
Domain Testing

Input Domains

 An exhaustive testing of values in the input

domains is impossible.

 One is limited to a small subset of all possible

input values.

 One wants to select a subset with the highest

probability of finding the most errors.

An Example

 Consider a program that calculates the root

of quadratic equations in the form of:

a x2 + b x + c = 0

with the solution for the root to be:

r = (-b b2 – 4 a c) / (2 a).

 If each variable is represented by a 32 bit

floating point number, the number of all

possible input value combinations is then

232 232 232 = 296.

Equivalence Classes

 A well-selected set of input values should

covers a large set of other input values.

 This property implies that one should partition

the input domains into a finite number of

equivalence classes.

 A test of a representative value of each class

is equivalent to a test of any other value.

Valid and Invalid Equivalence Classes

 The equivalence classes are identified by

taking each input condition and partitioning

the input domain into two or more groups.

 Two types of equivalence classes are

identified.

 Valid equivalence classes represent valid

inputs to the program.

 Invalid equivalence classes represent all

other possible states of the condition.

An Example

 If an input condition specifies a range of

values (e.g., the count can be from 1 to 999),

it identifies one valid equivalence class (1

count 999) and two invalid equivalence

classes (count < 1 and count > 999)

Partitioning Valid Equivalence Classes

 If elements in a valid equivalence class are

not handled in an identical manner by the

program, partition the equivalence class into

smaller equivalence classes.

 Generate a test case for each valid and

invalid equivalence class.

An Example

 For the quadratic equation example, the

types of the roots for the equation depend on

the condition d = b2 – 4 a c.

 The equation has two different real roots if d

> 0.

 The equation has two identical real roots if d

= 0.

 The equation has no real root if d < 0.

An Example

Test Condition Input

Case d = b2 – 4 a c a b c

1 d > 0 1 2 -1

2 d = 0 1 2 1

3 d < 0 1 2 3

Input Spaces, Vectors, Points

 Let x1, x2, …, xn denote the input variables.

Then these n variables form an n-dimensional

space that we call input space.

 The input space can be represented by a

vector X, we call input vector, where

X = [x1, x2, …, xn].

 When the input vector X takes a specific value,

we call it a test point or a test case, which

corresponds to a point in the input space.

Input Domains and Sub-Domains

 The input domain consists of all the points

representing all the allowable input

combinations specified for the program in the

product specification.

 An input sub-domain is a subset of the input

domain. In general, a sun-domain can be

defined by a set of inequalities in the form of

f(x1, x2, …, xn) < K,

where “<” can also be replaced by other

relational operators.

Input Domain Partition

 An input domain partition is a partition of the

input domain into a number of sub-domains.

 These partitioned sub-domains are mutually

exclusive, and collectively exhaustive.

Boundary

 A boundary is where two sub-domains meet.

 A boundary is a linear boundary if it is defined

by:

a1 x1 + a2 x2 + … + an xn = K.

Otherwise, it is called a nonlinear boundary.

 A sub-domain is called a linear sub-domain if

its boundaries are all linear ones.

 A point on a boundary is called a boundary

point.

Open and Closed Boundary

 A boundary is a closed one with respect to a
specific sub-domain if all the boundary points
belong to the sub-domain.

 A boundary is an open one with respect to a
specific sub-domain if none of the boundary
points belong to the sub-domain.

 A sub-domain with all open boundaries is
called an open sub-domain; One with all
closed boundaries is called a closed sub-
domain; otherwise it is a mixed sub-domain.

Interior and Exterior Points

 A point belonging to a sub-domain but not on

the boundary is called an interior point.

 A point not belonging to a sub-domain and

not on the boundary is called an exterior point.

 A point where two or more boundaries

intersect is called a vertex point.

General Problems with Input Values

 Some input values cannot be handled by the

program. These input values are under-

defined.

 Some input values result in different output.

These input values are over-defined.

 These problems are most likely to happen at

boundaries.

