
Model-Based Testing

2

Content

 Introduction to Model-Based Testing

 Introduction to Design by Contract

 Introduction to Universal Modeling Language

(UML)

 Introduction to Object Constraint Language

(OCL)

Model-Based Testing

3

Requirements
By hand

Models Test Cases
By tool

Requirements Test Cases
By hand

Benefits of Model-Based Testing

 Cost saving in test design

 Modeling time < manual test design time

 Systematic testing

 Less ad-hoc, systematic coverage control

 Modeling benefits

 Early detection of specification ambiguities

 Quick response to evolving requirements

 Change model → regenerate tests

 Automated traceability

 Requirements <-> tests

4

Design by Contract

 Design by Contract is a systematic approach

to designing software.

 A software system is viewed as a set of

communicating components whose

interaction is based on precisely defined

specifications of the mutual obligations －
contracts.

 It includes specifications for each method of a

class and specifications for each object.

5

Specification of Methods

 Precondition: state the conditions that must

be true before the method can work correctly.

 Impose an obligation to be guaranteed on

entry by any client that calls this method.

 Provide a benefit for the supplier (the method

itself), as it frees this method from having to

handle cases outside of the precondition.

6

Specification of Methods

 Postcondition: state the conditions that will be

true after execution, if the method has

worked correctly.

 Impose an obligation to be guaranteed on

exit by the supplier.

 Provide a benefit for the client.

7

Specification of Objects

 Class invariant: state the conditions that must

be true for all objects of the class at any time.

8

Contract for a Class

 Precondition and postcondition for each

(public) member method.

 Invariants for member variables.

9

An Example: Class Triangle

10

class Triangle

{

public Triangle(int sa, int sb, int sc);

public String category();

private int a;

private int b;

private int c;

};

An Example: Constructor Triangle()

11

Triangle::Triangle(int sa, int sb, int sc)

precondition:

sa + sb > sc and sa + sc > sb and sb + sc > sa

postcondition:

a = sa and b = sb and c = sc

An Example: Method category()

12

Triangle::category(): string

precondition: none

postcondition:

result =

if (a = b and a = c) then

“Equilateral”

else if (a = b or a = c or b = c) then

“Isosceles”

else

“Scalene”

endif

An Example: Triangle Objects

13

Triangle

invarient:

a + b > c and a + c > b and b + c > a

What is UML

 The Unified Modeling Language (UML) is a

graphical language for visualizing, specifying,

constructing, and documenting the artifacts of

a software-intensive system.

 The UML offers a standard way to write a

system's blueprints, including conceptual

things such as business processes and system

functions as well as concrete things such as

programming language statements, database

schemas, and reusable software components.

14

UML Diagrams

 UML 2 defines thirteen basic diagram types,

divided into two general sets:

 Structural Modeling Diagrams: Structure

diagrams define the static architecture of a

model. They are used to model the 'things'

that make up a model.

 Behavioral Modeling Diagrams: Behavior

diagrams capture the varieties of dynamic

interaction and instantaneous state within a

model as it 'executes' over time.

15

16

Structural Modeling Diagrams

 Package diagrams

 Class diagrams

 Object diagrams

 Composite diagrams

 Component diagrams

 Deployment diagrams

17

Behavioral Modeling Diagrams

 Use Case diagrams

 Activity diagrams

 State Machine diagrams

 Communication diagrams

 Sequence diagrams

 Timing diagrams

 Interaction Overview diagrams

18

Class Diagrams

 A class diagram describes what attributes and

operations a model has rather than detailing

the methods for achieving operations.

 Class diagrams are most useful in illustrating

relationships between classes and interfaces.

 Associations, generalizations, and

aggregations are valuable in reflecting

connection, inheritance and composition,

respectively.

An Example: Association

Airport

Flight

Passenger

Airline

*

*

*

*

$minAge: Integer

age: Integer

needsAssistance: Boolean

departTime: Time

arrivalTime: Time

duration : Interval

maxNrPassengers: Integer

origin

desti-

nation

name: String

name: String

{ordered}

arriving

Flights

departing

Flights

CEO

0..1

flights

passengers

book(f : Flight)

0..1

airline

airline

An Example: Generalization

20

Flight Airplane

CargoFlightPassengerFlight

PassengerPlane CargoPlane
1

0..*
1

0..*

0..*

1flights

An Example: Aggregations

22

What is OCL

 UML diagrams alone are usually not enough

to completely specify a software system.

 In general, constraints are also needed to

completely specify a software system.

 A constraint is a restriction on one or more

values of (part of) a software system.

 The Object Constraint Language is a textual

language to describe constraints.

