
Domain Testing



Input Domains

 An exhaustive testing of values in the input 

domains is impossible.

 One is limited to a small subset of all possible 

input values.

 One wants to select a subset with the highest 

probability of finding the most errors. 



An Example

 Consider a program that calculates the root 

of quadratic equations in the form of:

a x2 + b x + c = 0

with the solution for the root to be:

r = (-b  b2 – 4 a c) / (2 a).

 If each variable is represented by a 32 bit 

floating point number, the number of all 

possible input value combinations is then

232  232  232 = 296.



Equivalence Classes

 A well-selected set of input values should 

covers a large set of other input values. 

 This property implies that one should partition 

the input domains into a finite number of 

equivalence classes.

 A test of a representative value of each class 

is equivalent to a test of any other value.



Valid and Invalid Equivalence Classes

 The equivalence classes are identified by 

taking each input condition and partitioning 

the input domain into two or more groups.

 Two types of equivalence classes are 

identified.

 Valid equivalence classes represent valid 

inputs to the program.

 Invalid equivalence classes represent all 

other possible states of the condition.



An Example

 If an input condition specifies a range of 

values (e.g., the count can be from 1 to 999), 

it identifies one valid equivalence class (1 

count  999) and two invalid equivalence 

classes (count < 1 and count > 999)



Partitioning Valid Equivalence Classes

 If elements in a valid equivalence class are 

not handled in an identical manner by the 

program, partition the equivalence class into 

smaller equivalence classes.

 Generate a test case for each valid and 

invalid equivalence class. 



An Example

 For the quadratic equation example, the 

types of the roots for the equation depend on 

the condition d = b2 – 4 a c.

 The equation has two different real roots if d

> 0.

 The equation has two identical real roots if d

= 0.

 The equation has no real root if d < 0.



An Example

Test Condition Input

Case d = b2 – 4 a c a    b    c

1 d > 0 1    2    -1

2 d = 0 1    2    1

3 d < 0 1    2    3



Input Spaces, Vectors, Points

 Let x1, x2, …, xn denote the input variables. 

Then these n variables form an n-dimensional 

space that we call input space.

 The input space can be represented by a 

vector X, we call input vector, where 

X = [x1, x2, …, xn].

 When the input vector X takes a specific value, 

we call it a test point or a test case, which 

corresponds to a point in the input space.



Input Domains and Sub-Domains

 The input domain consists of all the points 

representing all the allowable input 

combinations specified for the program in the 

product specification.

 An input sub-domain is a subset of the input 

domain. In general, a sun-domain can be 

defined by a set of inequalities in the form of

f(x1, x2, …, xn) < K,

where “<” can also be replaced by other 

relational operators.



Input Domain Partition

 An input domain partition is a partition of the 

input domain into a number of sub-domains. 

 These partitioned sub-domains are mutually 

exclusive, and collectively exhaustive.



Boundary

 A boundary is where two sub-domains meet.

 A boundary is a linear boundary if it is defined 

by:

a1 x1 + a2 x2 + … + an xn = K.

Otherwise, it is called a nonlinear boundary.

 A sub-domain is called a linear sub-domain if 

its boundaries are all linear ones.

 A point on a boundary is called a boundary 

point.



Open and Closed Boundary

 A boundary is a closed one with respect to a 
specific sub-domain if all the boundary points 
belong to the sub-domain.

 A boundary is an open one with respect to a 
specific sub-domain if none of the boundary 
points belong to the sub-domain.

 A sub-domain with all open boundaries is 
called an open sub-domain; One with all 
closed boundaries is called a closed sub-
domain; otherwise it is a mixed sub-domain.



Interior and Exterior Points

 A point belonging to a sub-domain but not on 

the boundary is called an interior point.

 A point not belonging to a sub-domain and 

not on the boundary is called an exterior point.

 A point where two or more boundaries 

intersect is called a vertex point.



General Problems with Input Values

 Some input values cannot be handled by the 

program. These input values are under-

defined.

 Some input values result in different output. 

These input values are over-defined.

 These problems are most likely to happen at 

boundaries.



