
Control Flow Testing

Structural Testing

 In structural testing, the software is viewed as

a white box and test cases are determined

from the implementation of the software.

 Structural testing techniques include control

flow testing and data flow testing.

Control Flow Testing

 Control flow testing uses the control structure

of a program to develop the test cases for the

program.

 The test cases are developed to sufficiently

cover the whole control structure of the

program.

 The control structure of a program can be

represented by the control flow graph of the

program.

Control Flow Graph

 The control flow graph G = (N, E) of a

program consists of a set of nodes N and a

set of edge E.

 Each node represents a set of program

statements. There are five types of nodes.

There is a unique entry node and a unique

exit node.

 There is an edge from node n1 to node n2 if

the control may flow from the last statement

in n1 to the first statement in n2.

Control Flow Graph: Nodes

 A decision node contains a conditional

statement that creates 2 or more control

branches (e.g. if or switch statements).

 A merge node usually does not contain any

statement and is used to represent a program

point where multiple control branches merge.

 A statement node contains a sequence of

statements. The control must enter from the

first statement and exit from the last statement.

Control Flow Graph: An Example

int evensum(int i)

{

int sum = 0;

while (i <= 10) {

if (i/2 == 0)

sum = sum + i;

i++;

}

return sum;

}

F

sum = 0;

i <= 10

i/2 == 0

sum = sum + i;

i++;

T

T

F

entry

exit

return sum;

Test Cases

 A test case is a complete path from the entry

node to the exit node of a control flow graph.

 A test coverage criterion measures the extent

to which a set of test cases covers a program.

Test Coverage Criteria

 Statement coverage (SC)

 Decision coverage (DC)

 Condition coverage (CC)

 Decision/condition coverage (D/CC)

 Multiple condition coverage (MCC)

 Path coverage (PC)

Node coverage

Edge coverage

Statement Coverage

 Every

statement in

the program

has been

executed at

least once.

1  2  3  4 

5  6  7  2  8

1

2

3

4

5

6

7

F

sum = 0;

i <= 10

i/2 == 0

sum = sum + i;

i++;

T

T

F

entry

exit

return sum;

8

Decision Coverage

 Every statement
in the program
has been
executed at
least once, and
every decision in
the program has
taken all
possible
outcomes at
least once.

1

2

3

4

5

6

7

F

sum = 0;

i <= 10

i/2 == 0

sum = sum + i;

i++;

T

T

F

entry

exit

return sum;

8

1  2  3  5  6  7  2 

3  4  5  6  7  2  8

Decision Coverage

d = (A  B)  C

combination value DC CC D/CC MCC

number A B C d

1 1 1 1 1 1

2 1 1 0 1 1

3 1 0 1 1 1

4 0 1 1 1 1

5 1 0 0 0 2

6 0 1 0 0 2

7 0 0 1 1 1

8 0 0 0 0 2

Condition Coverage

 Every statement in the program has been

executed at least once, and every condition

in each decision has taken all possible

outcomes at least once.

Condition Coverage

d = (A  B)  C

combination value DC CC D/CC MCC

number A B C d

1 1 1 1 1 1 11

2 1 1 0 1 1 12

3 1 0 1 1 1 13

4 0 1 1 1 1 14

5 1 0 0 0 2 24

6 0 1 0 0 2 23

7 0 0 1 1 1 22

8 0 0 0 0 2 21

Decision/Condition Coverage

 Every statement in the program has been

executed at least once, every decision in the

program has taken all possible outcomes at

least once, and every condition in each

decision has taken all possible outcomes at

least once.

Decision/Condition Coverage

d = (A  B)  C

combination value DC CC D/CC MCC

number A B C d

1 1 1 1 1 1 11 11

2 1 1 0 1 1 12

3 1 0 1 1 1 13 12

4 0 1 1 1 1 14 13

5 1 0 0 0 2 24 23

6 0 1 0 0 2 23 22

7 0 0 1 1 1 22

8 0 0 0 0 2 21 21

Multiple Condition Coverage

 Every statement in the program has been

executed at least once, all possible

combination of condition outcomes in each

decision has been invoked at least once.

 There are 2n combinations of condition

outcomes in a decision with n conditions.

Multiple Condition Coverage

d = (A  B)  C

combination value DC CC D/CC MCC

number A B C d

1 1 1 1 1 1 11 1 1

2 1 1 0 1 1 12 2

3 1 0 1 1 1 13 12 3

4 0 1 1 1 1 14 13 4

5 1 0 0 0 2 24 23 5

6 0 1 0 0 2 23 22 6

7 0 0 1 1 1 22 7

8 0 0 0 0 2 21 21 8

Path Coverage

 Every complete path in the program has been

executed at least once.