An Example

context Flight

inv: type = #cargo implies airplane.type = #cargo

inv: type = #passenger implies airplane.type = #passenger

10..*Flight Airplane

type :

enum of cargo, passenger

type :

enum of cargo, passenger

flights

Kinds of Constraints

 Class invariant

 a constraint that must always be met by all

instances of the class

 Precondition of an operation

 a constraint that must always be true before the

execution of the operation

 Postcondition of an operation

 a constraint that must always be true after the

execution of the operation

25

Characteristics of OCL

 Both query and constraint language

 Mathematical foundation, but no

mathematical symbols

 Strongly typed language

 Declarative language

26

Constraint Context and Self

 Every OCL expression is bound to a specific

context.

 The context is often the element that the

constraint is attached to

 The context may be denoted within the

expression using the keyword „self‟.

 „self‟ is implicit in all OCL expressions

 Similar to`this‟ in C++

27

Notation

 Constraints may be denoted within the UML

model or in a separate document.

 the expression:

context Flight inv: self.duration < 4

 is identical to:

context Flight inv: duration < 4

 is identical to:
Flight

duration: Integer<<invariant>>

duration < 4

28

Elements of an OCL Expression

 In an OCL expression these elements may

be used:

 basic types: String, Boolean, Integer, Real.

 classifiers from the UML model and their features

 attributes, and class attributes

 query operations, and class query operations (i.e.,

those operations that do not have side effects)

 associations from the UML model

 Including Rolenames at either end of an association

29

OCL Basic Types

context Airline

inv: name.toLower = „klm‟

context Passenger

inv: age >= ((9.6 - 3.5)* 3.1).floor implies

mature = true

30

Attributes

 Object attributes

context Flight

inv: self.maxNrPassengers <= 1000

 Class attributes

context Passenger

inv: age >= Passenger.minAge

An Example: Constructor Triangle()

31

context Triangle::Triangle(int sa, int sb, int sc)

pre:

sa + sb > sc and sa + sc > sb and sb + sc > sa

post:

a = sa and b = sb and c = sc

An Example: Method category()

32

context Triangle::category(): string

pre:

post: result =

if (a = b and a = c) then

“Equilateral”

else if (a = b or a = c or b = c) then

“Isosceles”

else

“Scalene”

endif

An Example: Triangle Objects

33

context Triangle

inv:

a + b > c and a + c > b and b + c > a

Significance of Collections in OCL

 Most navigations return collections rather

than single elements

10..*Flight Airplane

type :

enum of cargo, passenger

type :

enum of cargo, passenger

flights

35

Four Subtypes of Collection

 Set:
 arrivingFlights(from the context Airport)

 Non-ordered, unique

 OrderedSet:
 passengers (from the context Flight)

 Ordered, unique

 Bag:
 arrivingFlights.duration (from the context Airport)

 Non-ordered, non-unique

 Sequence:
 passengers.age (from the context Flight)

 Ordered, non-unique

36

Collection Operations

 OCL has a great number of predefined

operations on the collection types.

 Syntax: collection->operation

Use of the “->” (arrow)

operator instead of the

“.” (dot) operator for

predefined operations

37

Basic Collection Operations

 isEmpty: True if the collection contains no

elements

 notEmpty: True if the collection contains one

or more elements

 size: The number of elements in the

collection

 count(object): The number of occurrences of

the object in the collection

 sum(): the addition of all elements in the

collection

Basic Collection Operations

 includes(object): True if the object is an

element of the collection

 excludes(object): True if the object is not an

element of the collection

 includesAll(collection): True if all elements of

the parameter collection are present in the

current collection

 excludesAll(collection): True if all elements of

the parameter collection are not present in

the current collection

38

Basic Collection Operations

 including(object): returns a new collection

with one element added to the original

collection

 excluding(object): returns a new collection

with an element removed from the original

collection

39

Basic Collection Operations

 union(collection): returns a new collection

that combines the parameter collection and

the current collection

 intersection(collection): returns a new

collection that contains the elements in both

the parameter collection and the current

collection

40

Basic Collection Operations

 - (collection): returns a new set that contains

all the elements in the current set, but not in

the parameter set.

 symmetricDifference(collection): returns a

new set that contains all elements in the

current set, or in the parameter set, but not in

both.