Boundary Problems

 Closure problem: whether the boundary 

points belong to the sub-domain.

 Boundary shift problem: where exactly a 

boundary is between the intended and the 

actual boundary.

f(x1, x2, …, xn) = K,

where a small change in K.

 Boundary tilt problem: f(x1, x2, …, xn) = K,

where a small change in some parameters.



Boundary Problems

 Missing boundary problem: a boundary 

missing means that two neighboring sub-

domains collapse into one sub-domain.

 Extra boundary problem: An extra boundary 

further partitions a sub-domain into two 

smaller sub-domains.



Weak N  1 Strategy

 In an n-dimensional space, a boundary 

defined by a linear equation in the form of

f(x1, x2, …, xn) = K 

would need n linearly independent points to 

define it.

 We can select n such boundary points, called 

ON points, to precisely define the boundary.

 We can also select a point, called an OFF

point, that receives different processing.



The OFF Points

 If the boundary is a closed boundary with 

respect to the sub-domain under 

consideration, the OFF point will be outside 

the sub-domain or be an exterior point.

 If the boundary is an open boundary with 

respect to the sub-domain under 

consideration, the OFF point will be inside the 

sub-domain or be an interior point.



An Example

[ )
-1 0 10 2120

OFF ON OFF ONinterior

x



Distance of the OFF Points

 The idea is to pick the OFF point so close to 

the boundary that any small amount of 

boundary change would affect the processing 

of the OFF point.

 In practice, the distance  to the boundary is 

set to the precision of the data type. For 

integers,  = 1. For numbers with n binary 

digits after the decimal point,  = 1/2n.



Position of the OFF Points

 The selected OFF point should be central to 

all the ON points.

 For two-dimensional space, it should be 

chosen by:

 Choosing the midpoint between the two ON 

points.

 Then moving  distance off the boundary, 

outward or inward for closed or open 

boundary, respectively.



Total Test Points

 In general, an interior point is also sampled 

as the representative of the equivalence 

class representing all the points in the sub-

domain under consideration, resulting in 

(n + 1)  b + 1

test points for each n-dimensional domain 

with b boundaries.



0 104 106

[ [) [) [)
108

An Example

104-1

OFF

x

102

interior

x

106-1

OFF

x

105

interior

x

ON

x

108-1

OFF

x

107

interior

x

ON

x

ON

x

OFF

-1
x

ON

x

109

interior

x

0% 10% 20% 30%

Tax Rate: 

0%: 0~9999

10%: 10000~999999

20%: 1000000~99999999

30%: 100000000~



Boundary Problem Detection of Weak N 

 1 Strategy

 Closure problem

 Boundary shift problem

 Boundary tilt problem

 Missing boundary problem

 Extra boundary problem



Closure Problem

D

closed

D

open

exterior interior



Closure Problem

D D

closedopen

exterior interior



Boundary Shift Problem

D

exterior interior

D D



Boundary Tilt Problem

D D D

exterior interior



Missing Boundary Problem

D D

exterior interior



Extra Boundary Problem

D D

exterior interior



Weak 1  1 Strategy

 One of the major drawbacks of weak N  1 

strategy is the number of test points used, 

(n + 1)  b + 1

for n input variables and b boundaries.

 Weak 1  1 strategy uses just one ON point 

for each boundary, thus reducing the total 

number of test points to 2  b + 1.

 The OFF point is just  distance from the ON 

point and perpendicular to the boundary.



Boundary Problem Detection of Weak 1 

1 Strategy

 Closure problem

 Boundary shift problem

 Boundary tilt problem

 Missing boundary problem

 Extra boundary problem



Closure Problem

D

closed

D

open

exterior interior



Boundary Shift Problem

D

exterior interior

D D



Boundary Tilt Problem

D D D

exterior interior

Such cases are rare



Missing Boundary Problem

D D

exterior interior



Extra Boundary Problem

D D

exterior interior



Looking for Equivalence Classes

 Don’t forget equivalence classes for invalid 

inputs.

 Organize your classifications into a table or 

an outline.

 Look for ranges of numbers.

 Look for membership in a group.

 Analyze responses to lists and menus.