 A loop usually has an infinite number of

complete paths.

Test Coverage Criteria Hierarchy

statement coverage

decision/condition coverage

decision coverage condition coverage

path coverage

multiple condition coverage

Testing Simple Loops

 Skip the loop entirely

 Go once through the loop

 Go twice through the loop

 If the loop has max passes = n, then go n – 1,

n, and n + 1 times through the loop

Testing Nested Loops

 Set all outer loops to their minimal value and

test the innermost loop

 Add tests of out-of-range values

 Work outward, at each stage holding all outer

loops at their minimal value

 Continue until all loops are tested

Java Code Coverage Tool

 EclEmma is a free Java code coverage tool

for Eclipse

http://www.eclemma.org

 EclEmma adopts the philosophy of the

EMMA Java code coverage tool for the

Eclipse workbench

http://emme.sourceforge.net

EclEmma

 Fast develop/test cycle: Launches from within

the workbench like JUnit and test runs can

directly be analyzed for code coverage.

 Rich coverage analysis: Coverage results are

immediately summarized and highlighted in

the Java source code editors.

 Non-invasive: EclEmma does not require

modifying your projects or performing any

other setup.

Path Selection

 It is better to take many simple paths than a

few complicated ones.

 There is no harm in taking paths that will

exercise the same code more than once.

 Select paths as small variations of previous

paths.

 Try to change one thing in each path at a

time.

An Example

1 2 3 4 5 6 7

8

9 10

T

F
T

T

TF

F

F

1 2  3  4  5  6  7 2 4

1 2  8  3  4  9  10  6  7 2 4 8 10

1 2  8  9  10  5  6  7 2 8 10

An Example

1 2 3 4 5 6 7

8

9 10

T

F
T

T

TF

F

F

1 2  3  4  5  6  7 2 4

1 2  3  4  9  10  5  6  7 2 4 10

1 2  3  4  9  10  6  7 2 4 10

1 2  8  3  4  9  10  6  7 2 4 8 10

1 2  8  9  10  6  7 2 8 10

An Example: Usage Information

1 2 3 4 5 6 7

8

9 10

T

F
T

T

TF

F

F

1 2  3  4  9  10  6  7 2 4 10

1 2  3  4  9  10  5  6  7 2 4 10

1 2  3  4  5  6  7 2 4

1 2  8  3  4  9  10  6  7 2 4 8 10

1 2  8  9  10  6  7 2 8 10

T: 0.8

F: 0.2

Path Predicate Expression

 A complete path may contain a succession of

decisions.

 An input vector is a tuple of values

corresponding to the vector of input variables.

 A path predicate expression is a Boolean

expression that characterizes the set of input

vectors that will cause a complete path to be

traversed.

An Example

1

2

3

4

5

6

7

F

sum = 0;

i <= 10

i/2 == 0

sum = sum + i;

i++;

T

T

F

entry

exit

return sum;

8

1  2  3  4 

5  6  7  2  8

{ i <= 10, i/2 == 0,

i + 1 > 10 }

1  2  3  5 

6  7  2  3 

4  5  6  7 

2  8

{ i <= 10, i/2 != 0,

i+1 <= 10,

(i+1)/2 == 0,

i+2 > 10 }

Path Sensitization

 Path sensitization is the act of finding a set of

solutions to a path predicate expression.

 If a path predicate expression has a solution,

then the corresponding path is achievable;

otherwise, the corresponding path is

unachievable.

An Example: Correlated Decisions

achievable

unachievable

1

2

3

4

5

6

7

F

sum = 0;

i <= 10

i/2 == 0

sum = sum + i;

i++;

T

T

F

entry

exit

return sum;

8 1  2  3  4 

5  6  7  2  8

1  2  3  5 

6  7  2  8

Test Oracle

 To verify the execution is correct, we need to

compare the actual outcome with the

expected outcome.

 Test oracle is a tool that can return the

expected outcome for a given input vector.

 An executable specification of a program can

be used as a test oracle for that program.

An Example

1

2

3

4

5

6

7

F

sum = 0;

i <= 10

i/2 == 0

sum = sum + i;

i++;

T

T

F

entry

exit

return sum;

8 1  2  3  4 

5  6  7  2  8

path sensitization:

i = 10

test oracle:

sum = 10

An Example

1

2

3

4

5

6

7

F

sum = 0;

i <= 10

i/2 == 0

sum = sum + i;

i++;

T

T

F

entry

exit

return sum;

8

1  2  3  5 

6  7  2  3 

4  5  6  7 

2  8

path sensitization:

i = 9

test oracle:

sum = 10

