,m4,startm4,endm4,endm2,m6,
startm6,m2,startm2,m3,startm3,endm3,m4,startm4,
endm4,m5,startm5,endm5,endm2,endm6,endm1),
(startm1,m2,startm2,m4,startm4,endm4,endm2,m6,
startm6,m2,startm2,m4,startm4,endm4,endm2,
endm6,endm1),
(startm1,m2,startm2,m3,startm3,endm3,m4,
startm4,endm4,m5,startm5,endm5,endm2,endm1). 

 The number of paths for the example is 3.



Testing Coverage Criteria

 All-Unique-Branches Coverage: requires 

coverage of all RCGF edges regardless of the 

calling context.

 (startm1,m2,startm2,m4,startm4,endm4,endm2,m6,

startm6,m2,startm2,m3,startm3,endm3,m4,startm4,

endm4,m5,startm5,endm5,endm2,endm6,endm1),

(startm1,m2,startm2,m4,startm4,endm4,endm2,

endm1). 

 The number of paths for the example is 2.



Testing Coverage Criteria Hierarchy

All-IRCFG-Paths

All-RCFG-Paths

All-RCFG-Branches

All-Unique-Branches



Handling Loops

 A path that completely bypasses the loop.

 A path that iterates the loop some number of 

times and normally exits the loop.

 A path that iterates the loop some number of 

times and takes one of the early exits of the 

loop.



Loop Transformation

 Assume that each loop contains an artificial 

loophead node.

 Create a second loophead node for each 

loop which is directed to the next node of the 

loop.

 Each back edge is redirected to the new 

loophead node.

 The subpaths through the early exits are 

replicated.



An Example
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