
Finite State Machine Testing

Finite State Machines

 A finite state machine is a model to describe

the dynamic behaviors of an object over time.

 A finite state machine is a localized view of

an object.

 Each object is treated as an isolated entity

that communicates with the rest of the world

by detecting events and responding to them.

An Example: UML State Diagrams

Waiting

Confirm Credit

Cancel Order

receive order

[amount > $25]

rejected

Cancel Order

receive order

[amount <= $25]

approved /

debit account

EclipseUML

 EclipseUML is a UML editor and an Eclipse

plugin.

 EclipseUML can draw all the diagrams in the

UML 2.1.

 EclipseUML can be downloaded from

http://www.eclipsedownload.com/

Events

 Events represents the kinds of changes that

an object can detect – the receipt of calls or

explicit signals from one object to another, a

change in certain values, or the passage of

time.

 Anything that can affect an object can be

characterized as an event.

 An event occurs at a point in time; it does not

have duration.

Event Types

 Call event: receipt of an explicit synchronous
call request by an object – op(a:T).

 Change event: a change in value of a
Boolean expression – when(exp).

 Signal event: receipt of an explicit, named,
asynchronous communication among
objects – sname(a:T).

 Time event: the arrival of an absolute time or
the passage of a relative amount of time –
after(time).

An Example

Waiting

Confirm Credit

Cancel Order

receive order

[amount > $25]

rejected

Cancel Order

receive order

[amount <= $25]

approved /

debit account

States

 A finite state machine defines a number of
states.

 A state can be characterized in three
complementary ways:

 A set of object values that are qualitatively
similar in some respect;

 A period of time during which an object waits
for some event or events to occur;

 A period of time during which an object
performs some ongoing do activity.

An Example

Waiting

Confirm Credit

Cancel Order

receive order

[amount > $25]

rejected

Cancel Order

receive order

[amount <= $25]

approved /

debit account

Transitions

 A transition leaving a state defines the

response of an object in the state to the

occurrence of an event.

 In general, a transition has an event trigger, a

guard condition, an effect, and a target state.

– e(a:T)[guard]/activity.

An Example

Waiting

Confirm Credit

Cancel Order

receive order

[amount > $25]

rejected

Cancel Order

receive order

[amount <= $25]

approved /

debit account

Event Triggers

 An event trigger specifies the event that

enables a transition.

 The event may have parameters, which are

available to an effect specified as part of the

transition.

Guard Conditions

 A transition may have a guard condition,
which is a Boolean expression.

 It may reference attributes of the objects that
owns the finite state machine, as well as
parameters of the trigger event.

 The guard condition is evaluated when the
trigger event occurs.

 If the expression evaluates as true, then the
transition fires, that is, its effects occur;
otherwise, the transition does not fire.

Guard Conditions

 The same event can be a trigger for more

than one transition leaving a single state.

 Each transition with the same event must

have a different guard condition.

 Often, the set of guard conditions covers all

possibilities so that the occurrence of the

event is guaranteed to fire some transition.

 Only one transition may fire in response to

one event occurrence.

An Example

Waiting

Confirm Credit

Cancel Order

receive order

[amount > $25]

rejected

Cancel Order

receive order

[amount <= $25]

approved /

debit account

Effects

 When a transition fires, its effect (if any) is
executed.

 An effect may be an action or an activity.

 An action is a primitive computation, such as
an assignment statement, a simple arithmetic
computation, sending a signal to another
object, calling an operation, creating or
destroying an object, and getting and setting
attribute values.

 An activity is a list of actions or activities.

An Example

Waiting

Confirm Credit

Cancel Order

receive order

[amount > $25]

rejected

Cancel Order

receive order

[amount <= $25]

approved /

debit account

Change of State

 When the execution of the effect is complete,

the target state of the transition becomes

active.

Activities in States

 Entry activity: that is executed when a state is

entered – entry/activity.

 Exit activity: that is executed when a state is

exited – exit/activity.

 Internal activity: that is executed after the

entry activity and before the exit activity –

e(a:T)[guard]/activity.