Boundary Problems

 Closure problem: whether the boundary

points belong to the sub-domain.

 Boundary shift problem: where exactly a

boundary is between the intended and the

actual boundary.

f(x1, x2, …, xn) = K,

where a small change in K.

 Boundary tilt problem: f(x1, x2, …, xn) = K,

where a small change in some parameters.

Boundary Problems

 Missing boundary problem: a boundary

missing means that two neighboring sub-

domains collapse into one sub-domain.

 Extra boundary problem: An extra boundary

further partitions a sub-domain into two

smaller sub-domains.

Weak N 1 Strategy

 In an n-dimensional space, a boundary

defined by a linear equation in the form of

f(x1, x2, …, xn) = K

would need n linearly independent points to

define it.

 We can select n such boundary points, called

ON points, to precisely define the boundary.

 We can also select a point, called an OFF

point, that receives different processing.

The OFF Points

 If the boundary is a closed boundary with

respect to the sub-domain under

consideration, the OFF point will be outside

the sub-domain or be an exterior point.

 If the boundary is an open boundary with

respect to the sub-domain under

consideration, the OFF point will be inside the

sub-domain or be an interior point.

An Example

[)
-1 0 10 2120

OFF ON OFF ONinterior

x

Distance of the OFF Points

 The idea is to pick the OFF point so close to

the boundary that any small amount of

boundary change would affect the processing

of the OFF point.

 In practice, the distance to the boundary is

set to the precision of the data type. For

integers, = 1. For numbers with n binary

digits after the decimal point, = 1/2n.

Position of the OFF Points

 The selected OFF point should be central to

all the ON points.

 For two-dimensional space, it should be

chosen by:

 Choosing the midpoint between the two ON

points.

 Then moving distance off the boundary,

outward or inward for closed or open

boundary, respectively.

Total Test Points

 In general, an interior point is also sampled

as the representative of the equivalence

class representing all the points in the sub-

domain under consideration, resulting in

(n + 1) b + 1

test points for each n-dimensional domain

with b boundaries.

0 104 106

[[) [) [)
108

An Example

104-1

OFF

x

102

interior

x

106-1

OFF

x

105

interior

x

ON

x

108-1

OFF

x

107

interior

x

ON

x

ON

x

OFF

-1
x

ON

x

109

interior

x

0% 10% 20% 30%

Tax Rate:

0%: 0~9999

10%: 10000~999999

20%: 1000000~99999999

30%: 100000000~

Boundary Problem Detection of Weak N

 1 Strategy

 Closure problem

 Boundary shift problem

 Boundary tilt problem

 Missing boundary problem

 Extra boundary problem

Closure Problem

D

closed

D

open

exterior interior

Closure Problem

D D

closedopen

exterior interior

Boundary Shift Problem

D

exterior interior

D D

Boundary Tilt Problem

D D D

exterior interior

Missing Boundary Problem

D D

exterior interior

Extra Boundary Problem

D D

exterior interior

Weak 1 1 Strategy

 One of the major drawbacks of weak N 1

strategy is the number of test points used,

(n + 1) b + 1

for n input variables and b boundaries.

 Weak 1 1 strategy uses just one ON point

for each boundary, thus reducing the total

number of test points to 2 b + 1.

 The OFF point is just distance from the ON

point and perpendicular to the boundary.

Boundary Problem Detection of Weak 1

1 Strategy

 Closure problem

 Boundary shift problem

 Boundary tilt problem

 Missing boundary problem

 Extra boundary problem

Closure Problem

D

closed

D

open

exterior interior

Boundary Shift Problem

D

exterior interior

D D

Boundary Tilt Problem

D D D

exterior interior

Such cases are rare

Missing Boundary Problem

D D

exterior interior

Extra Boundary Problem

D D

exterior interior

Looking for Equivalence Classes

 Don’t forget equivalence classes for invalid

inputs.

 Organize your classifications into a table or

an outline.

 Look for ranges of numbers.

 Look for membership in a group.

