Data Flow Testing

Data Flow Testing

Data flow testing uses the control flow graph
to explore the unreasonable things that can
happen to data (data flow anomalies).

Data flow anomalies are detected based on
the associations between values and
variables.

o Variables are used without being initialized.

o Initialized variables are not used once.

Definitions and Uses of Variables

An occurrence of a variable
In the program is a definition
of the variable if a value Is
bound to the variable at that
occurrence.

An occurrence of a variable
In the program is a use of
the variable if the value of
the variable is referred at
that occurrence.

Predicate Uses and Computation Uses

A use of a variable is a
predicate use (p-use) If the
variable is in a predicate
and its value Is used to
decide an execution path.

A use of a variable is a
computation use (c-use) If
the value of the variable Is
used to compute a value for
defining another variable or
as an output value.

‘ Definition Clear Paths

= Apath (I, ng, Ny, ..., N, |)
IS a definition-clear path
for a variable x from i to |
If n, through n_, do not
contain a definition of x.

(1, 2, 4)

(1, 2, 3, 5)

‘ Definition-C-Use Associations

= Given a definition of x In
node ny and a c-use of x
In node n_ ., the
presence of a definition-
clear path for x from n, to
N, €Stablishes the
definition-c-use
association (Ng, N._ycer X)-

(1, 4, X)

l2
3‘ |4
X=x+1

‘ Definition-P-Use Associations

= Given a definition of x In
node ny and a p-use of x In
node n, ., the presence of
a definition-clear path for x
from ny to n, .. establishes
a pair of definition-p-use
associations (ng, (N, yse: t); X)
and (nd1 (np-use’ f)1 X) -

(1, (5, 1), x) (1, (5, 1), %)

X=... 1

l 2
3‘ |4
X=x+1

DU-Paths

A path (n,, ..., n) Is a du-
path for variable x if n;
contains a definition of x and
either n_, has a c-use of x
and (n4, ..., Nn.) Is a
definition-clear simple path
for x (all nodes, except
possibly n, and n_,, are
distinct) or is a p-use of X
and Is a definition-clear loop-
free path for x (all nodes are
distinct) .

(1,2, 4) (1, 2, 3, 5)

X=... 1

l 2
3‘ |4
X=x+1

Test Coverage Criteria

> > > > > > >

-defs coverage

-C-Uses coverage
-C-uses/some-p-uses coverage
-p-uUses coverage
-p-uses/some-c-uses coverage
-uses coverage

-du-paths coverage

‘ A Running Example

1 6
read x |1 X=X+1|— « =
3 | T P,:(1,2,3,4,8)
T 2 5 a=2
a=x+1
|
|F Fl 7

>
AN
— -
o
N
_I
W
1
>
+
H
o X
Vool
N s
N
o b~
~N O
x o

Q
[

‘ A Running Example

Associations:

(1, (2,9, X)
(1, (2, 1), X)
i ° (1, 3, X)
read x |1 X=X+1|— (1, (4, 1), X)
(1, (4, 1), x)
° - : 2 T 5 (1, (5, 1), x)
R BRI CE S B H Y ¢
7 (1, 6, %)
o, Fl 7 (1,7, X)
@ a=x+1 (3’ 8’ a)
T (6, 6, X)
Fr (6, 7, X)
printa |8 (6, (5, 1), x)
(6, (5, 1), x)

l (7, 8, a)

All-Defts Coverage

Test cases include a definition-clear path
from every definition to some corresponding
use (c-use or p-use).

All-Defs Coverage

Associations all-defs

(1, (2, 1), X) N
| 6 (1, (2, 1), x)
(1, 3, X)
read x |1 X=X+1|— (1, (4, 1), X)
(1, (4, 1), x)
° T l 2 ! T 5 (1, (5, 1), x)
a:x+1 @ (1, (5,), X)
| (1, 6, X)
| F Fl 7 (1,7, %)
4 (3, 8, a) \
@ a=x+1 (6, 6, X) N
F (6, 7, X)
: (6, (5, 1), X)
printa |8 (6, (5, f), X)
l (7,8, a) \
Paths {Py, P}

All-C-Uses Coverage

Test cases include a definition-clear path
from every definition to all of its
corresponding c-uses.

All-C-Uses Coverage

Associations all-c-uses

(1, (2, 1), x)
l 6 (1, (2,), x)
(1, 3, X) \
read x |1 X=X+1|— (1, (4, 1), X)
(1, (4,), X)
? T l 2 ! T 5 (1, (5, 1), x)
a:x+1 @ (1, (5,), x)
| (1, 6, X) \
I F Fl 7 (1,7, x) v
N4 - (3, 8, a) N
x<=0 - a=x+1 (6, 6, X) J
F (6, 7, X) \
g (6, (5, 1), X)
printa |8 (6, (5, f), X)
l (7,8, a) \
Paths {Py, P}

All-P-Uses Coverage

Test cases include a definition-clear path
from every definition to all of its
corresponding p-uses.

All-P-Uses Coverage

Associations all-p-uses

(1, (2, 1), X) \
l 6 (1, (2,), x) \
(1, 3, X)
read x |1 Xx=x+1|—/ (1,(4,1),x \
(1, (4, 1), x) \
- L, Tl (L5 9,x A
a:x+1 4@' (1, (5, 1), x) \
| (1, 6, X)
= Fl 7 (1,7, %)
)(<:04 a=x+1 (3,8, 3)
- (6, 6, X)
F (6, 7, X)
v (6, (5, t), X) \
printa |8 (6, (5,), X) v
i (7,8, a)
Paths {P, P,}

All-C-Uses/Some-P-Uses Coverage

Test cases include a definition-clear path
from every definition to all of its
corresponding c-uses. In addition, if a
definition has no c-use, then test cases
Include a definition-clear path to some p-use.