Looking for Equivalence Classes

 Look for variables that must be equal.

 Create time-determined equivalence classes.

 Look for variable groups that must calculate 

to a certain value or range.

 Look for equivalent output events.

 Look for equivalent operating environments.



Don’t Forget Equivalence Classes for 

Invalid Inputs

 This is often your best source of bugs.

 For example, for a program that is supposed 
to accept any number between 1 and 99, 
there are at least four equivalence classes:

 1~99.

 < 1.

 > 99.

 If it’s not a number, it is not accepted. (Is this 
true for all non-numbers?)



Organize Your Classifications into a Table 

or an Outline

 You will find so many input and output 

conditions and equivalence classes 

associated with them that you’ll need a way 

to organize them.

 We use a table or an outline.



Table

Input or Output    Valid Equivalence   Invalid Equivalence

Event                   Classes                   Classes

Enter a number    1~99 > 99

0

Negative numbers

An expression that 

yields an invalid 

number, such as

5 – 5, which yields 0

Letters and other 

non-numeric characters



Outline

1. Enter a number

1.1     Valid Case

1.1.1     1~99

1.2     Invalid Cases

1.2.1      > 99

1.2.2      0

1.2.3      Negative numbers

1.2.4      An expression that yields an invalid number, 

such as 5 – 5, which yields 0

1.2.5      Letters and other non-numeric characters  



Look for Ranges of Numbers

 Every time you find a range (like 1~99), 

you’ve found several equivalence classes.

 There are usually three invalid equivalence 

classes: everything below the smallest 

number, everything above the largest number, 

and non-numbers.

 Look for multiple ranges (like tax rates). 

There is an invalid range below the lowest 

range and another above the highest range.



Look for Membership in a Group

 If an input must belong to a group, one 
equivalence class includes all members of 
the group.

 Another includes everything else.

 It might be possible to subdivide both classes 
further.

 For example, if you enter the name of a 
country, the valid equivalence class includes 
all countries’ names. The invalid class 
includes all inputs that aren’t country names.



Look for Membership in a Group

 But what of abbreviations, almost correct 

spelling, native language spelling, or names 

that are now out of date but were country 

names?

 Should you test these separately?

 The odds are good that the specification 

won’t anticipate all of these issues, and that 

you’ll find errors in test cases like these.



Analyze Responses to Lists and Menus

 You must enter one of a list of possible inputs. 

The program responds differently to each.

 Each input is its own equivalence class.

 The invalid equivalence class includes any 

inputs not on the list.

 For example, the input Are you sure? (Y/N). 

One class contains Y. Another contains N. 

Anything else is invalid.



Look for Variables That Must Be Equal

 You can enter any color you want as long as 

it’s black. Not-black is the invalid equivalence 

class.

 Sometimes this restriction arises 

unexpectedly in the field: everything but black 

is sold out.

 Choices that used to be valid, but no longer 

are, belong in their own equivalence class.



Create Time-Determined Equivalence 

Classes

 Suppose you press the space bar just before, during, 

and just after the computer finishes reading a 

program from the disk. Tests like this crash some 

systems.

 Everything you do just before the program starts 

reading is another class.

 Everything you do long before the task is done is 

probably one equivalence class.

 Everything you do within some short time interval 

before the program finishes is another class.



Look for Variable Groups That Must 

Calculate to a Certain Value or Range

 Enter the three angles of a triangle.

 In the class of valid input, they sum to 180 

degrees.

 In one invalid equivalence class, they sum to 

less than 180 degrees.

 In another they sum to more.



Look for Equivalent Output Events

 So far, we’ve stressed input events, because 
they’re simpler to think about.

 A program drives a plotter that can draw lines 
up to four inches long.

 A line might be within the valid range.

 The program might try to plot a line longer 
than four inches

 There might be no line.

 It might try to plot something else altogether, 
like a circle.



Look for Equivalent Operating 

Environments

 The program is specified to work if the 

computer has between 64 and 256K of 

available memory.

 That’s an equivalence class.

 Another class includes RAM configurations of 

less than 64K.

 A third includes more than 256K.


