
Data Flow Testing

Data Flow Testing

 Data flow testing uses the control flow graph

to explore the unreasonable things that can

happen to data (data flow anomalies).

 Data flow anomalies are detected based on

the associations between values and

variables.

 Variables are used without being initialized.

 Initialized variables are not used once.

Definitions and Uses of Variables

 An occurrence of a variable
in the program is a definition
of the variable if a value is
bound to the variable at that
occurrence.

 An occurrence of a variable
in the program is a use of
the variable if the value of
the variable is referred at
that occurrence.

x = …

x = x + 1

x > 10

Predicate Uses and Computation Uses

 A use of a variable is a
predicate use (p-use) if the
variable is in a predicate
and its value is used to
decide an execution path.

 A use of a variable is a
computation use (c-use) if
the value of the variable is
used to compute a value for
defining another variable or
as an output value.

x = …

x = x + 1

x > 10

Definition Clear Paths

 A path (i, n1, n2, …, nm, j)

is a definition-clear path

for a variable x from i to j

if n1 through nm do not

contain a definition of x.

x = …

x = x + 1

x > 10

1

2

3 4

5
(1, 2, 4)

(1, 2, 3, 5)

Definition-C-Use Associations

 Given a definition of x in

node nd and a c-use of x

in node nc-use, the

presence of a definition-

clear path for x from nd to

nc-use establishes the

definition-c-use

association (nd, nc-use, x).

x = …

x = x + 1

x > 10

1

2

3 4

5

(1, 4, x)

Definition-P-Use Associations

 Given a definition of x in

node nd and a p-use of x in

node np-use, the presence of

a definition-clear path for x

from nd to np-use establishes

a pair of definition-p-use

associations (nd, (np-use, t), x)

and (nd, (np-use, f), x) .

x = …

x = x + 1

x > 10

1

2

3 4

5

(1, (5, t), x) (1, (5, f), x)

DU-Paths

 A path (n1, …, nm) is a du-
path for variable x if n1

contains a definition of x and
either nm has a c-use of x
and (n1, …, nm) is a
definition-clear simple path
for x (all nodes, except
possibly n1 and nm, are
distinct) or is a p-use of x
and is a definition-clear loop-
free path for x (all nodes are
distinct) .

x = …

x = x + 1

x > 10

1

2

3 4

5

(1, 2, 4) (1, 2, 3, 5)

Test Coverage Criteria

 All-defs coverage

 All-c-uses coverage

 All-c-uses/some-p-uses coverage

 All-p-uses coverage

 All-p-uses/some-c-uses coverage

 All-uses coverage

 All-du-paths coverage

A Running Example

read x

a = x + 1

x <= 0

1

2
3

4

print a 8

x > 0

F

T

F

a = x + 1

7

T

x = x + 1

5

6

x < 1

F

T

x = 1

P1: (1, 2, 3, 4, 8)

a = 2

x = -1

P2: (1, 2, 4, 5, 6,

5, 6, 5, 7, 8)

a = 2

A Running Example

read x

a = x + 1

x <= 0

1

2
3

4

print a 8

x > 0

F

T

F

a = x + 1

7

T

x = x + 1

5

6

x < 1

F

T

Associations:

(1, (2, t), x)

(1, (2, f), x)

(1, 3, x)

(1, (4, t), x)

(1, (4, f), x)

(1, (5, t), x)

(1, (5, f), x)

(1, 6, x)

(1, 7, x)

(3, 8, a)

(6, 6, x)

(6, 7, x)

(6, (5, t), x)

(6, (5, f), x)

(7, 8, a)

All-Defs Coverage

 Test cases include a definition-clear path

from every definition to some corresponding

use (c-use or p-use).