 Analyze responses to lists and menus.

Looking for Equivalence Classes

 Look for variables that must be equal.

 Create time-determined equivalence classes.

 Look for variable groups that must calculate

to a certain value or range.

 Look for equivalent output events.

 Look for equivalent operating environments.

Don’t Forget Equivalence Classes for

Invalid Inputs

 This is often your best source of bugs.

 For example, for a program that is supposed
to accept any number between 1 and 99,
there are at least four equivalence classes:

 1~99.

 < 1.

 > 99.

 If it’s not a number, it is not accepted. (Is this
true for all non-numbers?)

Organize Your Classifications into a Table

or an Outline

 You will find so many input and output

conditions and equivalence classes

associated with them that you’ll need a way

to organize them.

 We use a table or an outline.

Table

Input or Output Valid Equivalence Invalid Equivalence

Event Classes Classes

Enter a number 1~99 > 99

0

Negative numbers

An expression that

yields an invalid

number, such as

5 – 5, which yields 0

Letters and other

non-numeric characters

Outline

1. Enter a number

1.1 Valid Case

1.1.1 1~99

1.2 Invalid Cases

1.2.1 > 99

1.2.2 0

1.2.3 Negative numbers

1.2.4 An expression that yields an invalid number,

such as 5 – 5, which yields 0

1.2.5 Letters and other non-numeric characters

Look for Ranges of Numbers

 Every time you find a range (like 1~99),

you’ve found several equivalence classes.

 There are usually three invalid equivalence

classes: everything below the smallest

number, everything above the largest number,

and non-numbers.

 Look for multiple ranges (like tax rates).

There is an invalid range below the lowest

range and another above the highest range.

Look for Membership in a Group

 If an input must belong to a group, one
equivalence class includes all members of
the group.

 Another includes everything else.

 It might be possible to subdivide both classes
further.

 For example, if you enter the name of a
country, the valid equivalence class includes
all countries’ names. The invalid class
includes all inputs that aren’t country names.

Look for Membership in a Group

 But what of abbreviations, almost correct

spelling, native language spelling, or names

that are now out of date but were country

names?

 Should you test these separately?

 The odds are good that the specification

won’t anticipate all of these issues, and that

you’ll find errors in test cases like these.

Analyze Responses to Lists and Menus

 You must enter one of a list of possible inputs.

The program responds differently to each.

 Each input is its own equivalence class.

 The invalid equivalence class includes any

inputs not on the list.

 For example, the input Are you sure? (Y/N).

One class contains Y. Another contains N.

Anything else is invalid.

Look for Variables That Must Be Equal

 You can enter any color you want as long as

it’s black. Not-black is the invalid equivalence

class.

 Sometimes this restriction arises

unexpectedly in the field: everything but black

is sold out.

 Choices that used to be valid, but no longer

are, belong in their own equivalence class.

Create Time-Determined Equivalence

Classes

 Suppose you press the space bar just before, during,

and just after the computer finishes reading a

program from the disk. Tests like this crash some

systems.

 Everything you do just before the program starts

reading is another class.

 Everything you do long before the task is done is

probably one equivalence class.

 Everything you do within some short time interval

before the program finishes is another class.

Look for Variable Groups That Must

Calculate to a Certain Value or Range

 Enter the three angles of a triangle.

 In the class of valid input, they sum to 180

degrees.

 In one invalid equivalence class, they sum to

less than 180 degrees.

 In another they sum to more.

Look for Equivalent Output Events

 So far, we’ve stressed input events, because
they’re simpler to think about.

 A program drives a plotter that can draw lines
up to four inches long.

 A line might be within the valid range.

 The program might try to plot a line longer
than four inches

 There might be no line.

 It might try to plot something else altogether,
like a circle.

Look for Equivalent Operating

Environments

 The program is specified to work if the

computer has between 64 and 256K of

available memory.

 That’s an equivalence class.

 Another class includes RAM configurations of

less than 64K.

 A third includes more than 256K.