41

Operations for Ordered Collection

 first: returns the first element of the collection

 last: returns the first element of the collection

 at(index): returns the element of the collection

at the given position (index starts from 1)

 indexOf(object): returns the position of the

parameter element in the collection

 insertAt(index, object): results in a sequence

or an orderedSet that has an extra element

inserted at the given position

42

Operations for Ordered Collection

 append(object): adds an element to a

sequence as the last element

 prepend(object): adds an element to a

sequence as the first element

 subSequence(lower, upper): returns a

sequence that contains the elements from the

lower index to the upper index, inclusive

 subOrderedSet(lower, upper): returns an

orderedSet that contains the elements from

the lower index to the upper index, inclusive

43

Loop Collection Operations

 Operation collect

 Operation select

 Operation forAll

 Operation exists

 Operation iterate

44

The collect Operation

 Syntax:

collection->collect(elem : T | expr)

collection->collect(elem | expr)

collection->collect(expr)

 The collect operation returns the collection of

objects that result from evaluating expr for

each element in the source collection

45

Example: collect Operation

context Airport inv:

self.arrivingFlights -> collect(airLine) ->notEmpty

airp1

airp2

f1

f2

f3

f4

f5

airline1

airline2

airline3

departing flights

arriving flights

47

The select Operation

 Syntax:

collection->select(elem : T | expr)

collection->select(elem | expr)

collection->select(expr)

 The select operation returns a subcollection of

the source collection containing all elements

for which expr is true

Example: select Operation

context Airport inv:

self.departingFlights->select(duration<4)->notEmpty

departing flightsarriving flights

airp1

airp2

airline1

airline2

airline3

f5

duration = 2

f1

duration = 2

f4

duration = 5

f2

duration = 5

f3

duration = 3

49

The forAll Operation

 Syntax:

collection->forAll(elem : T | expr)

collection->forAll(elem | expr)

collection->forAll(expr)

 The forAll operation returns true if expr is true

for all elements of the collection

Example: forAll Operation

context Airport inv:

self.departingFlights->forAll(departTime.hour>6)

departing flights arriving flights

airp1

airp2

airline1

airline2

airline3

f5

depart = 8

f1

depart = 7

f4

depart = 9

f2

depart = 5

f3

depart = 8

51

The exists Operation

 Syntax:

collection->exists(elem : T | expr)

collection->exists(elem | expr)

collection->exists(expr)

 The exists operation returns true if there is at

least one element in the collection for which

the expression expr is true.

Example: exists Operation

context Airport inv:

self.departingFlights->exists(departTime.hour<6)

departing flights arriving flights

airp1

airp2

airline1

airline2

airline3

f5

depart = 8

f1

depart = 7

f4

depart = 9

f2

depart = 5

f3

depart = 8

53

The iterate Operation

 The iterate operation for collections is the

most fundamental and generic building block.

 All other loop operations are a special case of

iterate operation.

collection->iterate(

elem : Type1;

result : Type2 = <expr> |

<expression-with-elem-and-result>)

iterator

variable

accumulator

initial value

body expression

54

Example: iterate Operation

context Airline inv:

flights->iterate (f : Flight;

answer : Set(Flight) = Set{ } |

if f.maxNrPassengers > 150 then

answer->including(f)

else

answer

endif)->notEmpty

context Airline inv:

flights->select(maxNrPassengers > 150)->notEmpty

55

Local Variables

 The let construct defines variables local to
one constraint:

Let var : Type = <expression1> in
<expression2>

 Example:

context Airport inv:

Let supportedAirlines : Set (Airline) =
self.arrivingFlights -> collect(airLine) in
(supportedAirlines ->notEmpty) and
(supportedAirlines ->size < 500)

The @pre Keyword

 The @pre keyword indicates the value of an

attribute at the start of the execution of the

operation

 The keyword must be postfixed to the name

of the item concerned

answer = answer@pre->including(x)

56

An Example: Class UnboundedStack

57

UnboundedStack

stack: Sequence(Integer)

size: Integer

UnboundedStack()

push(x: Integer)

pop()

top(): Integer

isEmpty(): Boolean

An Example: Constructor

UnboundedStack

58

context UnboundedStack:: UnboundedStack()

pre:

post:

stack = Sequence{ } and size = 0

An Example: Method push()

59

context UnboundedStack::push(x: Integer)

pre:

post:

stack = stack@pre->prepend(x) and

size = size@pre + 1

An Example: Method pop()

60

context UnboundedStack::pop()

pre:

size > 0

post:

stack = stack@pre->subSequence(2,size@pre) and

size = size@pre - 1

An Example: Method top()

61

context UnboundedStack::top() : Integer

pre:

size > 0

post:

result = stack->first()

Inheritance of Constraints

 Liskov‟s Substitution Principle (LSP):

“Whenever an instance of a class is expected,

one can always substitute an instance of any

of its subclasses.”

Inheritance of Constraints

 Consequences of LSP for invariants:

 An invariant is always inherited by each subclass.

 Subclasses may strengthen the invariant.

 Consequences of LSP for preconditions and

postconditions:

 A precondition may be weakened (contravariance)

 A postcondition may be strengthened (covariance)