All-Defs Coverage

read x

a = x + 1

x <= 0

1

2
3

4

print a 8

x > 0

F

T

F

a = x + 1

7

T

x = x + 1

5

6

x < 1

F

T

Associations all-defs

(1, (2, t), x) 

(1, (2, f), x)

(1, 3, x)

(1, (4, t), x)

(1, (4, f), x)

(1, (5, t), x)

(1, (5, f), x)

(1, 6, x)

(1, 7, x)

(3, 8, a) 

(6, 6, x) 

(6, 7, x)

(6, (5, t), x)

(6, (5, f), x)

(7, 8, a) 

Paths {P1, P2}

All-C-Uses Coverage

 Test cases include a definition-clear path

from every definition to all of its

corresponding c-uses.

All-C-Uses Coverage

read x

a = x + 1

x <= 0

1

2
3

4

print a 8

x > 0

F

T

F

a = x + 1

7

T

x = x + 1

5

6

x < 1

F

T

Associations all-c-uses

(1, (2, t), x)

(1, (2, f), x)

(1, 3, x) 

(1, (4, t), x)

(1, (4, f), x)

(1, (5, t), x)

(1, (5, f), x)

(1, 6, x) 

(1, 7, x) 

(3, 8, a) 

(6, 6, x) 

(6, 7, x) 

(6, (5, t), x)

(6, (5, f), x)

(7, 8, a) 

Paths {P1, P2}

All-P-Uses Coverage

 Test cases include a definition-clear path

from every definition to all of its

corresponding p-uses.

All-P-Uses Coverage

read x

a = x + 1

x <= 0

1

2
3

4

print a 8

x > 0

F

T

F

a = x + 1

7

T

x = x + 1

5

6

x < 1

F

T

Associations all-p-uses

(1, (2, t), x) 

(1, (2, f), x) 

(1, 3, x)

(1, (4, t), x) 

(1, (4, f), x) 

(1, (5, t), x) 

(1, (5, f), x) 

(1, 6, x)

(1, 7, x)

(3, 8, a)

(6, 6, x)

(6, 7, x)

(6, (5, t), x) 

(6, (5, f), x) 

(7, 8, a)

Paths {P1, P2}

All-C-Uses/Some-P-Uses Coverage

 Test cases include a definition-clear path

from every definition to all of its

corresponding c-uses. In addition, if a

definition has no c-use, then test cases

include a definition-clear path to some p-use.

All-C-Uses/Some-P-Uses Coverage

read x

a = x + 1

x <= 0

1

2
3

4

print a 8

x > 0

F

T

F

a = x + 1

7

T

x = x + 1

5

6

x < 1

F

T

Associations all-c-uses/

some-p-uses

(1, (2, t), x)

(1, (2, f), x)

(1, 3, x) 

(1, (4, t), x)

(1, (4, f), x)

(1, (5, t), x)

(1, (5, f), x)

(1, 6, x) 

(1, 7, x) 

(3, 8, a) 

(6, 6, x) 

(6, 7, x) 

(6, (5, t), x)

(6, (5, f), x)

(7, 8, a) 

Paths {P1, P2}

All-P-Uses/Some-C-Uses Coverage

 Test cases include a definition-clear path

from every definition to all of its

corresponding p-uses. In addition, if a

definition has no p-use, then test cases

include a definition-clear path to some c-use.

All-P-Uses/Some-C-Uses Coverage

read x

a = x + 1

x <= 0

1

2
3

4

print a 8

x > 0

F

T

F

a = x + 1

7

T

x = x + 1

5

6

x < 1

F

T

Associations all-p-uses/

some-c-uses

(1, (2, t), x) 

(1, (2, f), x) 

(1, 3, x)

(1, (4, t), x) 

(1, (4, f), x) 

(1, (5, t), x) 

(1, (5, f), x) 

(1, 6, x)

(1, 7, x)

(3, 8, a) 

(6, 6, x)

(6, 7, x)

(6, (5, t), x) 

(6, (5, f), x) 

(7, 8, a) 

Paths {P1, P2}

All-Uses Coverage

 Test cases include a definition-clear path

from every definition to each of its uses

including both c-uses and p-uses.