An Example

Enter Password

entry / set echo to star; reset password

exit / set echo to normal

digit / handle character

clear / reset password

help / display help

State Types

 Initial state: a psudostate that indicates the

starting state when the enclosing state is

invoked.

 Final state: a special state whose activation

indicates the enclosing state has completed

activity.

 Terminate: a special state whose activation

terminates execution of the object owning the

state machine.

State Types

 Simple state: a state with no substructure.

 Nonorthogonal state: a composite state that

contains one or more direct substates,

exactly one of which is active at one time

when the composite state is active.

An Example

Idle

Identify user

Select a seat

Confirm

Sell

push buypush resume

push confirm

/reset selection

push cancel

insert card

fail

State Types

 Orthogonal state: a composite state that is

divided into two or more regions. One direct

substate from each region is concurrently

active when the composite state is active.

An Example

Term Project
done

Lab1
done

Lab2
done

Test Coverage Criteria

 All-state coverage

 All-transition coverage

 All-definition coverage

 All-use coverage

 All-definition-use coverage

 All-path coverage

Control flow

Data flow

Both

An Example: Coffee Cooking Machine

Idle

power on

/ m = 0
insert coin

/ m = m+1

power off

Ready

insert coin

/ m = m+1

after(3min)

[m == 0]

cook

Cooking

insert coin

/ m = m+1

Exit/m = m-1

after(3min)

[m > 0]
1

2

3

All-State Coverage

1 2 3 1

Idle

power on

/ m = 0
insert coin

/ m = m+1

power off

Ready

insert coin

/ m = m+1

after(3min)

[m == 0]

cook

Cooking

insert coin

/ m = m+1

Exit/m = m-1

after(3min)

[m > 0]
1

2

3

The set of test cases covers all the states in the diagram

All-Transition Coverage

1 2 * 2 3 2 3 1

Idle

power on

/ m = 0
insert coin

/ m = m+1

power off

Ready

insert coin

/ m = m+1

after(3min)

[m == 0]

cook

Cooking

insert coin

/ m = m+1

Exit/m = m-1

after(3min)

[m > 0]
1

2

3

The set of test cases covers all the transitions in the diagram

All-Path Coverage

The set of test cases covers all the paths in the diagram

Idle

power on

/ m = 0
insert coin

/ m = m+1

power off

Ready

insert coin

/ m = m+1

after(3min)

[m == 0]

cook

Cooking

insert coin

/ m = m+1

Exit/m = m-1

after(3min)

[m > 0]
1

2

3

1 2 3 1

1 2 * 2 3 2 3 1 … (infinite)

Definitions of Variables

 An occurrence of a variable is a definition of

the variable if a value is bound to the variable

at that occurrence.

Idle

power on

/ m = 0
insert coin

/ m = m+1

power off

Ready

insert coin

/ m = m+1

after(3min)

[m == 0]

cook

Cooking

insert coin

/ m = m+1

Exit/m = m-1

after(3min)

[m > 0]
1

2

3

Uses of Variables

 An occurrence of a variable is a use of the

variable if the value of the variable is referred

at that occurrence.

Idle

power on

/ m = 0
insert coin

/ m = m+1

power off

Ready

insert coin

/ m = m+1

after(3min)

[m == 0]

cook

Cooking

insert coin

/ m = m+1

Exit/m = m-1

after(3min)

[m > 0]
1

2

3

Definition-Use Pairs

 The value of a definition of a variable may be

used by several different uses of the variable.

 A use of a variable may use the value defined

by several different definitions of the variable.

 Each definition and each of its uses compose

a definition-use pair.

 The set of definition-use pairs includes all the

data flow relations.

