
Data Flow Testing

Data Flow Testing

 Data flow testing uses the control flow graph

to explore the unreasonable things that can

happen to data (data flow anomalies).

 Data flow anomalies are detected based on

the associations between values and

variables.

 Variables are used without being initialized.

 Initialized variables are not used once.

Definitions and Uses of Variables

 An occurrence of a variable
in the program is a definition
of the variable if a value is
bound to the variable at that
occurrence.

 An occurrence of a variable
in the program is a use of
the variable if the value of
the variable is referred at
that occurrence.

x = …

x = x + 1

x > 10

Predicate Uses and Computation Uses

 A use of a variable is a
predicate use (p-use) if the
variable is in a predicate
and its value is used to
decide an execution path.

 A use of a variable is a
computation use (c-use) if
the value of the variable is
used to compute a value for
defining another variable or
as an output value.

x = …

x = x + 1

x > 10

Definition Clear Paths

 A path (i, n1, n2, …, nm, j)

is a definition-clear path

for a variable x from i to j

if n1 through nm do not

contain a definition of x.

x = …

x = x + 1

x > 10

1

2

3 4

5
(1, 2, 4)

(1, 2, 3, 5)

Definition-C-Use Associations

 Given a definition of x in

node nd and a c-use of x

in node nc-use, the

presence of a definition-

clear path for x from nd to

nc-use establishes the

definition-c-use

association (nd, nc-use, x).

x = …

x = x + 1

x > 10

1

2

3 4

5

(1, 4, x)

Definition-P-Use Associations

 Given a definition of x in

node nd and a p-use of x in

node np-use, the presence of

a definition-clear path for x

from nd to np-use establishes

a pair of definition-p-use

associations (nd, (np-use, t), x)

and (nd, (np-use, f), x) .

x = …

x = x + 1

x > 10

1

2

3 4

5

(1, (5, t), x) (1, (5, f), x)

DU-Paths

 A path (n1, …, nm) is a du-
path for variable x if n1

contains a definition of x and
either nm has a c-use of x
and (n1, …, nm) is a
definition-clear simple path
for x (all nodes, except
possibly n1 and nm, are
distinct) or is a p-use of x
and is a definition-clear loop-
free path for x (all nodes are
distinct) .

x = …

x = x + 1

x > 10

1

2

3 4

5

(1, 2, 4) (1, 2, 3, 5)

Test Coverage Criteria

 All-defs coverage

 All-c-uses coverage

 All-c-uses/some-p-uses coverage

 All-p-uses coverage

 All-p-uses/some-c-uses coverage

 All-uses coverage

 All-du-paths coverage

A Running Example

read x

a = x + 1

x <= 0

1

2
3

4

print a 8

x > 0

F

T

F

a = x + 1

7

T

x = x + 1

5

6

x < 1

F

T

x = 1

P1: (1, 2, 3, 4, 8)

a = 2

x = -1

P2: (1, 2, 4, 5, 6,

5, 6, 5, 7, 8)

a = 2

A Running Example

read x

a = x + 1

x <= 0

1

2
3

4

print a 8

x > 0

F

T

F

a = x + 1

7

T

x = x + 1

5

6

x < 1

F

T

Associations:

(1, (2, t), x)

(1, (2, f), x)

(1, 3, x)

(1, (4, t), x)

(1, (4, f), x)

(1, (5, t), x)

(1, (5, f), x)

(1, 6, x)

(1, 7, x)

(3, 8, a)

(6, 6, x)

(6, 7, x)

(6, (5, t), x)

(6, (5, f), x)

(7, 8, a)

All-Defs Coverage

 Test cases include a definition-clear path

from every definition to some corresponding

use (c-use or p-use).

All-Defs Coverage

read x

a = x + 1

x <= 0

1

2
3

4

print a 8

x > 0

F

T

F

a = x + 1

7

T

x = x + 1

5

6

x < 1

F

T

Associations all-defs

(1, (2, t), x)

(1, (2, f), x)

(1, 3, x)

(1, (4, t), x)

(1, (4, f), x)

(1, (5, t), x)

(1, (5, f), x)

(1, 6, x)

(1, 7, x)

(3, 8, a)

(6, 6, x)

(6, 7, x)

(6, (5, t), x)

(6, (5, f), x)

(7, 8, a)

Paths {P1, P2}

All-C-Uses Coverage

 Test cases include a definition-clear path

from every definition to all of its

corresponding c-uses.

All-C-Uses Coverage

read x

a = x + 1

x <= 0

1

2
3

4

print a 8

x > 0

F

T

F

a = x + 1

7

T

x = x + 1

5

6

x < 1

F

T

Associations all-c-uses

(1, (2, t), x)

(1, (2, f), x)

(1, 3, x)

(1, (4, t), x)

(1, (4, f), x)

(1, (5, t), x)

(1, (5, f), x)

(1, 6, x)

(1, 7, x)

(3, 8, a)

(6, 6, x)

(6, 7, x)

(6, (5, t), x)

(6, (5, f), x)

(7, 8, a)

Paths {P1, P2}

All-P-Uses Coverage

 Test cases include a definition-clear path

from every definition to all of its

corresponding p-uses.

All-P-Uses Coverage

read x

a = x + 1

x <= 0

1

2
3

4

print a 8

x > 0

F

T

F

a = x + 1

7

T

x = x + 1

5

6

x < 1

F

T

Associations all-p-uses

(1, (2, t), x)

(1, (2, f), x)

(1, 3, x)

(1, (4, t), x)

(1, (4, f), x)

(1, (5, t), x)

(1, (5, f), x)

(1, 6, x)

(1, 7, x)

(3, 8, a)

(6, 6, x)

(6, 7, x)

(6, (5, t), x)

(6, (5, f), x)

(7, 8, a)

Paths {P1, P2}

All-C-Uses/Some-P-Uses Coverage

 Test cases include a definition-clear path

from every definition to all of its

corresponding c-uses. In addition, if a

definition has no c-use, then test cases

include a definition-clear path to some p-use.

