Finite State Machine Testing

Finite State Machines

- A finite state machine is a model to describe the dynamic behaviors of an object over time.
- A finite state machine is a localized view of an object.
- Each object is treated as an isolated entity that communicates with the rest of the world by detecting events and responding to them.

An Example: UML State Diagrams

EclipseUML

- EclipseUML is a UML editor and an Eclipse plugin.
- EclipseUML can draw all the diagrams in the UML 2.1.
- EclipseUML can be downloaded from http://www.eclipsedownload.com/

Events

- Events represents the kinds of changes that an object can detect - the receipt of calls or explicit signals from one object to another, a change in certain values, or the passage of time.
- Anything that can affect an object can be characterized as an event.
- An event occurs at a point in time; it does not have duration.

Event Types

- Call event: receipt of an explicit synchronous call request by an object - op(a:T).
- Change event: a change in value of a Boolean expression - when(exp).
- Signal event: receipt of an explicit, named, asynchronous communication among objects - sname(a:T).
- Time event: the arrival of an absolute time or the passage of a relative amount of time after(time).

An Example

States

- A finite state machine defines a number of states.
- A state can be characterized in three complementary ways:
- A set of object values that are qualitatively similar in some respect;
- A period of time during which an object waits for some event or events to occur;
- A period of time during which an object performs some ongoing do activity.

An Example

Transitions

- A transition leaving a state defines the response of an object in the state to the occurrence of an event.
- In general, a transition has an event trigger, a guard condition, an effect, and a target state. - e(a:T)[guard]/activity.

An Example

Event Triggers

- An event trigger specifies the event that enables a transition.
- The event may have parameters, which are available to an effect specified as part of the transition.

Guard Conditions

- A transition may have a guard condition, which is a Boolean expression.
- It may reference attributes of the objects that owns the finite state machine, as well as parameters of the trigger event.
- The guard condition is evaluated when the trigger event occurs.
- If the expression evaluates as true, then the transition fires, that is, its effects occur; otherwise, the transition does not fire.

Guard Conditions

- The same event can be a trigger for more than one transition leaving a single state.
- Each transition with the same event must have a different guard condition.
- Often, the set of guard conditions covers all possibilities so that the occurrence of the event is guaranteed to fire some transition.
- Only one transition may fire in response to one event occurrence.

An Example

Effects

- When a transition fires, its effect (if any) is executed.
- An effect may be an action or an activity.
- An action is a primitive computation, such as an assignment statement, a simple arithmetic computation, sending a signal to another object, calling an operation, creating or destroying an object, and getting and setting attribute values.
- An activity is a list of actions or activities.

An Example

Change of State

- When the execution of the effect is complete, the target state of the transition becomes active.

Activities in States

- Entry activity: that is executed when a state is entered - entry/activity.
- Exit activity: that is executed when a state is exited - exit/activity.
- Internal activity: that is executed after the entry activity and before the exit activity e(a:T)[guard]/activity.

An Example

Enter Password

entry / set echo to star; reset password exit / set echo to normal digit / handle character clear / reset password help / display help

State Types

- Initial state: a psudostate that indicates the starting state when the enclosing state is invoked.
- Final state: a special state whose activation indicates the enclosing state has completed activity.
- Terminate: a special state whose activation terminates execution of the object owning the state machine.

State Types

- Simple state: a state with no substructure.
- Nonorthogonal state: a composite state that contains one or more direct substates, exactly one of which is active at one time when the composite state is active.

An Example

State Types

- Orthogonal state: a composite state that is divided into two or more regions. One direct substate from each region is concurrently active when the composite state is active.

An Example

Test Coverage Criteria

- All-state coverage
- All-transition coverage
- All-definition coverage
- All-use coverage
- All-definition-use coverage
- All-path coverage
\} Data flow
\} Both

An Example: Coffee Cooking Machine

All-State Coverage

The set of test cases covers all the states in the diagram

All-Transition Coverage

The set of test cases covers all the transitions in the diagram

$$
1 \rightarrow 2 \rightarrow^{*} 2 \rightarrow 3 \rightarrow 2 \rightarrow 3 \rightarrow 1
$$

All-Path Coverage

The set of test cases covers all the paths in the diagram

$$
1 \rightarrow 2 \rightarrow^{*} 2 \rightarrow 3 \rightarrow 2 \rightarrow 3 \rightarrow 1
$$

Definitions of Variables

- An occurrence of a variable is a definition of the variable if a value is bound to the variable at that occurrence.