All-Definition Coverage

The set of test cases covers all the definitions in the diagram

Idle

power on

/ m = 0
insert coin

/ m = m+1

power off

Ready

insert coin

/ m = m+1

after(3min)

[m == 0]

cook

Cooking

insert coin

/ m = m+1

Exit/m = m-1

after(3min)

[m > 0]
1

2

3

1 2 * 2 3* 3 2 3 2 3 1

All-Use Coverage

The set of test cases covers all the uses in the diagram

Idle

power on

/ m = 0
insert coin

/ m = m+1

power off

Ready

insert coin

/ m = m+1

after(3min)

[m == 0]

cook

Cooking

insert coin

/ m = m+1

Exit/m = m-1

after(3min)

[m > 0]
1

2

3

1 2 * 2 3* 3 2 3 2 3 1

All-Definition-Use Coverage

Idle

power on

/ m1 = 0

insert coin

/ m2 = ma+1

power off

Ready

insert coin

/ m3 = mb+1

after(3min)

[me == 0]

cook

Cooking

insert coin

/ m4 = mc+1

Exit/m5 = md-1

after(3min)

[mf > 0]
1

2

3

(m1, ma), (m2, mb), (m2, mc), (m2, md),

(m3, mb), (m3, mc), (m3, md), (m4, mc), (m4, md),

(m5, ma), (m5, mb), (m5, mc), (m5, md), (m5, me), (m5, mf).

All-Definition-Use Coverage

1 2 * 2 * 2 3 2 3 2 3 1

1 2 3 1 2 3 1

Idle

power on

/ m1 = 0

insert coin

/ m2 = ma+1

power off

Ready

insert coin

/ m3 = mb+1

after(3min)

[me == 0]

cook

Cooking

insert coin

/ m4 = mc+1

Exit/m5 = md-1

after(3min)

[mf > 0]
1

2

3

(1, a), (2, d), (5, e), (5, a)

(2, b), (3, b), (3, d), (5, f), (5, d)

All-Definition-Use Coverage

Idle

power on

/ m1 = 0

insert coin

/ m2 = ma+1

power off

Ready

insert coin

/ m3 = mb+1

after(3min)

[me == 0]

cook

Cooking

insert coin

/ m4 = mc+1

Exit/m5 = md-1

after(3min)

[mf > 0]
1

2

3

1 2 3* 3* 3 2 3 1

1 2 * 2 3* 3 2 * 2 3 2 3 2 3 1

(2, c), (4, c), (4, d)

(3, c), (5, b)

Nonorthogonal States

 If a complete path contains a nonorthogonal

state s, we can substitute each complete

subpath within the state s for the state s in

the complete path to generate a set of

expanded complete paths.

An Example

Idel

Identify user

Select a seat

Confirm

Sell

push buypush resume

push confirm

/reset selection

push cancel

insert card

fail

1

3

4

5

6

2

a

b

1 2 1b

1 2 1
a

1 3 1a

1 3 4 5 4 5 6 1a

Orthogonal States

 If a complete path contains an orthogonal

state s, we can also substitute each complete

subpath within the state s for the state s in

the complete path to generate a set of

expanded complete paths.

 The concurrency in the orthogonal node

makes the determination of complete

subpaths complex.

 The orthogonal state is transformed into a

nonthogonal state.

Orthogonal States to Nonorthogonal

States

 Let the orthogonal state has n regions and the

ith region has mi states.

 Each new state is an n-tuple (x1, …, xi , …, xn),

where xi is an old state in the ith region.

 There is a transition from (x1, …, xi1 , …, xn) to

(x1, …, xi2 , …, xn) if there is a transition from

xi1 to xi2 in the ith region.

An Example

Term Project
done

Lab1
done

Lab2
done

1 2

3 4 5

a

b c

(1, 3) (1, 4)
b c

(1, 5)

(2, 3) (2, 4)
b c

a aa

An Example

Empty

push(x)

NonEmpty

pop[size = 1]

push(x)

pop[size > 1]

stack-use1

stack-def1

stack-use2

stack-def2

stack-use3

stack-def3

stack-use4

stack-def4

stack-def0

(def0, use1)

(def1, use2)

(def1, use4)

(def2, use2)

(def2, use3)

(def3, use2)

(def3, use3)

(def3, use4)

(def4, use1)

path1: E → N → E → N → E

path2: E → N →h N → h N →p N → h N →p N → p N → E