‘ All-C-Uses/Some-P-Uses Coverage

Associations all-c-uses/

some-p-uses

! 6 (1, (2, 1), %)
read x |1 X=X+1|— 8 :(32)(1;) X) J
3 ! T| (1, (4,9, %)
T 2 o (1, (4, 1), x)
a:x+1 ‘@' (1, (5, 1),)
; (1, (5, 1), X)
1F . Fl o7 (1, 6, x) j
_ _ (1, 7, X)
@ azx+d (3, 8, a) N
F | (6, 6, X) \
— g (6, 7, X) \
print a (6, (5, 1), X)
| (6, (5, 1), X)
(7,8, a) \
Paths {P, P}

All-P-Uses/Some-C-Uses Coverage

Test cases include a definition-clear path
from every definition to all of its
corresponding p-uses. In addition, if a
definition has no p-use, then test cases
Include a definition-clear path to some c-use.

‘ All-P-Uses/Some-C-Uses Coverage

Associations all-p-uses/

some-C-uses

| 6 (1, (2, 1), X) v
read x |1 X=X+1|— 8 gzx? X) v
3 ! T (1, (4,1, %) v
T 2 5 | (1,(40,% v
7 (1, (5,), x)
o, Fl 7 (1, 6, x)
_ _ (1, 7, x)
@ amxrd (3,8, a) \
F |« (6, 6, X)
— g (6, 7, X)
print & 6, (5, 1), %) v
| (6, (5,), x) V
(7, 8, a) v
Paths {P, P}

All-Uses Coverage

Test cases include a definition-clear path
from every definition to each of its uses
including both c-uses and p-uses.

All-Uses Coverage

Associations all-uses

(1, (2, 1), X) \
i 6 1, (2,), X) \
(1, 3, X) \
read x |1 X=X+1|— (1, (4, 1), X) \
1, (4,), X) \
° T l 2 ! T 5 (1, (5,1, %) v
a:x+1 @ (1, (5,), x) \
| (1, 6, %) V
I F Fl 7 (1,7, x) y
N4 - (3, 8, a) N
X<=0 - a=x+1 (6, 6, X) \
F (6, 7, X) \/
o (6, (5, t), X) \
printa |8 (6, (5, f), X) N
l (7,8, a) \
Paths {Py, P}

All-DU-Paths Coverage

Test cases include all du-paths for each
definition. Therefore, if there are multiple

paths between a given definition and a use,
they must all be included.

All-DU-Paths Coverage

Associations all-du-paths

(1, (2, 1), X) \
i 6 1, (2,), X) \
(1, 3, X) \
read x |1 X=X+1|— (1, (4, 1), X) \
1, (4,), X) \
° T l 2 TT 5 (1, (5,1, %) v
a:x+1 @ (1, (5,), x) \
| (1, 6, %) V
I F Fl 7 (1,7, x) y
N4 - (3, 8, a) N
X<=0 - a=x+1 (6, 6, X) \
F (6, 7, X) \/
o (6, (5, t), X) \
printa |8 (6, (5, f), X) N
l (7,8, a) \
Paths {Py, P}

Test Coverage Criteria Hierarchy

all-paths

l

all-du-paths

l

all-uses

/\

all-c-uses/some-p-uses all-p-uses/some-c-uses

/\./\

all-c-uses all-defs all-p-uses

Slices

A slice Is a subset of a program.

When testing a program, most of the code In
the program is irrelevant to what you are
interested In. Slicing provides a convenient
way of filtering out irrelevant code.

Slices can be computed automatically by
statically analyzing the control flow and data
flow of the program.

Slices

A slice with respect to a variable v at a
certain point p in the program Is the set of
statements that contributes to the value of the
variable v at p.

We use S(v, n) to denote the set of nodes In
the control flow graph that contributes to the
value of the variable v at node n.

‘ An Example

. S(x, 1) ={1}
l . S(x, 2) = {1}
read X X=X+1|—
S(x,3)={1, 2}
3 . l 5 T = | Sx4={12)
a:x+1 —@'S(X,5):{l,2,4}
=i E Fl . S(x,6)={1, 2, 4,5, 6}

4 S(x,7)={1, 2, 4, 5, 6}
x<=0 - a=x+1

S(a, 3) = {1, 2, 3}
printa | ® S(a, 7)={1, 2, 4,5,6, 7}
| S(a, 8)={1,2,3,4,5,6,7)

Lattices of Slices

A definition of a variable v, at node n usually
uses the values of several variables v, ..., v

The slice S(v,,, n) will contain the slices S(v,,
n), ..., S(v,, n).

These subset relationships induce a lattice on
slices of different variables.

ml

‘ An Example

S(x,1)={1}:d
S(x, 3) ={1, 2} : c-use S(x,6)={1, 2,4, 5, 6}:d/c-use

S(x, 7) = {1, 2, 4, 5, 6} : c-use

S(a 3)={12 3} d S(a, 7)={1,2, 4,5,6, 7} : d

\/

S(a,8)=11, 2,3,4,5,6, 7} : c-use

‘ Test Case 1

a=x+1

‘ Test Case 11