All-Uses Coverage

read x

a = x + 1

x <= 0

1

2
3

4

print a 8

x > 0

F

T

F

a = x + 1

7

T

x = x + 1

5

6

x < 1

F

T

Associations all-uses

(1, (2, t), x) 

(1, (2, f), x) 

(1, 3, x) 

(1, (4, t), x) 

(1, (4, f), x) 

(1, (5, t), x) 

(1, (5, f), x) 

(1, 6, x) 

(1, 7, x) 

(3, 8, a) 

(6, 6, x) 

(6, 7, x) 

(6, (5, t), x) 

(6, (5, f), x) 

(7, 8, a) 

Paths {P1, P2}

All-DU-Paths Coverage

 Test cases include all du-paths for each

definition. Therefore, if there are multiple

paths between a given definition and a use,

they must all be included.

All-DU-Paths Coverage

read x

a = x + 1

x <= 0

1

2
3

4

print a 8

x > 0

F

T

F

a = x + 1

7

T

x = x + 1

5

6

x < 1

F

T

Associations all-du-paths

(1, (2, t), x) 

(1, (2, f), x) 

(1, 3, x) 

(1, (4, t), x) 

(1, (4, f), x) 

(1, (5, t), x) 

(1, (5, f), x) 

(1, 6, x) 

(1, 7, x) 

(3, 8, a) 

(6, 6, x) 

(6, 7, x) 

(6, (5, t), x) 

(6, (5, f), x) 

(7, 8, a) 

Paths {P1, P2}

Test Coverage Criteria Hierarchy

all-defs

all-uses

all-paths

all-du-paths

all-c-uses all-p-uses

all-c-uses/some-p-uses all-p-uses/some-c-uses

Slices

 A slice is a subset of a program.

 When testing a program, most of the code in

the program is irrelevant to what you are

interested in. Slicing provides a convenient

way of filtering out irrelevant code.

 Slices can be computed automatically by

statically analyzing the control flow and data

flow of the program.

Slices

 A slice with respect to a variable v at a

certain point p in the program is the set of

statements that contributes to the value of the

variable v at p.

 We use S(v, n) to denote the set of nodes in

the control flow graph that contributes to the

value of the variable v at node n.

An Example

read x

a = x + 1

x <= 0

1

2
3

4

print a 8

x > 0

F

T

F

a = x + 1

7

T

x = x + 1

5

6

x < 1

F

T

S(x, 2) = {1}

S(x, 3) = {1, 2}

S(x, 4) = {1, 2}

S(x, 5) = {1, 2, 4}

S(x, 6) = {1, 2, 4, 5, 6}

S(x, 7) = {1, 2, 4, 5, 6}

S(a, 3) = {1, 2, 3}

S(x, 1) = {1}

S(a, 7) = {1, 2, 4, 5, 6, 7}

S(a, 8) = {1, 2, 3, 4, 5, 6, 7}

Lattices of Slices

 A definition of a variable vn at node n usually

uses the values of several variables v1, …, vm.

 The slice S(vn, n) will contain the slices S(v1,

n) , …, S(vm, n) .

 These subset relationships induce a lattice on

slices of different variables.

An Example

S(a, 8) = {1, 2, 3, 4, 5, 6, 7} : c-use

S(x, 7) = {1, 2, 4, 5, 6} : c-use

S(x, 6) = {1, 2, 4, 5, 6} : d/c-use

S(x, 1) = {1} : d

S(x, 3) = {1, 2} : c-use

S(a, 3) = {1, 2, 3} : d S(a, 7) = {1, 2, 4, 5, 6, 7} : d

Test Case I

read x

a = x + 1

x <= 0

1

2
3

4

print a 8

x > 0

F

T

F
T

Test Case II

read x

x <= 0

1

2

4

print a 8

x > 0

F

T

F

a = x + 1

7

T

x = x + 1

5

6

x < 1

F

T