All-C-Uses/Some-P-Uses Coverage

read x

a = x + 1

x <= 0

1

2
3

4

print a 8

x > 0

F

T

F

a = x + 1

7

T

x = x + 1

5

6

x < 1

F

T

Associations all-c-uses/

some-p-uses

(1, (2, t), x)

(1, (2, f), x)

(1, 3, x)

(1, (4, t), x)

(1, (4, f), x)

(1, (5, t), x)

(1, (5, f), x)

(1, 6, x)

(1, 7, x)

(3, 8, a)

(6, 6, x)

(6, 7, x)

(6, (5, t), x)

(6, (5, f), x)

(7, 8, a)

Paths {P1, P2}

All-P-Uses/Some-C-Uses Coverage

 Test cases include a definition-clear path

from every definition to all of its

corresponding p-uses. In addition, if a

definition has no p-use, then test cases

include a definition-clear path to some c-use.

All-P-Uses/Some-C-Uses Coverage

read x

a = x + 1

x <= 0

1

2
3

4

print a 8

x > 0

F

T

F

a = x + 1

7

T

x = x + 1

5

6

x < 1

F

T

Associations all-p-uses/

some-c-uses

(1, (2, t), x)

(1, (2, f), x)

(1, 3, x)

(1, (4, t), x)

(1, (4, f), x)

(1, (5, t), x)

(1, (5, f), x)

(1, 6, x)

(1, 7, x)

(3, 8, a)

(6, 6, x)

(6, 7, x)

(6, (5, t), x)

(6, (5, f), x)

(7, 8, a)

Paths {P1, P2}

All-Uses Coverage

 Test cases include a definition-clear path

from every definition to each of its uses

including both c-uses and p-uses.

All-Uses Coverage

read x

a = x + 1

x <= 0

1

2
3

4

print a 8

x > 0

F

T

F

a = x + 1

7

T

x = x + 1

5

6

x < 1

F

T

Associations all-uses

(1, (2, t), x)

(1, (2, f), x)

(1, 3, x)

(1, (4, t), x)

(1, (4, f), x)

(1, (5, t), x)

(1, (5, f), x)

(1, 6, x)

(1, 7, x)

(3, 8, a)

(6, 6, x)

(6, 7, x)

(6, (5, t), x)

(6, (5, f), x)

(7, 8, a)

Paths {P1, P2}

All-DU-Paths Coverage

 Test cases include all du-paths for each

definition. Therefore, if there are multiple

paths between a given definition and a use,

they must all be included.

All-DU-Paths Coverage

read x

a = x + 1

x <= 0

1

2
3

4

print a 8

x > 0

F

T

F

a = x + 1

7

T

x = x + 1

5

6

x < 1

F

T

Associations all-du-paths

(1, (2, t), x)

(1, (2, f), x)

(1, 3, x)

(1, (4, t), x)

(1, (4, f), x)

(1, (5, t), x)

(1, (5, f), x)

(1, 6, x)

(1, 7, x)

(3, 8, a)

(6, 6, x)

(6, 7, x)

(6, (5, t), x)

(6, (5, f), x)

(7, 8, a)

Paths {P1, P2}

Test Coverage Criteria Hierarchy

all-defs

all-uses

all-paths

all-du-paths

all-c-uses all-p-uses

all-c-uses/some-p-uses all-p-uses/some-c-uses

Slices

 A slice is a subset of a program.

 When testing a program, most of the code in

the program is irrelevant to what you are

interested in. Slicing provides a convenient

way of filtering out irrelevant code.

 Slices can be computed automatically by

statically analyzing the control flow and data

flow of the program.

Slices

 A slice with respect to a variable v at a

certain point p in the program is the set of

statements that contributes to the value of the

variable v at p.

 We use S(v, n) to denote the set of nodes in

the control flow graph that contributes to the

value of the variable v at node n.

An Example

read x

a = x + 1

x <= 0

1

2
3

4

print a 8

x > 0

F

T

F

a = x + 1

7

T

x = x + 1

5

6

x < 1

F

T

S(x, 2) = {1}

S(x, 3) = {1, 2}

S(x, 4) = {1, 2}

S(x, 5) = {1, 2, 4}

S(x, 6) = {1, 2, 4, 5, 6}

S(x, 7) = {1, 2, 4, 5, 6}

S(a, 3) = {1, 2, 3}

S(x, 1) = {1}

S(a, 7) = {1, 2, 4, 5, 6, 7}

S(a, 8) = {1, 2, 3, 4, 5, 6, 7}

Lattices of Slices

 A definition of a variable vn at node n usually

uses the values of several variables v1, …, vm.

 The slice S(vn, n) will contain the slices S(v1,

n) , …, S(vm, n) .

 These subset relationships induce a lattice on

slices of different variables.

An Example

S(a, 8) = {1, 2, 3, 4, 5, 6, 7} : c-use

S(x, 7) = {1, 2, 4, 5, 6} : c-use

S(x, 6) = {1, 2, 4, 5, 6} : d/c-use

S(x, 1) = {1} : d

S(x, 3) = {1, 2} : c-use

S(a, 3) = {1, 2, 3} : d S(a, 7) = {1, 2, 4, 5, 6, 7} : d

Test Case I

read x

a = x + 1

x <= 0

1

2
3

4

print a 8

x > 0

F

T

F
T

Test Case II

read x

x <= 0

1

2

4

print a 8

x > 0

F

T

F

a = x + 1

7

T

x = x + 1

5

6

x < 1

F

T