Uses of Variables

- An occurrence of a variable is a use of the variable if the value of the variable is referred at that occurrence.

Definition-Use Pairs

- The value of a definition of a variable may be used by several different uses of the variable.
- A use of a variable may use the value defined by several different definitions of the variable.
- Each definition and each of its uses compose a definition-use pair.
- The set of definition-use pairs includes all the data flow relations.

All-Definition Coverage

The set of test cases covers all the definitions in the diagram

All-Use Coverage

The set of test cases covers all the uses in the diagram

All-Definition-Use Coverage

$\left(m_{5}, m_{a}\right),\left(m_{5}, m_{b}\right),\left(m_{5}, m_{c}\right),\left(m_{5}, m_{d}\right),\left(m_{5}, m_{e}\right),\left(m_{5}, m_{f}\right)$.

All-Definition-Use Coverage

$1 \rightarrow 2 \rightarrow 3 \rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow 1$
($1, a$), ($2, d$), $(5, e),(5, a)$
$1 \rightarrow 2 \rightarrow^{*} 2 \rightarrow^{*} 2 \rightarrow 3 \rightarrow 2 \rightarrow 3 \rightarrow 2 \rightarrow 3 \rightarrow 1$
$(2, b),(3, b),(3, d),(5, f),(5, d)$

All-Definition-Use Coverage

$1 \rightarrow 2 \rightarrow 3 \rightarrow^{*} 3 \rightarrow^{*} 3 \rightarrow 2 \rightarrow 3 \rightarrow 1$
$(2, c),(4, c),(4, d)$
$1 \rightarrow 2 \rightarrow^{*} 2 \rightarrow 3 \rightarrow^{*} 3 \rightarrow 2 \rightarrow^{*} 2 \rightarrow 3 \rightarrow 2 \rightarrow 3 \rightarrow 2 \rightarrow 3 \rightarrow 1$
$(3, c),(5, b)$

Nonorthogonal States

- If a complete path contains a nonorthogonal state s, we can substitute each complete subpath within the state s for the state s in the complete path to generate a set of expanded complete paths.

An Example

$1 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 4 \rightarrow 5 \rightarrow 6$ a 1

Orthogonal States

- If a complete path contains an orthogonal state s, we can also substitute each complete subpath within the state s for the state s in the complete path to generate a set of expanded complete paths.
- The concurrency in the orthogonal node makes the determination of complete subpaths complex.
- The orthogonal state is transformed into a nonthogonal state.

Orthogonal States to Nonorthogonal
States

- Let the orthogonal state has n regions and the th region has m_{i} states.
- Each new state is an n-tuple ($x_{1}, \ldots, x_{i}, \ldots, x_{n}$), where x_{i} is an old state in the th region.
- There is a transition from $\left(x_{1}, \ldots, x_{i 1}, \ldots, x_{n}\right)$ to $\left(x_{1}, \ldots, x_{2}, \ldots, x_{n}\right)$ if there is a transition from $x_{i 1}$ to $x_{i 2}$ in the th region.

An Example

An Example

path1: $\mathrm{E} \rightarrow \mathrm{N} \rightarrow \mathrm{E} \rightarrow \mathrm{N} \rightarrow \mathrm{E}$
path2: $\mathrm{E} \rightarrow \mathrm{N} \rightarrow_{\mathrm{h}} \mathrm{N} \rightarrow_{\mathrm{h}} \mathrm{N} \rightarrow_{\mathrm{p}} \mathrm{N} \rightarrow{ }_{\mathrm{h}} \mathrm{N} \rightarrow_{\mathrm{p}} \mathrm{N} \rightarrow_{\mathrm{p}} \mathrm{N} \rightarrow \mathrm{E}$

