
Introduction to Java

Nai-Wei Lin

Department of Computer Science and

Software Engineering

National Chung Cheng University

2

Content

 Platform-independent

 Object-oriented

 Exception-handling

Platform-Independent

3

Java

Source

(.java)

Java

Bytecode

(.class)

Java

Compiler

Java

Virtual

Machine
Output

Input

Object-Oriented

4

Object

x1

Object

x2

Object

y1

Object

y2

Object

y3

State

Behaviors

Objects

 Objects have states and behaviors.

 A dog has states: name, breed, color.

 A dog has behaviors: wagging, barking,

eating.

5

Classes

 A class can be viewed as a template or blue

print that defines the states and behaviors of

objects of the same type.

 An object of a class is an instance of the class.

 The class contains a set of instant variables.

The state of an object is represented by the

values assigned to its instant variables.

 The class contains a set of methods. Each

method defines a behavior of the object.

6

Classes  An Example

7

class Dog

{

 private String name;

 private String breed;

 private String color;

 public void wagging() { … }

 public void barking() { … }

 public void eating() { … }

 …

}

Constructors

8

class Dog

{

 private String name;

 private String breed;

 private String color;

 public void wagging() { … }

 public void barking() { … }

 public void eating() { … }

 public Dog(String n, String b, String c) { … }

 …

}

Constructors  An Example

9

public Dog(String n, String b, String c) {

 name = n;

 breed = b;

 color = c;

}

class Main {

 public static void main(String[] args) {

 Dog dog =

 new Dog(“SmallBlack”, “Formosan”, “black”);

 dog.wagging();

 }

}

Encapsulation

 Encapsulation is the technique of making the

instant variables in a class private and

providing access to the instant variables via

public methods. Access to the data and code

is tightly controlled by an interface.

 If a field is declared private, it cannot be

accessed by anyone outside the class,

thereby hiding the fields within the class. For

this reason, encapsulation is also referred to

as data hiding or information hiding.

10

Encapsulation

11

Implementation

Interface

Usage

Benefits of Encapsulation

 The main benefit of encapsulation is the

ability to modify our implementation without

breaking the code of others who use our

code.

 With this feature encapsulation gives

maintainability and extensibility to our code.

12

Class Complex

13

class Complex

{ // an abstract data type

 private float re;

 private float im;

 public Complex() { re = 0; im = 0; }

 public Complex(float r, float i) { re = r; im = i; }

 public Complex add(Complex c) { … }

 public Complex sub(Complex c) { … }

 public Complex mul(Complex c) { … }

 public Complex div(Complex c) { … }

 public String toString() { … }

 …

}

Class Complex  An Example

14

class Main {

 public static void main(String[] args) {

 Complex c1 = new Complex(2.0, 3.0);

 Complex c2 = new Complex(3.0, 2.0);

 Complex c3 = c1.add(c2);

 System.out.println(“Value of c3: ” + c3.toString());

 }

}

Getters and Setters

15

class Dog

{

 private String name;

 private String breed;

 private String color;

 public String getName() { return name; }

 public String getBreed() { return breed; }

 public String getColor() { return color; }

 public void setName(String n) { name = n; }

 public void setBreed(String b) { breed = b; }

 public void setColor(String c) { color = c; }

 …

}

Getters and Setters  An Example

16

class Main {

 public static void main(String[] args) {

 Dog dog =

 new Dog(“SmallBlack”, “Formosan”, “black”);

 dog.setName(“BigBlack”);

 System.out.println(“Name of dog: ” + dog.getName());

 }

}

Inheritance

 Objects can be classified as a hierarchy of

classes.

 A subclass inherits the instant variables and

methods of its superclass.

 A subclass usually also has its own instant

variables and methods.

 A subclass is more specific than its superclass.

 An object of a subclass (type) is also an object

of its superclass (type).

17

Inheritance

18

class GuideDog extends Dog

{

 private String hostName;

 public void guide();

 …

}

class DetectorDog extends Dog

{

 private String airportName;

 public void detect();

 …

}

Dog

GuideDog DetectorDog

Polymophism

 An object is polymorphic if it is an object of

more than one class.

 An object of a subclass is also an object of its

superclass.

 All java objects are polymorphic since any

object is an instance of its own class and an

instance of the class Object.

19

Polymophism – An Example

20

class Super { public void fp() { … } }

class Sub { public void fb() { … } }

class Main {

 public static void main(String[] args) {

 Super sp = new Super();

 Sub sb = new Sub();

 sp.fp(); sb.fp(); sp.fb(); sb.fb();

 gp(sp); gp(sb); gb(sp); gb(sb);

 }

 public static void gp(Super s) { … }

 public static void gb(Sub s) { … }

}

   
   

An object of subclass is also

an object of superclass.

Overriding

 A subclass can override a method inherited

from its superclass.

 Namely, a subclass can define a behavior

that is more specific to the subclass.

21

Overriding – An Example

22

class Animal {

 public void move(){

 System.out.println("Animals can move");

 }

}

class Dog extends Animal{

 public void move() {

 System.out.println("Dogs can walk and run");

 }

}

Overriding – An Example

23

class TestDog {

 public static void main(String args[]){

 Animal a = new Animal();

 // Animal reference and object

 Animal b = new Dog();

 // Animal reference but Dog object

 a.move(); // Runs the method in Animal class

 b.move(); //Runs the method in Dog class

 }

}

Exceptions

 An exception is a problem that arises during

the execution of a program.

 An exception can be caused by a user error

(entering invalid data), a programmer error

(accessing a non-existent object), or a

physical resource that has failed in some

manner (disk malfunction).

24

Exception Hierarchy

 All exception classes are subclasses of the

java.lang.Exception class.

class MyException extends Exception

{

 …

}

25

Exception Catching

 A method catches an exception using a

try/catch block.

 try {

 // Protected code

 } catch (ExceptionName e) {

 // Catch block

 }

26

Exception Throwing

 If a method does not handle a checked

exception, the method must declare it using

the throws keyword. The throws keyword

appears at the end of a method's signature.

public void method1() throws Exception1

{

 // Method Implementation

}

27

Exception Throwing

 A method can throw an exception, either a

newly instantiated one or an exception that it

just caught, by using the throw keyword.

public void method1() throws Exception1

{

 // Method Implementation

 // detect a malfunction or an exception

 throw new Exception1();

}

28

